The Combining Effect of Inclination Angle, Aspect Ratio and Thermal Loading on the Dynamic Response of Clamped-Clamped Pipe Conveying Fluid


The investigation of the vibration of pipes containing flowing fluid is very essential to obtain an understanding of their dynamic behavior and prevent their catastrophic failure due to fatigue. Pipelines are subjected to environmental static and dynamic loading including self-weight, restoring, and Carioles forces. This research aims to investigate the vibrations of pipeline structures for examining their structural integrity under these conditions. A linear Euler-Bernoulli beam model is used to analyze the dynamic response of flexible, inclined, and fixed ends pipe conveying fluid made of polypropylene random-copolymer. Closed-form expression for dynamic response is presented by using combining of finite Fourier sine and Laplace transforms method. The influences of the inclination angle, thermal load, and aspect ratio (ratio of outside diameter to the length of pipe) on the dynamical behavior of the pipe–fluid system are studied. The obtained results attest to the importance of considering combining effects of the inclination angle, thermal load, and aspect ratio in analyzing and designing pipe conveying fluid. It is observed that the dynamic deflection can be significantly increased by increasing temperature, aspect ratio, and fluid velocity, while it reduced by increasing the inclination angle with the horizontal axis in the range of (0-90).