Simulation Of Two Dimensional Flow And Conjugate Heat Transfer Problem In Cooled Gas Turbine Nozzle Guide Vane


The coupled treatment (conjugate numerical methodology) allows the simultaneous solution of the external flow (steady, two dimensional, compressible and turbulent flow) and conduction within the metal (steady, two dimensional) of gas turbine nozzle guide vane (with and without internal convection cooling). Validation of the developed conjugate capability is investigated in the present work. The numerical results were compared with experimental results for steady, two dimensional, compressible and turbulent flow through the gas turbine nozzle cooling guide vane type (NASA-C3X), and the results were found to be in good agreement with experiments by(Hylton 1983). The study shows that the (conjugate numerical methodology) gives good and more accurate results than the un-coupled treatment. It also shows that the cooling of the vane reduced the thermal stresses which are focused in the trailing edge of the vane for being thin. Moreover, the cooling flow inside the passages of the vane reduced the temperature of vane body and that gives longer life to the vane for the same Turbine Inlet Temperature (TIT) and efficiency. Otherwise, it gives higher Turbine Inlet Temperature and high efficiency if one chose to keep same life of the vane. Finally, the present study shows that the conjugate heat transfer simulation is a good tool in gas turbine design, and it serves as base future work with more complex geometries and cooling schemes for turbine blade.