Table of content

Journal of Engineering

مجلة الهندسة

ISSN: 17264073
Publisher: Baghdad University
Faculty: Engineering
Language: Arabic and English

This journal is Open Access

About

The Journal Engineering was issued in 1986. It was Stopped from 1990 – 1997 because of the economic blockade. It restarted publication after the fourth scientific engineering conference for it published the papers that were accepted in the conference.
It is a scientific engineering journal refereed by specialized and qualified professors in most of the engineering fields and those Specialists in the issued by the college of Engineering university of Baghdad .It was serenely publibued , but from 2011 it has issued of monthly for the numerous papers submitted to the journal to publish their papers in this scientific journal in addition to some of the Arabs professors because the journal is considered one of the valued journals in the Arabic homelan .
Many professions were the head editor of the journal from its first issue. The first one was prof.dr. Laith Ismail Namiq then prof.dr. Mohammed A.Alawis ,prof.dr.Ali A Al – kilidar prof.dr. Abdul-Ilah Younis and currently Prof.dr.Qais S. Ismail.

Loading...
Contact info

Jadriyah, Baghdad
Iraq
Mobile:
Email: joengbag@uobaghdad.edu.iq

Table of content: 2012 volume:18 issue:7

Article
The Effect Of Curing Types On Compressive Strength Of High Performance Concrete
تأثير طرق الانضاج على مقاومة الانضغاط للخرسانة العالية الاداء

Loading...
Loading...
Abstract

The present investigation considers the effect of curing temperatures (30, 40, and 50˚C) and curing compound method on compressive strength development of high performance concrete, and compares the results with concrete cured at standard conditions and curing temperature (21˚C). The experimental results showed that at early ages, the rate of strength development at high curing temperature is greater than at lower curing temperature, the maximum increasing percentage in compressive strength is 10.83% at 50C˚ compared with 21C˚ in 7days curing age. However, at later ages, the strength achieved at higher curing temperature has been less, and the maximum percentage of reduction has been 5.70% at curing temperature 50C˚ compared with 21C˚curing temperature in 91 days curing age. Also, the results showed that the specimens which are cured under field condition (using curing compound) have a various strength development rate, and the results indicate 92.11% as minimum field-standard curing strength ratio.


Article
Reduction of Concentrating Poisonous Metallic Radicals from Industrial Wastewater by Forward and Reverse Osmosis
اختزال تركيز جذور المعادن السامة من مخلفات المياه الصناعية بواسطة التنافذ الأمامي والتنافذ العكسي

Loading...
Loading...
Abstract

The research aims to use a new technology for industrial water concentrating that contains poisonous metals and recovery quantities from pure water.Therefore, the technology investigated is the forward osmosis process (FO). It is a new process that use membranes available commercial and this process distinguishes by its low cost compared to other process. Sodium chloride (NaCl) was used as draw solution to extract water from poisonous metals solution. The driving force in the FO process is provided by a different in osmotic pressure (concentration) across the membrane between the draw and poisonous metals solution sides. Experimental work was divided into three parts. The first part includes operating the forward osmosis process using TFC membrane as flat sheet for NaCl. The operating parameters studied were: draw solutions concentration (10 – 95 g/l), draw solution flow rate (12-36 I/h), temperature of draw solution (30 and 40°C), feed solution concentration (10 -210 mg/l), feed solution flow rate (10 -50 l/h), temperature of feed solution (30 and 40°C) and Pressure (0.4 bar). The second part includes operating the forward osmosis process using CTA membrane as flat sheet for NaCl. The operating parameters studied were: draw solution concentration (15 – 95 g/l), feed solution concentration (10-210 mg/l). Constant temperature was maintained at 30°C. The last part includes operating the reverse osmosis process using TFC membrane as spiral wound module in order to separate NaCl salt from draw solution and obtain on pure water so as to usefully in different uses and also obtain on solution of NaCl concentrate which was recirculated to forward osmosis process. It is then used as draw solution. The operating parameter studied was: feed solution flow rate (15-55 l/h). The experimental results show that the water flux increases with increasing draw solution concentration, feed solution flow rate, temperature of draw solution and decreases with increasing feed solution concentration, draw solution flow rate and temperature of feed solution. The experiments also show that CTA membrane gives higher water flux than TFC membrane for forward osmosis operation.


Article
Bubble Size Distribution In Gas-Liquid Dispersion Column

Loading...
Loading...
Abstract

The present work investigates the effect of; superficial air velocities of: 1, 3, and 6 cm/s for two types of perforated distributor on hydrodynamic characteristic in a gas-liquid dispersion column of; air-water, and air-aqueous-n-propanol solution. Bubble distribution, gas holdup, and power consumption are parameters take in consideration. Experimental work was carried out in perspex column of 8.5 cm inside diameter and 1.5 m height. Two types of bubble generator (perforated plate) were fixed at the bottom of the column; plate A (99 holes of 0.5 mm diameter and free area of 0.34%), plate B (20 holes of 1.5 mm diameter and free area of 0.62%). Photographic technique was used to measure the bubble parameters. The experimental results were represented by two empirical correlations. The gas holdup and the Sauter mean diameter of bubbles were correlated with both the power consumption and the hole diameter of the perforate plate.


Article
Face Identification Using Back-Propagation Adaptive Multiwavenet

Loading...
Loading...
Abstract

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multi-layer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a recognition rate of 97.75% in the presence of facial expression, lighting and pose variations. Results are compared with its wavelet-based counterpart where it obtained a recognition rate of 10.4%. The proposed multiwavenet demonstrated very good recognition rate in the presence of variations in facial expression, lighting and pose and outperformed its wavelet-based counterpart.


Article
Static Performance Characteristics of Vortex Rate Sensor

Loading...
Loading...
Abstract

The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance. A rig has been built to carry out the study, the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics. Vortex rate sensor has been designed and manufactured with dimensions:- Radius of vortex chamber =140 mm, Radius of sink tube rs =4.5 mm, the pickoff hole diameter = 2mm, Height of vortex chamber b =19 mm, Height of pickoff pipe h =25 mm.


Article
Effect of Cryogenic Treatment on the Properties of Low Carbon A858 Steel

Loading...
Loading...
Abstract

This study is concerned with the effect of Deep Cryogenic Treatment (DCT) at liquid nitrogen temperature (-196 oC) on the mechanical properties and performance of low carbon steel (A858). The tests specimens were divided in to two groups, the first group was subjected to the conventional heat treatment of normalizing, and the second group was also normalized then subjected to (DCT). The results have shown that after (DCT), the Hardness, Tensile properties and the impact energy absorbed were all slightly increased. However the fatigue test showed some positive improvement in fatigue limit by 20(N/mm2), and the volume wear rates at different loads were significantly decreased after (DCT). The changes in microstructure due to (DCT) were clearly noticeable, the grain boundaries were no longer visible, and the Pearlite isles globalization was obvious.


Article
Water Flow Visualization And Velocity Measurement Using Hydrogen Bubble Generation Technique In Low Speed Open Channel
مشاهدة وقياس سرع جريان الماء باستخدام تقنية توليد فقاعات الهيدروجين في قناة مفتوحة ذات سرع واطئة

Authors: Akram W. Ezzat --- Taif M. Mansoor
Pages: 844-858
Loading...
Loading...
Abstract

Visualization of water flow around different bluff bodies at different Reynolds number ranging (1505 - 2492) was realized by designing and building a test rig which contains an open channel capable to ensure water velocity range (4-8cm/s) in this channel. Hydrogen bubbles generated from the ionized water using DC power supply are visualized by a light source and photographed by a digital camera. Flow pattern around a circular disk of (3.6cm) diameter and (3mm) thickness, a sphere of (3.8cm) diameter and a cylinder of (3.2cm) diameter and (10cm) length are studied qualitatively. Parameters of the vortex ring generated in the wake region of the disk and the separation angle of water stream lines from the surface of the sphere are plotted versus Reynolds number. Proper empirical formulas are investigated to describe the behavior of vortex ring parameters and separation angle versus Reynolds number. Vortex growth history in the wake region of the cylinder is identified by analyzing the photographs extracted from the digital camera used for photography purposes. Water velocity measurement in the upstream region and near the edge of the disk is conducted at different Reynolds number by measuring the length of Hydrogen bubble pulse streaks generated in the upstream region of the disk using electronic pulse generator circuit. Special electronic circuit is designed and fabricated to cut off the applied DC voltage. The calibration of the designed pulse generator is conducted using the proper oscilloscope device. The pictures extracted from the digital camera are used for analyzing the generated Hydrogen pulses.


Article
Preparation of Design Charts for Estimation of the Length of an Upstream Impervious Blanket in a Homogenous Earth Dam

Authors: Raghad Samir Mahmood
Pages: 859-867
Loading...
Loading...
Abstract

Earth dams are constructed mainly from soil. A homogenous earth dam is composed of only one material. The seepage through such dams is quite high. Upstream impervious blanket is one of the methods used to control seepage through the dam foundations. Bennet's method is one of the commonly used methods to design an impervious upstream blanket. Design charts are developed relating the length of blanket, total reservoir head, total base width of the dam (excluding downstream drainage), the coefficient of permeability of the blanket material, blanket thickness, foundation thickness, and coefficient of permeability of the foundation soil, based on the equations governing the Bennet's method for a homogenous earth dam with a blanket of uniform thickness. The length of the upstream impervious blanket can be determined by using the developed charts. The length of the blanket is inversely proportional to the coefficient of permeability of the blanket material. The length of blanket is directly proportional to the total reservoir head, total base width of the dam (excluding downstream drainage), blanket thickness, foundation thickness, and coefficient of permeability of the foundation soil.


Article
Removal of Cadmium Ions from Simulated Wastewater Using Rice Husk Biosorbent
ازالة ايونات الكادميوم من المياه المحضرة مختبرياً باستخدام قشور الرز كمادة مازة طبيعية

Loading...
Loading...
Abstract

Biosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.


Article
Modeling of Corrosion Rate Under Two Phase Flow in Horizontal Pipe Using Neural Network

Loading...
Loading...
Abstract

The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , water concentration and temperature. The output is average corrosion rate .The performance of the two training algorithms, gradient descent with momentum and Levenberg-Marquardt, are compared to select the most suitable training algorithm for corrosion rate model. The model can be used to calculate the average corrosion rate properties of carbon steel alloy as functions of Reynolds number, water concentration and temperature. Accordingly, the combined influence of these effective parameters and the average corrosion rate is simulated. The results show that the corrosion rate increases with the increase of temperature, Reynolds number and the increase of water concentration.

Keywords

Corrosion rate --- Two phase flow --- ANN --- Modeling

Table of content: volume: issue: