Study the effects of Spearmint Mentha Spicata Extracts on Mammary Gland in Female Rats

Dr. Sinaa Jaboori Al-Bazii, Fadhil Jawad Al-Tu’ma, Salim Rasheed Al-Obaidi

1. Department of Biology – College of Pure Sciences Education – University of Kerbala / Kerbala – Iraq.
2. Department of Biochemistry – College of Medicine – University of Kerbala / Kerbala – Iraq.
3. Department of Histology – College of Medicine – University of Baghdad / Baghdad – Iraq.

Summary:

This study was carried out to investigate the effect that result from taking of the 5.25 ml of aqueous extract of spearmint Mentha spicata leaves in the growth and development of mammary glands during virgin, pregnancy and lactating stages for 14 days. Forty five (45) rats were used in this experiment divided into nine groups, three groups at maturity stages, three groups at pregnancy stages and three groups at lactating stages (5 rats/groups). The following studies were decided: histological, biochemical and morphometrical studies for each group. Microscopic examination of mammary gland in the virgin rats that treated with spearmint showed more growth in the size of lobules and alveoli. In pregnant, the treated groups showed more branching of alveoli with more flattened epithelium. In lactating treated group showed the lobules were expanded and contained more branching alveoli with discontinuous flattened epithelium.

The biochemical studies showed a significant increase (p<0.05) in the serum reduced glutathione concentration with decrease in the malondialdehyde concentration in the three physiological stages that treated with spearmint compared with control. The morphometrical study indicated a noticeable increase in the alveolar diameters and numbers in all groups of animals for the three physiological stages (virgin, pregnant and lactating).
Introduction:

The mammary gland are compound tubuloalveolar glands whose function is to produce and secrete milk. The milk has an important role in human feeding by direct consumption or via food industry, so that an increase in milk production has attracted worldwide interest by scientific researches.(1). Mother’s milk is supplied to the neonate through breast feeding- the feeding of an infant or young child with milk from a woman’s breast (2). Low supply of milk is one of the most common reasons given for discontinuing breast feeding. Galactagogues are medications or substances believed to assist initiation, maintenance and augmentation of maternal milk production.(3). There is a continuing interest in identification and better understanding of lactogenic plants and their extracts(4). Therefore, this investigation was directed to cast a light on the capability of spearmint on mammary gland development in three physiological stages (virgin, pregnant and lactating rats).

Material and Methods:

Their average body weight ranged between 140 -200gm. They were kept at a temperature between 20-24°C (room temperature). Animals were housed individually in wire - meshed stainless steel cages. The light / dark cycle was maintained as 12 hr./12hr.s. Rats were fed the ordinary pallet diet and maintained on free access to food and water. Forty five (45) adult female rats were divided into 3 experimental rats (each 15 rats were fed one type of plants) in three physiological stages (virgin, pregnant and lactating) (5 rats/plant/stage) and (5/stage) rats as a control for (14) days.

Spearmint leaves were cleaned and dried, then grinding into powder. Boiling distilled water was added to the powder(5 gm of mint/100 ml water) then soaked in boiled water for (60) minutes with continuous shaking then filtered through a filter paper and stored in dark bottles immediately (5).

Fasting blood samples were drawn via intra-cardiac puncture, blood was kept into epindrof tube without EDTA, held for not more than four hours before serum collection by centrifugation 3000 rpm for 15 minutes and frozen at 20°C until analysis.

Serum samples were used for measurements of glutathione (GSH) , malondialdehyde (MDA) concentrations. For histological study of rat tissue, the rats were anaesthetized by chloroform and killed. Immediately after death the mammary gland was excised and preserved in fixative solution till the preparation of histological sections . Several tissue sections were prepared according to (6).

Results

Microscopic examination of sections of mammary gland in treated virgin animals with spearmint showed more growth in the size of lobules and alveoli that showed more dilated compared with their control(figure 1 and 2). In pregnant mammary tissue that treated with spearmint revealed an increase in branching of alveoli with more flattened luminal epithelium, treated lactating mammary tissue revealed greatly dilated lobules containing more branching and more dilated alveoli with flattened epithelium figures (3,4 and 5). The serum MDA concentration was decreased significantly (p<0.05) and increase significantly (p<0.05) in GSH concentration level in all groups that treated with spearmint comparing to control (table 1 and 2) respectively. Diameters and number of alveoli were significantly increased(p<0.05) in virgin, pregnant and lactating rats treated with spearmint.(table 3).
Figure (1) Histological section of mammary glands of virgin in control group. Showed small lobules (arrow) scattered among huge amount of adipose tissue (star) (H & E) (200X).

Figure (2) Histological section of mammary gland of virgin in spearmint treated group show large size of lobules (arrow) packed by alveolar ducts (star) with interlobular ducts (black arrow) (H & E stain) (200X).
Figure(3) Histological section of mammary gland of pregnant in control group large size of alveoli (arrow) some of these alveoli filed with secretory product(star) (H & E stain) (200X).

Figure(4) Histological section of pregnant rat treated group with spearmint mammary gland show branching alveoli (star) with flattened epithelium (arrow)(H & E stain) (200X).
Figure(5) Histological section of mammary gland lactating rat in control group show dilated alveoli (arrow) with secretory products (star)(H a& E stain) (200X).

Figure(6). Histological section mammary gland of lactating rat in spearmint treated group show the alveoli were more dilated (star)and more branched (arrow)than other groups (H & E stain) (200X).
Table (1) Serum Malondialdehyde concentration (mg/dl) in female rats treated with aqueous extract of Spearmint for two weeks in different physiological stages

<table>
<thead>
<tr>
<th>Stages</th>
<th>Virgin</th>
<th>Pregnant</th>
<th>Lactation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>3.07 ±0.73</td>
<td>3.22 ±0.65</td>
<td>3.25 ±0.60</td>
</tr>
<tr>
<td>Spearmint</td>
<td>2.85 ±0.78</td>
<td>2.83 ±0.69</td>
<td>2.79 ±0.71</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SE. N= 5/ group. Small letters denote difference within group p<0.05. Capital letters denote difference between groups p<0.05.

Table (2) Serum glutathione concentration (µmol/L) in female rats treated with aqueous extract of Spearmint for two weeks in different physiological stages.

<table>
<thead>
<tr>
<th>Stages</th>
<th>Virgin</th>
<th>Pregnant</th>
<th>Lactation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1.22 ±0.21</td>
<td>1.01 ±0.30</td>
<td>1.07 ±0.29</td>
</tr>
<tr>
<td>Spearmint</td>
<td>1.31 ±0.30</td>
<td>1.33 ±0.37</td>
<td>1.30 ±0.28</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SE. N= 5/ group. Small letters denote difference within group p<0.05. Capital letters denote difference between groups p<0.05.

Table (3) Effect of daily oral intubation of effective dose of aqueous extract of spearmint in two weeks on the number and diameter of alveoli in mammary glands of treated rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Mean of the Number of alveoli</th>
<th>Mean of alveolar diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virgin</td>
<td>Pregnant</td>
</tr>
<tr>
<td>Control</td>
<td>0.2 ±0.06</td>
<td>4.6 ±0.9</td>
</tr>
<tr>
<td></td>
<td>A c</td>
<td>A a</td>
</tr>
<tr>
<td>Spearmint</td>
<td>1.5 ±0.4</td>
<td>2 ±0.2</td>
</tr>
<tr>
<td></td>
<td>B b</td>
<td>B a</td>
</tr>
</tbody>
</table>

n= 5/ group. Small letters denote within group difference p<0.05. Capital letters denote between groups difference p<0.05.
Discussion:

The present study pointed that the intubation of female rats in all physiological stages with 5.25 ml of aqueous extract of spearmint caused an increase in the size of lobules that packed with branching dilated alveoli, especially during pregnant and lactation stages compared with control. These histological features indicate that the control mammary glands revealed features of a resting mammary gland, which match the age and physiology of this group (7), while the spearmint treated groups showed that the spearmint had ability to induce mammogensis in the mammary glands of virgin, pregnant and lactating rats in addition to estrogen, progesterone and prolactine., this might be due to increase in estrogen level that found in experiments treated with spearmint such as Akdogan and others where they found increased in level of estrogen, luteinizing hormone (LH) and Follicle-stimulating hormone (FSH) serum level with decreased in free testosterone when drink spearmint tea which found the spearmint act as anti androgen (8, 9). In mammary tissue, only one Androgen Receptor (AR) type has been reported. Several study observations suggest that androgens may suppress the growth of mammary epithelium, (10,11). The exact factor in the spearmint that caused these effect is unknown. It may be due to the production of ovarian steroid hormones is coordinated by the hypothalamic-pituitary gonadal axis which is activated in puberty. The hypothalamus produces and secretes luteinizing hormone-releasing hormone (LHRH), which binds to it is receptors in pituitary gland, this causes cascade of biochemical events culminating in the production of two hormones in pituitary gland (LH) and (FSH). LH and FSH are secreted into the general blood circulation and attach to receptors on the ovary, where they trigger ovulation and stimulate the production of estrogen and progesterone (12), so that spearmint have ability to increased growth of mammary gland by decreased the level of androgen hormones.

Our study also showed there was a significant decrease in the level of lipid peroxidetion end product MDA and an increase in GSH level, this result agreement with previous study done by Padmini and co-worker (13) that found the addition of tea of spearmint extracts to the placental explants significantly decreased the level of MDA and increased in GSH, this reduction in lipid peroxidation level and increased in GSH may be attributed to the inbuilt scavenging and reducing property of the plant extracts. This property is attributed to the Menthe spicata extract has been found to have antioxidant and anti-peroxidant properties due to the presence of α-tocopherol, flavonoid compounds, eugenol and rosmarinic acid. (14, 15,16, 17,18). The presences of free hydroxyl group in phenolic compounds of spearmint are mainly responsible for antioxidant activity in mint extract that contains provitamins enabling the iron to be available in soluble state, thereby increasing its absorption (19, 20).

In table(3) showed that in all experimental groups, there is a significant increase in the diameter of alveoli and the number of alveoli per lobule, when compared with their controls. Morphometrical analysis approves all earlier parameters, the highly significant increase of alveolar diameter, in experimental rats, is most probably reflecting the active condition of mammary gland. Similar changes were recorded during pregnancy and lactation(21).

This result was agreement with previous studies such as the study the effect of Fenugreek (22), Anise (23), Cresson (24) Harmal and Borage (25).

Conclusion

Evaluation of the galactogogue action of the leaves of Mentha spicata In the female rats in the virgin pregnant and lactating states, that exhibits galactogogue activity in comparison with the control group without any significant acute toxicity effect. A probable reason for this galactogogue effect could be the presence of some compound in this plant. This plant has been antioxidant activity that caused significantly increased in reduced GSH and decreased in MDA.
Reference:


