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Abstract

Let X be a uniformly smooth Banach space, T:X —— X be ®-strongly quasi accretive (®-hemi contractive)
mappings. It is shown under suitable conditions that the Ishikawa iteration sequence converges strongly to the
unique solution of the equation Tx = f. Our main results is to improve and extend some results about Ishikawa
iteration for type from contractive, announced by many others.
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1. Introduction
Let X be an arbitrary Banach space with norm

” ' ” and the dual space X*. The normalized duality
X

mapping J:X — 2 is defined by
09 ={f e X f>=[ x| £ L =[x [}

where <-,-> denotes the generalized duality pairing. It
is known that if X is uniformly smooth, then J is
single valued and is uniformly continuous on any
bounded subset of X.

Let T:D(T) ¢ X —— X be an operator, where
D(T) and R(T) denote the domain and range of T,
respectively, and | denote the identity mapping on X.

We recall the following two iterative processes
to Ishikawa and Mann, [1], [2]:

i- Let K be a nonempty convex subset of X, and T:K
—— K be a mapping, for any given x0 € K the
sequence <xn> defined by

xn+1=(1-an)xn+ anTyn

yn = (1 —Bn)xn + BnTxn (n>0)

is called Ishikawa iteration sequence, where <an>
and <pn> are two real sequences in [0,1] satisfying
some conditions.

ii- In particular, if pn = 0 for all n > 0 in (i), then
<xn> defined by

X0 e K, xn+1=(1-an)xn+anTyn,n>0

is called the Mann iteration sequence.

Recently Liu [3] introduced the following
iteration method which he called Ishikawa (Mann)
iteration method with errors.

For a nonempty subset K of X and a mapping
T:K—— K, the sequence <xn> defined for arbitrary
x0 in K by
yn = (1 —Bn)xn + BnTxn + vn,

xn+1=(1-an)xn+anTyn + un for all n=
0,1.2,...,
where <un> and <vn> are two summable sequences

2lul<eo D] <o

in X (i.e., =0 and n=0 ), <an>
and <Bn> are two real sequences in [0,1], satisfying
suitable conditions, is called the Ishikawa iterates
with errors. If Bn = 0 and vn = 0 for all n, then the
sequence <xn> is called the Mann iterates with
errors.
The purpose of this paper is to define the Ishikawa
iterates with errors to fixed points and solutions of ®-
strongly quasi accretive and ®-hemi-contractive
operators equations. Our main results improve and
extend the corresponding results recently obtained by
[3] and [4]. Via replaced the assumption summable
sequences by the assumption bounded sequences, T
need not be Lipschitz and the assumption that T is
strongly accretive mapping is replaced by assumption
that T is ®-strongly quasi accretive and ®-hemi-
contractive, and main results improve the
corresponding results recently obtained by [5]. Via
replaced the assumption quasi-strongly accretive and
quasi-strongly pseudo-contractive mappings by the
assumption ®-strongly quasi accretive and ®-hemi-
contractive operators.
1.1 Definition: [5], [6], [7]

A mapping T with domain D(T) and range R(T)
in X is said to be strongly accretive if for any x, y €
D(T), there exists a constant k € (0,1) and j(x —y) €

J(x —y) such that<Tx — Ty, j(x —y)> > k [[x —y|I?

The mapping T is called ®-strongly accretive if there

exists a strictly increasing function @ : [0,00)] —>

[0,00] with ®(0) = 0 such that the inequality
<TX-Ty, j(x—y) = @(l[x - yll)-[Ix - yll

holds for all x, y € D(T). It is well known that the

class of strongly accretive mappings is a proper
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subclass of the class of ®-strongly accretive
mapping.

An operator T: X —— X is quasi-strongly
accretive if there exists a strictly increasing function
@ : [0,00] —> [0,00] with ®@(0) = 0 such that for any
X,y € D(T)

Re <Tx-Ty, j(x —y) =2 ®([[x - yll)

An operator T: X—— X is called O-
strongly quasi-accretive if there exist a strictly
increasing function ®:[0,0.0] —> [0,o0] with ®(0)= 0
such that for all xeD(T), peN(T) there exist
j(x —p)eJ(x-= p) such that

<Tx—Tp, j(x —p) 2 D(|Ix —pll)-Ix - pll

where N(T) = {x e D(T):T(x) = 0}.

1.2 Remarks: [5], [6], [7]

1. A mapping T: X —— X is called strongly pseudo
contractive if and only if (1-mis
strongly accretive.

2. A mapping T: X — X is called ®-strongly
pseudo-contractive if and only if (I-T). &
strongly accretive.

3. A mapping T: X —— X is called quasi-strongly
pseudo-contractive if and only if (I — T) is quasi-
strongly accretive.

4. A mapping T: X —— X is called ®-hemi-
contractive if and only if (I — T) is O-
strongly quasi-accretive.

The following lemma plays an important role in
proving our main results.

1.1 Lemma: [1], [2]

Let X be a Banach space. Then for all

X,y e Xand j(x +y) € (X +Y),
[+ <X +2<y.i(x+y)>.

2. Main Results
Now, we state and prove the following
theorems:

2.1 Theorem:

Let X be a uniformly smooth Banach
space and let T:X——>X be a ®-strongly
quasi-accretive operator.

Let xoeK the Ishikawa iteration sequence
<xp> With errors be defined by

yn = (1 - Bn)xn + anxn + ann (l)
Xn+1= (1= 0n)Xn + anSYn + anliy foralln = ...(2)
0,12,....

where <a,>, <B,>, <a,> and <b,> are sequences in
[0,1] satisfying

lima, =0 and limB, =0 -(3)
o, = ()
n=0

a, <or®,c>0,b, >B, ()

and <u,> and <v,> are two bounded sequence in X.
Define S: X—— X by Sx =f+ x—Tx for
all x € X, and suppose that R(S) is bounded, then
<Xy,> converges strongly to the unique solution of the
equation Tx = f.
proof: Since T is ®-strongly quasi-accretive, it
follows that N(T) is a singleton, say {w}.
Let Tw = f, it is easy to see that S has a unique fixed
point w, it follows from definition of S that
<Sx-Sy,j(x—

2
Y><[x=y[" = (x=y[)-[x -y ..6)
Setting y = w, we have
<SX—Sw,j(x—
w)><||x — w||2 —O(|x—wl)-[x—w]---(7)
We prove that <x,> and <y,> are bounded. Let
M, =sup{|Sx, —w| +[Sy, —w]|:n > 0}+|x, —w]|
M, =sup{|u,||+[|v,[:n >0}

M= Ml + Mz
From (2) and (5), we get

[

n+1
<(@-o,) %, = W[+ M, +a,M,

and hence

X0 — W[ < @—a, )X, —W|+,M ..(8)

Now, from (1) and (5), we have

n+l

”yn _W” < (1_Bn)||xn _W”+Bn ”an _W”+ bn ”Vn”

< (1—Bn)||xn —W||+Ban+BnM2

and hence

Iy, ~wl<@-p)lx, ~wlepm O
||Xn _W” <M ...(10)
Now, we show by induction that

for all n > 0. For n = 0 we have

1%, —w| <M, <M, by definition of M, and M.

Assume now that ||Xn —W|| <M forsome n=>0.

Then by (8), we have

X1 — W[ < Q=) ||x, —W[+0,M
<@l-o,)M+a,M=M.

Therefore, by induction we conclude that (10) holds
substrituting (10) into (9), we get

Iy, ~w|<M
From (9), we have
Iy =Wl < @B, x, ~wl" +
2B, (LB, IM||x,, —w]|+BZM?
Since 1 - B, <1 and |Xn —W|| <M, we get

n+l

e —w" <[, —w|"+28,m° )

Using lemma (1.1), we get

_W” < (1_an)||xn _W”+an ”Syn _W”+an ”un”



J. of university of Anbar for pure science : Vol.7:NO.2: 2013
2" Conference For Pure Science - university of Anbar 20-22/11/2012

(X, —WH2 <[ @-o, )(x, —W) +a,u, + o, (S, —W)H2
< |@-o,)(x, 7W)+anunH2 +
201, <SY, =W, (X, —W) >
< (@-a,)’|x, —WH2 +

20~ a,)a, [, ~wfu, |+a; Ju, |+

20, <Sy, —W, j(y, —w) >+

20, <SY, =W, j(X,,, —W) - j(y, —w) >
Hence, using (6) and definition of M, we get

(%02
21— a,)a,M? +a?M? +2a, |y, —w|] -
20, D(ly, —wW|) |y, —w|+2a,c,

where

C =<SY, =W, j(Xp = W) = j(y, —W) > - (13)

By (10) and (12) and using that a, <o, we

obtain

o s =W <y W 201, [, W+ +
20,0 M? + 201, X, —W||2 N
4, M7 = 20,y W[ + 20,0,

and hence

||Xn+1 _W||2 < ”X” - W||2 - 20anD(”yn _W”) ’ ”yn _W” +

anx‘n
...(14)
where A, = (o, +2a +4B,)M? +2c, .
First we show that c,—— 0 as n——o0, observe that
from (1) and (2), we have
Hxn+1 - yn H S H(Bn _(’“n)(xn _W) + an (Syn _W) -
B, (SX, —wW)+a,u, —b v, | and
< B, — o)X, ~w[+o, Sy, —w|+
By stn _WH'HXn Hun H+Bn HVHH
hence, by (10) and definition of M.
X0 = Yol < (3B, +0,)M +(19)

Therefore [X,,, —W—(y, —W)|| —> 0 as n

n+l

—> 0,

Since <Xps1 — W>, <y, — w> and <Sy, — w> are
bounded and j is uniformly continuous on any
bounded subset of X, we have

j(Xn+1—-W)—j (Yr—W)}——0 as n — o0,
Cn =< SXn —-W, j(xn+l - W)_ J(yn - W) >—0

asn — oo, Thus limi, =0,

N
inf{ly, —w||:n>0}=S>0.

We prove that S = 0. Assume the contrary, i.e., S > 0.
Then |y, —w]||>S>0 for all n >0.

Hence

O(|y, —w|) = ®(S)>0.

Thus from (14)

—w" =[x, =W =20, x, =W+ o x, —w] +

||Xn+l _WHZ < ”Xn _W”2 —a,®(S5)-S~- ...(16)
o, [@(S)-S-4,]
for all n > 0. Since limA, =0, there exists a
n—o0
positive integer ng such that A, < ® (S)-S for all n >
No.
Therefore, from (16), we have

X =W <%, —W[ ~ 01, ®(S)-S,

or

o, D(S)-S<|x, —W||2 —[Xnaa —w||2 for all n>n,.
Hence

©(8)-S- Y aty =[x, ~w ~ [, —w[’

1=no

- n

2
<x0—w||,

which implies ) @, <oo, contradicting (4).
n=0

Therefore, S=0.

From definition of S, there exists a subsequence of

< ||yn —W|| >, which we will denote by
< ||yi — W” >, such that
I_imHyj —WH -0 .(17)

Jo0
Observe that from (1) for all n > 0, we have
[0 =Wl <[y, —w+B, (x, —w) -
B, (Sx, —W)+b,v,|
<[yo =wl+By [, —w]+
B, stn _WH+ b, HVnH
Since b, < By, by definition of A, B and M we get

[x, —w| <]|ly, —w]+38,Mfor all n=0 ...(18)
Thus by (3), (17) and (18), we have
limHX,-—WH=0 ...(19)
J>o0
Let € > 0 be arbitrary. Since limo, =0,limfB, =0
n—o0 n—o0
and limA_ =0, there exists a positive integer No
n—oo
such that
€ € €) €
o, <—, B, <=— A, <D| = |- = for all
3M 3M 3) 3
n > No.
From (19), there exists k > N, such that
X, —w<e ..(20)

We prove by induction that
||Xk+n —W|| <g foralln>0 ..(21)

For n = 0 we see that (21) holds by (20).
Suppose that (21) holds for some n > 0 and that

[Xonss — W[ = €. Then by (15), we get
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S ka+n+1 _WH = Hykm W Xt ™ Yicen H
< Hykm _WH+HXk+n+1 _yk+nH Hence
< Hyk+n _WH+ (0 +3Byn )M

2e

<[]+ 2

||yk+n - W" 2 %

From (14), we get

&% < [Xeoma — WP <[[xesn — W7 _2am<p(§]§+

oend(£)2
< ka+n 7WH2 < g?,

which is a contradiction. Thus we proved (21). Since
e is arbitrary, from (21), we have

imx, -w]=0. =

2.1 Remark:

If in theorem (2.1), B, = 0, b, = 0, then we
obtain a result that deals with the Mann iterative
process with errors.

Now, we state the Ishikawa and Mann iterative
process with errors for the d-hemi contractive
operators.

2.2 Theorem:

Let X be a uniformly smooth Banach space, let
K be a non empty bounded closed convex subset of X
and T:K—— K be a ®-hemi-contractive operator.
Let w be a fixed point of T and let for X, € K the
Ishikawa iteration sequence <x,> be defined by
Yo =Bo X0 +B,TX, +b,v,

Xpg =, X, +o, Ty, +a,u,, n=0

n+1
where <u,>, <v,> c K, <a,>, <B,>, <a,>, <b,> are
sequences as in theorem (2.1) and

oTn =l-a,-a,,

B, =1-B,—b,.

Then <x,> convereges strongly to the unique fixed
point of T.

proof: Obviously <x,> and <y,> are both contained

in K and therefore, bounded. Since T is ®-hemi-

contractive, then (1 — T) is ®-strongly quasi accretive.

The rest of the proof is identical the proof of theorem

21withy=wand T =S, and is therefore omitted. m

2.2 Remark:

If in theorem (2.2), B, = 0 and b, = 0, then we
obtaine the corresponding result for the Mann
iteration process with errors.
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