Table of content

Journal of Engineering

مجلة الهندسة

ISSN: 17264073
Publisher: Baghdad University
Faculty: Engineering
Language: Arabic and English

This journal is Open Access

About

The Journal Engineering was issued in 1986. It was Stopped from 1990 – 1997 because of the economic blockade. It restarted publication after the fourth scientific engineering conference for it published the papers that were accepted in the conference.
It is a scientific engineering journal refereed by specialized and qualified professors in most of the engineering fields and those Specialists in the issued by the college of Engineering university of Baghdad .It was serenely publibued , but from 2011 it has issued of monthly for the numerous papers submitted to the journal to publish their papers in this scientific journal in addition to some of the Arabs professors because the journal is considered one of the valued journals in the Arabic homelan .
Many professions were the head editor of the journal from its first issue. The first one was prof.dr. Laith Ismail Namiq then prof.dr. Mohammed A.Alawis ,prof.dr.Ali A Al – kilidar prof.dr. Abdul-Ilah Younis and currently Prof.dr.Qais S. Ismail.

Loading...
Contact info

Jadriyah, Baghdad
Iraq
Mobile:
Email: joengbag@uobaghdad.edu.iq

Table of content: 2014 volume:20 issue:4

Article
Heave Behavior of Granular Pile Anchor-Foundation System
سلوك الانتفاخ لمنظومة (اساس - ركيزة رملية مربوطة) في التربة الانتفاخية

Loading...
Loading...
Abstract

Granular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of expansive soil and showed that the heave can be reduced with increasing length and diameter of (GPA). The heave of (GPA-Foundation System) is controlled by three independent variables these are (L/D) ratio, (L/H) ratio and (B/D) ratio. The heave can be reduced by up to (38 %) when (GPA) is embedded in expansive soil layer at (L/H=1) and reduced by about (90 %) when (GPA) is embedded in expansive soil and extended to non-expansive clay (stable zone) at (L/H=2) at the same diameter of (GPA) and footing. An equation (mathematical mode1) was obtained by using the computer package (SPSS 17.0) for statistical analysis based on the results of finite element analysis relating the maximum heave of(GPA-Foundation System) as a function of the above mentioned three independent variables with coefficient of regression of (R2 = 92.3 %).


Article
The Effect of Services system in Architectural form developments
أثر المنظومة الخدمية في تطورات الشكل المعماري

Loading...
Loading...
Abstract

Architecture forms theoretical summaries and multi systems that have the essence of change, and that what distinguishes Architecture from other sciences and their systems. Architecture means way of life via its expressional products and that appears through its systems. These systems are based on formative and technological properties in form, structure, services and materials as well as their moral forms. All these are associated with techniques and facilities in order to establish integrated system. Architectural creation does not come from void but it depends on a conception base to create a new condition for creative architectural product. The general problem of the research concentrated on limited theoretical and practical studies, related to the effect of the technological systems integration on the expressional sides of architectural form in general. Besides, the absence of clear concept about the expressional aim in treatment type of technological systems of architectural form. Therefore, the research, in general, aimed to diagnose the effect of technology as a main factor to reveal the formal expression and creation, and to define items of architectural expression, and correlation with its implementation by mechanical treatment for architectural form. So, the research assumes the presence of direct expressional effects in structural and mechanical systems on the architectural form. Each of these systems has two functions: the first one is supplying the practical role, while the second function concentrated on the implementation of the expressional possibilities of architectural product form.


Article
Manufacturing and Study the performance of Selective Surfaces that used in flat plate Solar Collectors
تصنيع ودراسة اداء الاسطح الانتقائية المستخدمة في اللاقطات الشمسية المسطحة

Loading...
Loading...
Abstract

In this research an experimental study has done for testing the thermal performance of selective surfaces used in solar collectors for substrate of iron, galvanized iron and aluminum which are commercially available. The coating process for the samples has done in two ways, the electroplating and the chemical spray pyrolysis. The results of the thermal performance test of these samples are comparing with the thermal performance of a sample without paint and other paint with black paint without shines commercially available. For the electroplated samples, the performance study has done for different immersion time in plating bath, the distance between electrical poles, the current density, and area ratio of the sample plated area to the nickel pole face area. The chemical sprayed pyrolysis samples, study has done for different coating times, atomizing gas pressures, distance between the aperture of atomizer and the sample and the paint mass flow rate. The results showed that the best performance of the iron's samples is the sample which is coated with two layers. The first layer is of zinc done by electroplating where the time of plating is (2 min.) and the second layer is of black nickel done by electroplating, where the time is (20 min.), the distance between the poles is (6 cm), the current density is (0.15 A/dm2) and area ratio of the sample plated area to the nickel pole face area is equal to (1). The percentage of the increasing in heat storage of electroplating sample to galvanized iron sample without paint at the beginning of testing the performance of samples and at the end were (58.23%& 44.97%) respectively. For aluminum samples, the best performance was regarded for two samples electroplating sample and chemical spray pyrolysis sample. The best electroplating sample was coated with a layer of black nickel where the time of plating is (20 min.), the distance between the poles is (6 cm), the current density is (0.15 A/dm2) and area ratio of the sample plated area to the nickel pole face area is equal to (1). While the best chemical spray pyrolysis sample has been coated with a layer of black nickel where the time of plating is (16 sec.) and the distance between the aperture of the reservoir and the surface of the sample is (27 cm), the amount of flow is (4.8 ml / min.), the atomizing gas pressure is (1 bar) and temperature of the sample surface is (290 0C).


Article
A Linear Programming Method Based Optimal Power Flow Problem for Iraqi Extra High Voltage Grid (EHV)
السريان الأمثل للطاقة بأستخدام طريقة البرمجة الخطية لشبكة الضغط الفائق العراقية

Loading...
Loading...
Abstract

The objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environment, is developed to represent the proposed method. The adopted program is applied for the first time on Iraqi 24 bus Extra High Voltage (EHV) network (400 kV). The required are data taken from the operation and control office, which belongs to the ministry of electricity.


Article
Data Classification using Quantum Neural Network
تصنيف البيانات بأستخدام الشبكة العصبية الكمية

Loading...
Loading...
Abstract

In this paper, integrated quantum neural network (QNN), which is a class of feedforward neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that (QNN’s) are capable of recognizing structures in data, a property that conventional (FFNN’s) with sigmoidal hidden units lack. In addition, (QNN) gave a kind of fast and realistic results compared with the (FFNN). Simulation results indicate that QNN is superior (with total accuracy of 97.778%) than ANN (with total accuracy of 93.334%).


Article
Linguistic Fuzzy Trust Model over Oscillating Wire¬less Sensor Networks
اختبار نموذج ضبابي الثقة على شبكات الاستشعار الاسلكية المتأرجحة

Loading...
Loading...
Abstract

Simulation of the Linguistic Fuzzy Trust Model (LFTM) over oscillating Wireless Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same good¬ness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Networks (BTRM-WSN) in terms of the accuracy and the average path length suggested by each model is presented. Both models give quite good and accurate outcomes over oscillating WSNs. Also it must be mentioned that the evaluation environment used here is Trust and Reputation Model Simulator for WSN.


Article
Priority Based Transmission Rate Control with Neural Network Controller in WMSNs
أولوية معدل انتقال مبني على السيطرة مع وحدة تحكم الشبكة العصبية في شبكات الا ستشعار الاسلكية ذات الوسائط المتعددة

Loading...
Loading...
Abstract

Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To address this challenge, This paper proposes the Neural Control Exponential Weight of Priority Based Rate Control (NEWPBRC) algorithm for adjusting the node transmission rate and facilitate the problem of congestion occur in WMSNs. The proposed algorithm combines Neural Network Controller (NC) with the Exponential Weight of Priority Based Rate Control (EWPBRC) algorithms. The NC controller can calculate the appropriate weight parameter λ in the Exponential Weight (EW) algorithm for estimating the output transmission rate of the sink node, and then ,on the basis of the priority of each child node , an appropriate transmission rate is assigned . The proposed algorithm can support four different traffic classes namely, Real Time traffic class (RT class); High priority, Non Real-Time traffic class (NRT1 class); Medium priority, Non Real-Time traffic class (NRT2 class); and Low priority, Non Real-Time traffic class (NRT3 class). Simulation result shows that the proposed algorithm can effectively reduce congestion and enhance the transmission rate. Furthermore, the proposed algorithm can enhance Quality of Service (QoS) by achieve better throughput, and reduced the transmission delay and loss probability.


Article
Study the Impact Behavior of the Prosthetic Lower Limb Lamination Materials Due to Low Velocity Impactor
دراسه سلوك الصدم الواطئ السرعه للمواد المركبه المستخدمة في صناعه وقب الطرف الصناعي لبتر تحت الركبه

Loading...
Loading...
Abstract

This work involves three parts , first part is manufacturing different types of laminated below knee prosthetic socket materials with different classical laminated materials used in Baghdad center for prosthetic and orthotic (4perlon layers+2carbon fiber layer+4 perlon layers) , two suggested laminated materials(3perlon layers+2carbon fiber layer+3 perlon layers) and (3perlon layers+1carbon fiber layer+3 perlon layers) ) in order to choose perfect laminated socket . The second part tests (Impact test) the laminated materials specimens used in socket manufacturing in order to get the impact properties for each socket materials groups using an experimental rig designed especially for this purpose. The interface pressure between the residual leg and prosthetic socket is also measured to cover all the surface area of the B-K prosthetic socket by using piezoelectric sensor in order to estimate the resulting stress according to loading conditions . A male with age, length, mass, and stump length of 42 years, 164 cm, 67 Kg and 13 cm respectively with a right transtibial amputation is chosen to achieve the above mentioned test procedures. The last part suggests a theoretical and analytical models for each group of specimen to find out the absorbed energy behavior and subjected maximum stress for each laminated B-K prosthetic socket materials .


Article
Mixed Convection in a Square Cavity Filled with Porous Medium with Bottom Wall Periodic Boundary Condition
الحمل المختلط في حيز مربع مملوء بوسط مسامي مع شروط حدية دورية على الجدار السفلي

Loading...
Loading...
Abstract

Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure head ∆h=5 mm, ∆h=10 mm, ∆h=15 mm, ∆h=20 mm, and ∆h=30 mm), sinusoidal amplitude range of 250≤q_w≤1250 W⁄m^2 and time period values of (30-120)s. Numerical results show that the pressure contours lines are influenced by hydrostatic head variation and not affected with the sinusoidal amplitude and time period variation. It is found that the average Nusselt number decreases with time and pressure head increasing and decreases periodically with time and amplitude increasing. The time averaged Nusselt number decreases with imposed sinusoidal amplitude and cycle time period increasing.


Article
Organic Solid Waste in Vessel Composting System
تدبيل النفايات الصلبة العضوية باستخدام النظام المغلق

Loading...
Loading...
Abstract

Low-level microbial activity due to the production of organic acids is a recognized problem during the initial phase of food waste composting. Increasing such activity levels by adjusting the pH values during the initial composting phase is the primary objective to be investigated. In this study, sodium acetate (NaoAc) was introduced as an amendment to an in-vessel composting system. NaoAc was added when the pH of the compost mixture reached a low level (pH < 5), the addition increased pH to 5.8. This had a positive effect on the degradation of organic materials i.e. the formation of methane gas compared to the results without NaoAc addition. The results also proved that anaerobic-aerobic in-vessel composting could reduce the large amounts of wastes by 33% -30%. However the addition of NaoAc had no significant influence on temperature profile, bulk density, electric conductivity (EC), moisture contents, Nitrogen, phosphorus, potassium (NPK) and heavy metals ) Cu, Cd, Ni, Pb) during the composting process, in fact heavy metals and (NPK) were below the maximum permissible levels of the Japanese organic farming and the USDA and US Compost Council standards . To assess the performance of the composting process, two small-scale digesters were used with fixed temperature. Maximum methane content of 68±1% and 75±1% by volume of the generated biogas was achieved in the run without and with NaoAc respectively. The germination index was which proved that the stabilized compost obtained in this research is of the “mature " kind and it is satisfactory for agricultural use according to the organic farming recommended by the Japanese Ministry of Agriculture, Forestry and Fisheries, and USDA and US Compost Council standards.


Article
Modeling and Simulation of Cadmium Removal from the Groundwater by Permeable Reactive Barrier Technology
نمذجة ومحاكاة معالجة المياه الجوفيه الملوثه بالكادميوم باستخدام تقنيه الحاجزالتفاعلي النفاذ

Loading...
Loading...
Abstract

The removal of cadmium ions from simulated groundwater by zeolite permeable reactive barrier was investigated. Batch tests have been performed to characterize the equilibrium sorption properties of the zeolite in cadmium-containing aqueous solutions. Many operating parameters such as contact time, initial pH of solution, initial concentration, resin dosage and agitation speed were investigated. The best values of these parameters that will achieved removal efficiency of cadmium (=99.5%) were 60 min, 6.5, 50 mg/L, 0.25 g/100 ml and 270 rpm respectively. A 1D explicit finite difference model has been developed to describe pollutant transport within a groundwater taking the pollutant sorption on the permeable reactive barrier (PRB), which is performed by Langmuir equation, into account. Computer program written in MATLAB R2009b successfully predicted meaningful values for Cd+2 concentration profiles. Numerical results show that the PRB starts to saturate after a period of time (~120 h) due to reduce of the retardation factor, indicating a decrease in percentage of zeolite functionality. However, a reasonable agreement between model predictions and experimental results of the total concentration distribution of Cd2+ species across the soil bed in the presence of zeolite permeable reactive barrier was recognized.


Article
Manufacturing an Organic Solar Cell and Comparing with Different Dyes
تصنيع خلية شمسية عضوية مع مقارنة اصباغ عضوية مختلفة

Loading...
Loading...
Abstract

A solar cell was manufactured from local materials and was dyed using dyes extracted from different organic plants. The solar cell glass slides were coated with a nano-porous layer of Titanium Oxide and infused with two types of acids, Nitric acid and Acetic acid. The organic dyes were extracted from Pomegranate, Hibiscus, Blackberry and Blue Flowers. They were then tested and a comparison was made for the amount of voltage they generate when exposed to sunlight. Hibiscus sabdariffa extract had the best performance parameters; also Different plants give different levels of voltage.


Article
Active Carbon from Date Stones for Phenol Oxidation in Trickle Bed Reactor, Experimental and Kinetic Study
اكسدة الفينول في مفاعل سيحي باستخدام الكاربون المنشط المحضر من نوى التمر: دراسة عملية وحركية

Loading...
Loading...
Abstract

The catalytic wet air oxidation (CWAO) of phenol has been studied in a trickle bed reactor using active carbon prepared from date stones as catalyst by ferric and zinc chloride activation (FAC and ZAC). The activated carbons were characterized by measuring their surface area and adsorption capacity besides conventional properties, and then checked for CWAO using a trickle bed reactor operating at different conditions (i.e. pH, gas flow rate, LHSV, temperature and oxygen partial pressure). The results showed that the active carbon (FAC and ZAC), without any active metal supported, gives the highest phenol conversion. The reaction network proposed accounts for all detected intermediate products of phenol oxidation that composed by several consecutive and parallel reactions. The parameters of the model estimated using experimental data obtained from a continuous trickle bed reactor at different temperatures (120-160 C) and oxygen partial pressures (8-12 bar). Simple power law as well as Langmuir-Hinshelwood (L-H) expressions accounting for the adsorption effects were checked in the modeling of the reaction network. A non-linear multi-parameter estimation approach was used to simultaneously evaluate the high number of model parameters. Approach by simple power law only succeeds in fitting phenol disappearance. Instead, when L-H expressions are incorporated for the intermediate reaction steps, the model accurately describes all the experimental concentration profiles, giving mean deviations below 10%.

Table of content: volume: issue: