EFFECT OF SINUSOIDAL WAVY WALL ON HEAT TRANSFER FROM DISCRETE HEAT SOURCES PLACED IN TWO-DIMENSIONAL CHANNEL

Abstract

The effect of wavy wall in a two dimensional channel on heat transfer from three isothermal heat sources placed on the lower wall of the channel has been investigated numerically. Four cases have been considered in this study, in each case the wavy wall is on the upper wall of the channel while the heat sources are placed on the lower wall of the channel. The flow and temperature field are studied numerically with different amplitude to channel height ratios and different number of waves. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations. The Cartesian velocity components and pressure on a collocated (non-staggered) grid are used as dependent variables in the momentum equations, which is discretized by finite volume method, body fitted coordinates are used to represent the complex wavy wall accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass. The range of Reynolds number is (50  Re  1000) and the range of the wave amplitude is (-0.5  A 0.5) and the Prandtl number is (0.7).The results show that the maximum heat transfer enhancement in the studied cases is in the case where the wavy wall placed on the upper wall over the sources and half wave over each source.