Reliability Analysis of Anchored Geotechnical Structures for the Design Limit States

Abstract

Reliability has been considered of magnificent importance in engineering design specially in geotechnical engineering due to the unpredictable conditions of soil layers. It is essential to establish well- designed failure modes that could guarantee safety and durability of the proposed structure. This study aims to suggest a reliability analyses procedure for retaining walls by the mean of a reliability index β using the specifications of AASHTO Bridge Design 2002, Eurocode 7, and DIN EN 1993-5 norms. Two failure modes; Tensile failure of tendon (G1) and Failure by bending (G2) were studied and compared by using equation of the Design Limit State (DLS) and by taking some basic geotechnical parameters as Random Variables RV. The analyses demonstrated that the reliability index β and probability of failure Pf are the most important parameter in the reliability analysis. Also, the suitable height (H) for the retaining structure (for all angles ϴ) equals to 6 m and the most critical angle is ϴ= 45º to prevent the failure by tensile of tendon. While the bending failure reliability analysis shows that all heights of retaining structure are suitable. After comparing the two cases it was found that (G1) is more dangerous than (G2).