Evaluation of lipid metabolizing enzymes: Paraxonase1 (PON1) and lecithin cholesterol acyltransferase (LCAT) activities in children with nephrotic syndrome


Background: The most common glomerular disorder in children is nephrotic syndrome, associated with high morbidity despite notable advances in its treatment. Many of the nephrotic syndrome complications, including the increased risk of atherosclerosis and thromboembolism, can be linked to dysregulated lipid metabolism and dyslipidemia. Paraoxonase enzyme is responsible for the most of the antioxidant properties of HDL, thus preventing the formation of atherogenic ox-LDL molecules, and lecithin cholesterol acyltransferase is intimately involved in HDL maturation and is a key component of the reverse cholesterol transport pathway, which removes excess cholesterol molecules from the peripheral tissues to the liver for excretion.Objectives: The present study aimed to investigate the serum activities of paraoxonase-1 (PON-1) and lecithin cholesterol acyltransferase (LCAT) in children with nephrotic syndrome in an active phase (as newly diagnosed or old cases with acute relapse). Also, to study any correlation exists between paraoxonase-1 activity and lipid profile.Methods: This study consists of group 1 with 40 cases of nephrotic syndrome in the age group of (2-14 years) and group 2 with 40 age and sex-matched healthy controls. Lipid profile and paraoxonase activity, lecithin cholesterol acyltransferase activities were measured in both groups’ serum samples.Results: Statistical analysis of student’s t-test showed that the mean levels of total cholesterol, triglycerides, LDL were significantly increased in group 1 when compared to Group 2 (p <0.001). PON1 and lecithin cholesterol acyltransferase levels were significantly lower in group 1 compared to group 2, and there is no significant difference among nephrotic groups.Conclusions: Both paraoxonase-1 enzyme and lecithin cholesterol acyltransferase are considered good promising predictors for nephrotic syndrome and other parameters such as LDL, HDL, and TG. The significantly decreased paraoxonase-1 enzyme and lecithin cholesterol acyltransferase activities result in increased oxidation of LDL, thus accelerating atherosclerosis.