Synthesis of Colloidal Copper Oxide Nan Oparticles Using Pulsed Nd:YAG Laser Ablation in Liquid


This work reports the attempts to carry out pulsed laser ablation in liquid (PLAL) for synthesizing colloidal copper oxide nanoparticles (NPs). Copper oxide NPs was synthesized by 7ns Nd:YAG laser ablation of high purity copper target immersed in different solutions; ethanol, acetone, and water. The optical and morphological properties of copper oxide NPs were investigated. It was found that the optical absorbance, energy gap, size, and distribution of copper oxide nanoparticles are dependent on liquid type. Plasmon peak was observed at 550nm for Cu NPs ablated in acetone and methanol liquids, while it was disappeared for those ablated in water. Atomic Force Microscopy (AFM) analysis showed that the average grain size of copper oxide particles ablated in acetone, ethanol, and water were 276 nm, 300, and 360nm, respectively. Fourier Transform Infrared (FTIR) was used to study the vibrational frequencies between the bonds of atoms for a synthesized copper oxide NPs at different liquids. All these results confirm the complete oxidation of ablated copper.