Thyroid Peroxidase and Thyroglobulin Antibodies as a Marker in Autoimmune Primary Hypothyroidism

Khitam Abdul-Wahab Ali
BSc, PhD

Abdul-Wahab Abdul-Razaq
BSc, PhD

Abdul Hussain Alwan Faraj
MSc

Abstract:

Background: Autoimmune thyroid diseases are characterized by antibodies (Abs) directed to thyroglobulin (TG) and thyroperoxidase (TPO).

Subject & Method: This study was conducted to assess and measure the frequency and the level of the TgAb and TPOAb in sera of 25 patients with autoimmune primary hypothyroidism compared to 15 healthy controls by application of ELISA technique.

Results: The results observed that both TgAb (56%) and TPOAb (64%) of all patients were higher than that of the healthy persons TgAb(6.7%) and TPOAb(6.7%), the highest level of both autoantibodies was recorded in 6 women patients with Hashimoto’s thyroiditis (100%) with a level of TgAbs (410 IU/ml) (P<0.0005) and TPOAbs (525 IU/ml) (P<0.0005).

Keywords: Antithyroglobulin Anti-thyroid Peroxidase antibody, Autoimmune Hypothyroidism.

Introduction:
The pathogenic mechanism of autoimmune thyroiditis involves a bypass of T-cell specificity to initiate the production of autoantibodies [1]. There are three distinct autoantibodies present in human thyroiditis.

These include antithyroglobulin (Anti-Tg), antithyroid peroxidase (TPO) and antiacinar colloid antigen (CA2) antibodies [2].

Serum IgG level tends to be elevated with time and the progression of the disease [3]. Patients with thyroiditis and high IgG levels had a high titer of anti-Tg antibodies [4].

Clinical diagnosis of chronic thyroiditis is usually based on evidence of serum antibodies (Abs) to a microsomal antigen and / or TG. These two antigens are considered to be the major antigens relating to chronic thyroiditis [5].

Epidemiological studies have been suggested that both antibody titer and hypothyroidism progress vary slowly in subclinical autoimmune thyroiditis [6,7], while thyroid antibodies may appear transiently and later disappear, but the appearance of TPOAb together with elevated TSH strongly suggests progression to overt hypothyroidism [8].

Thyroid antibodies (TgAb and TPOAb) and histological evidence of thyroiditis were demonstrated in patients with thyroid lymphoma [9] and thyroid carcinoma [10] as well as patients with serological and cytological signs of thyroiditis [11].

Materials & Methods:

Twenty-five patients with hypothyroidism who were admitted to Al-Rasheed Military Hospital and many private clinics were studied. 12 patients with primary Myxoedema, 6 with Hashimoto’s thyroiditis, 5 with idiopathic hypothyroidism and 2 with postablative hypothyroidism. These patients include eighteen women, age range 20-52 years with average 35.4 years and seven men, age range 22-48 years with 35.6 years average.

Fifteen healthy persons (8 females & 7 males), age 20-53 years with average 37 years were included in this study as control group.

Diagnosis, historical and clinical information were recorded depend on the clinical and laboratory data including thyroid function tests (T3, T4, & TSH).

Anti-TPO and anti-Tg microplate EIA kits supplied by Sandofi Diagnostic Pasteur, Inc, Cat-No-31026 for anti-TPO kit and Cat-No-31025 for anti-Tg kit, 1000 Lako Hazeltine Drive, Chaska, MN, 55318 USA.

The Enzyme Linked Immunosorbent Assay (ELISA) method applied in this study.

The mean absorbance value and the concentration of the samples can be read from the calibration curve for Anti-TPO Abs and for Anti-Tg Abs (Fig.1.2).

Statistical analysis of results performed with student-t-test, and 0.05 was considered as the level of significance.
Results:

The heterogenous group of patients includes primary myxoedema, Hashimoto’s thyroiditis; post-ablative hypothyroidism and idiopathic hypothyroidism have been studied.

TgAbs were positive in 16 out of 25 (64%) while TPOAbs were positive in 17 (68%) of the above four types (Tab. 1 & Fig. 3).

Nine of twenty-five patients (36%) were positive to both TG and TPO Abs together; with 7 patients (28%) have TgAbs only and 8 patients (32%) have TPOAbs only, so there are 24 positive results (96%) of thyroid Abs in the whole hypothyroid patients (Tab. 2).

Thyroid auto-antibodies (TG and TPOAbs) were found to be positive in 10 (83.3%) and 11 (91.7%) out of 12 patients of primary myxoedema respectively. All patients with Hashimoto’s thyroiditis were positive and had higher level of TG and TPOAbs. The group of idiopathic hypothyroidism included 5 patients, all have nodular goiter and all were negative for the thyroid Abs. The same applied for two cases of postablative hypothyroidism (Tab. 1 & Fig 3).
Thyroid Peroxidase and Thyroglobuline Antibodies as a Marker in Hypothyroidism
Khitam Abdul- Wahab et.al

Table 1: Comparison between the TG and TPO Abs frequencies using ELIAS test in total primary hypothyroidism and its subgroup, and in healthy controls.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>No</th>
<th>Females</th>
<th>Males</th>
<th>Positive Tg Abs</th>
<th>Positive TPO Abs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Primary hypothyroidism</td>
<td>25</td>
<td>18</td>
<td>7</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>Primary Myxedema</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td>10</td>
<td>83.3</td>
</tr>
<tr>
<td>Hashimoto’s thyroiditis</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>Idiopathic hypothyroidism</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Comparison between the frequencies of positive results each of TG and TPO Abs using ELIS test in total Primary hypothyroidism

<table>
<thead>
<tr>
<th>Conditions</th>
<th>No</th>
<th>Positive total Abs</th>
<th>Positive Tg Ab</th>
<th>Positive TPO Ab</th>
<th>Positive Both Abs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Total Primary hypothyroidism</td>
<td>25</td>
<td>24</td>
<td>96</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>Healthy controls</td>
<td>15</td>
<td>2</td>
<td>13.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3 and figure 3 show the mean level of Tg and TPOAbs in total primary hypothyroidism(329±69/453±67) including primary myxedema (268 ±78/ 366± 86) and HT (410± 20/ 515±23 IU/ml), while in healthy control (37 ± 10/21±8.5 IU/ml). There is significant elevation in Tg and TPOAbs of total primary hypothyroid patients, primary myxedema patients and for Hashimoto’s thyroiditis (p<0.0005).

TgAbs were found to be positive in 14 out of 18 (77.7%) primary hypothyroid females with a mean level of 338± 68 IU/ml and they were positive in 2 out 7 (28.5%) primary hypothyroid males with a level of 308± 74.2IU/ml, while TPOAb found to be positive in 15 out of 18 (83.3%) primary hypothyroid females with a mean level of 456±47IU/ml and they were positive in 2 out of 7(28.5%) primary hypothyroid males with a level of 419± 26.8IU/ml as shown in table 4 figure 4.
Table 3: The mean serum Tg and TPO Ab levels (IU/ml) of primary hypothyroidism diseases comparing to healthy controls.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>No</th>
<th>Tg Ab (M± SD)</th>
<th>TPO Ab (M± SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary hypothyroidism</td>
<td>25</td>
<td>329±69</td>
<td>453±67</td>
<td>0.0005</td>
</tr>
<tr>
<td>Primary Myxodema</td>
<td>12</td>
<td>268±78</td>
<td>366±86</td>
<td>0.0005</td>
</tr>
<tr>
<td>Hashimoto’s thyroiditis</td>
<td>6</td>
<td>410±20</td>
<td>515±23</td>
<td>0.0005</td>
</tr>
<tr>
<td>Healthy controls</td>
<td>15</td>
<td>37±10</td>
<td>21±8.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 3: Serum Tg Ab and TPO Ab levels (IU/ml) of hypothyroidism patients compared to healthy controls.
Table 4: Comparison between the frequencies of positive results of each of Tg and TPO Abs the mean level (IU/ml) in female and male sexes of primary hypothyroidism disease and healthy controls.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>female</th>
<th></th>
<th>Males</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tg Ab</td>
<td>TPO Ab</td>
<td>Tg Ab</td>
<td>TPO Ab</td>
</tr>
<tr>
<td></td>
<td>No (%)</td>
<td>(M±SD)</td>
<td>No (%)</td>
<td>(M±SD)</td>
</tr>
<tr>
<td>Total Primary hypothyroidism</td>
<td>14/18(77.7%)</td>
<td>338±68</td>
<td>15/18(83.3%)</td>
<td>456±37</td>
</tr>
<tr>
<td>Healthy controls</td>
<td>1/15(6.75%)</td>
<td>37±10</td>
<td>1/15(6.7%)</td>
<td>21±8.5</td>
</tr>
</tbody>
</table>

Discussion:
The presence in serum of TPO and Tg antibodies in serum is almost invariably associated autoimmune thyroid diseases [7]. Many authors investigated the frequency of antithyroid antibodies in chronic thyroiditis using different assay methods, and demonstrated a significant increased TPO and Tg antibodies in sera from patients with Hashimoto’s thyroiditis (HT) [4,6,12,13]. Weetman (1990) [8] and Mitsuma (1999) [13] demonstrated the increase frequency and mean level of autoantibodies in hypothyroidism patients. These findings are in accordance with our results of increased TPO and Tg antibodies sera from patients with primary hypothyroidism. In addition, our results were in
consistent with that of Nakamura & Binder (1988) who reported that the highest level of thyroid antibodies appears in autoimmune thyroiditis especially HT and the lowest level appear in healthy controls [14].

In contrast, Aho et al. (1985) [7] found a lower prevalence of TPO Abs (73%) and Tg Abs (40%) in patients with HT compared to our results which was 100% for each TPO and Tg Abs. Their results were in contradictory to ours, but differences in the assay procedure might explain these discrepancies [15].

The frequency of positive results for thyroid and antibodies in healthy subjects may fluctuate from one study to another. Shimojo et al. (1987) [16] and Naito et al. (1990) [17] by using ELISA method, reported a frequency of positive TPO and Tg Abs in sera from healthy subjects of 14.3% and 12.7% respectively. In contrast, Scherbaum et al. (1987) [9], by using haemaglutination (HA) method, reported a frequency of positive results from normal controls in 3.8% and 1.3% for TPO and Tg Abs respectively. In the present study, the positive results for both Abs in normal controls were lower than that reported by Shimjo et al. and Naito et al. And higher than that reported by Scherbaum et al. [9,16,17].

The possible explanation is that Shimjo et al. and Naito et al. in their studies did not exclude healthy subjects with a positive family history for autoimmune disease [18]. On other hand, the prevalence of thyroid Abs depends on detection methods [15]. This can explain the higher sensitivity of ELISA method that we used in our study.

Furthermore, the TPO Abs occurs frequently in human autoimmune thyroid disease and observations, in vivo and in vitro, that their presence is closely associated with thyroid destruction and development of hypothyroidism [3]. Our results agree with Cayazer et al. [12] and Yasso [6].

Finally, the sex variation is known to be important aetiology and incidence of many diseases, including autoimmune thyroiditis [14]. Dingle et al. [19] as well as Doniach & Roitt [20] reported the incidence of positive Abs in females is about three time that in males. Our results regarding the frequency and levels of thyroid Abs in different sexes were consistent with the previous reports.

References:
5- Roit IM. Prevailing theories in Autoimmune Disorders. Triangle , 1984; 23:67-75.

*From Med. Biochemist Dept., Coll of Med , Al-Mustansiriya University
**From Microbiol Dept., Al-Kindy Coll of Med, Al-Baghdad University
*** MOH