Velocity Kinematics Analysis and Trajectory Planning of 5 DOF Robotic Arm


Trajectory planning is important in robots to achieve smooth path planning. This paper presents the velocity kinematics analysis and trajectory planning of a 5 DOF robotic arm. The Jacobian matrix is utilized to analyze the velocity kinematics and the third-order polynomial equation is used to determine the path of angle, velocity, and acceleration of the robotic arm. A 5 DOF robotic arm used withrevolute joints and the motion of it is performed using the Arduino Mega2560 (microcontroller) which controlling on servo motors. The results of the velocity kinematics indicated the maximum linear velocity occurs with the z-direction and the cubic polynomial equation satisfied a smooth path for angle and velocity but a discontinuous path for acceleration.