ISSN: 1991-8941

Some Convergence Theorems for the Fixed Point in Banach Spaces

Zena Hussein Mabeed University of Baghdad - College of Education for pure Science

Abstract

Let X be a uniformly smooth Banach space, $T:X \longrightarrow X$ be Φ -strongly quasi accretive (Φ -hemi contractive) mappings. It is shown under suitable conditions that the Ishikawa iteration sequence converges strongly to the unique solution of the equation Tx = f. Our main results is to improve and extend some results about Ishikawa iteration for type from contractive, announced by many others.

Keywords: Convergence Theorems, Fixed Point, Banach Spaces

errors.

1. Introduction

Let X be an arbitrary Banach space with norm $\left\| \, \cdot \, \right\|$ and the dual space $X^*.$ The normalized duality

mapping J:X
$$\longrightarrow$$
 $\stackrel{X}{\longrightarrow}$ is defined by
$$J(x) = \{ f \in X^* : \langle x, f \rangle = \| x \| \cdot \| f \|, \| f \| = \| x \| \}$$

where $<\cdot,\cdot>$ denotes the generalized duality pairing. It is known that if X is uniformly smooth, then J is single valued and is uniformly continuous on any bounded subset of X.

Let $T:D(T)\subseteq X\longrightarrow X$ be an operator, where D(T) and R(T) denote the domain and range of T, respectively, and I denote the identity mapping on X.

We recall the following two iterative processes to Ishikawa and Mann, [1], [2]:

i- Let K be a nonempty convex subset of X, and T:K \longrightarrow K be a mapping, for any given $x0 \in K$ the sequence $\langle xn \rangle$ defined by

$$xn + 1 = (1 - \alpha n)xn + \alpha nTyn$$

 $yn = (1 - \beta n)xn + \beta nTxn$ $(n \ge 0)$

is called Ishikawa iteration sequence, where $\langle \alpha n \rangle$ and $\langle \beta n \rangle$ are two real sequences in [0,1] satisfying some conditions.

ii- In particular, if $\beta n=0$ for all $n\geq 0$ in (i), then ${<}xn{>}$ defined by

 $x0 \in K$, $xn + 1 = (1 - \alpha n)xn + \alpha nTyn$, $n \ge 0$ is called the Mann iteration sequence.

Recently Liu [3] introduced the following iteration method which he called Ishikawa (Mann) iteration method with errors.

For a nonempty subset K of X and a mapping $T:K \longrightarrow K$, the sequence $\langle xn \rangle$ defined for arbitrary x0 in K by

$$yn = (1 - \beta n)xn + \beta nTxn + vn,$$

$$xn + 1 = (1 - \alpha n)xn + \alpha nTyn + un \text{ for all } \qquad \qquad n = 0, 1, 2, \ldots,$$

where <un> and <vn> are two summable sequences

$$\sum_{n=0}^{\infty} \left\| \left. u_n \right\| < \infty \qquad \sum_{n=0}^{\infty} \left\| \left. v_n \right\| < \infty \\ \text{and } < \beta n > \text{ are two real sequences in [0,1], satisfying suitable conditions, is called the Ishikawa iterates with errors. If $\beta n = 0$ and $vn = 0$ for all n, then the sequence $<\!xn\!>$ is called the Mann iterates with$$

The purpose of this paper is to define the Ishikawa iterates with errors to fixed points and solutions of Φ strongly quasi accretive and Φ-hemi-contractive operators equations. Our main results improve and extend the corresponding results recently obtained by [3] and [4]. Via replaced the assumption summable sequences by the assumption bounded sequences, T need not be Lipschitz and the assumption that T is strongly accretive mapping is replaced by assumption that T is Φ-strongly quasi accretive and Φ-hemicontractive, and main results improve the corresponding results recently obtained by [5]. Via replaced the assumption quasi-strongly accretive and quasi-strongly pseudo-contractive mappings by the assumption Φ-strongly quasi accretive and Φ-hemicontractive operators.

1.1 Definition: [5], [6], [7]

A mapping T with domain D(T) and range R(T) in X is said to be strongly accretive if for any $x, y \in D(T)$, there exists a constant $k \in (0,1)$ and $j(x-y) \in J(x-y)$ such that $\langle Tx-Ty, j(x-y) \rangle \geq k \|x-y\|^2$ The mapping T is called Φ -strongly accretive if there exists a strictly increasing function $\Phi: [0,\infty] \longrightarrow [0,\infty]$ with $\Phi(0)=0$ such that the inequality

$$< Tx - Ty, j(x - y) \ge \Phi(\|x - y\|) \cdot \|x - y\|$$
 holds for all $x, y \in D(T)$. It is well known that the class of strongly accretive mappings is a proper

subclass of the class of Φ -strongly accretive mapping.

An operator $T: X \longrightarrow X$ is quasi-strongly accretive if there exists a strictly increasing function $\Phi: [0,\infty] \longrightarrow [0,\infty]$ with $\Phi(0) = 0$ such that for any $x, y \in D(T)$

Re
$$<$$
Tx $-$ Ty, $j(x - y) \ge \Phi(||x - y||)$

An operator T: $X \longrightarrow X$ is called Φ -strongly quasi-accretive if there exist a strictly increasing function $\Phi:[0,\infty] \longrightarrow [0,\infty]$ with $\Phi(0)=0$ such that for all $x \in D(T)$, $p \in N(T)$ there exist $j(x-p) \in J(x-p)$ such that

$$< Tx - Tp, j(x - p) \ge \Phi(||x - p||) \cdot ||x - p||$$

where $N(T) = \{ x \in D(T): T(x) = 0 \}.$

1.2 Remarks: [5], [6], [7]

- 1. A mapping T: $X \longrightarrow X$ is called strongly pseudo contractive if and only if (I T) is strongly accretive.
- **2.** A mapping T: $X \longrightarrow X$ is called Φ -strongly pseudo-contractive if and only if (I T). Φ -strongly accretive.
- **3.** A mapping T: X → X is called quasi-strongly pseudo-contractive if and only if (I T) is quasi-strongly accretive.
- **4.** A mapping T: $X \longrightarrow X$ is called Φ -hemicontractive if and only if (I T) is Φ -strongly quasi-accretive.

The following lemma plays an important role in proving our main results.

1.1 Lemma: [1], [2]

Let X be a Banach space. Then for all $x, y \in X$ and $j(x + y) \in J(x + y)$,

$$||x + y||^2 \le ||x||^2 + 2 < y, j(x+y) > .$$

2. Main Results

Now, we state and prove the following theorems:

2.1 Theorem:

Let X be a uniformly smooth Banach space and let $T:X\longrightarrow X$ be a Φ -strongly quasi-accretive operator.

Let $x_0 \in K$ the Ishikawa iteration sequence $\langle x_n \rangle$ with errors be defined by

$$y_n = (1 - \beta_n)x_n + \beta_n Sx_n + b_n v_n$$
 ...(1)

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Sy_n + a_n u_n \text{ for all } n = \dots(2)$$

0, 1,2,...

where $<\alpha_n>$, $<\beta_n>$, $<a_n>$ and $<b_n>$ are sequences in [0,1] satisfying

$$\lim_{n\to\infty}\alpha_n=0 \text{ and } \lim_{n\to\infty}\beta_n=0 \qquad \qquad ...(3)$$

$$\sum_{n=0}^{\infty} \alpha_n = \infty \qquad ...(4)$$

$$a_n \le \alpha_n^{1+c}, c > 0, b_n > \beta_n$$
 ...(5)

and $< u_n >$ and $< v_n >$ are two bounded sequence in X. Define $S: X \longrightarrow X$ by Sx = f + x - Tx for all $x \in X$, and suppose that R(S) is bounded, then $< x_n >$ converges strongly to the unique solution of the equation Tx = f.

proof: Since T is Φ -strongly quasi-accretive, it follows that N(T) is a singleton, say $\{w\}$.

Let Tw = f, it is easy to see that S has a unique fixed point w, it follows from definition of S that $\langle Sx-Sy,j(x-$

$$|y| \ge ||x - y||^2 - \Phi(||x - y||) \cdot ||x - y|| \dots (6)$$

Setting y = w, we have

<Sx-Sw,j(x-

$$||w|| \le ||x - w||^2 - \Phi(||x - w||) \cdot ||x - w|| \dots (7)$$

We prove that $< x_n >$ and $< y_n >$ are bounded. Let

$$\mathbf{M}_{1} = \sup\{\|\mathbf{S}\mathbf{x}_{n} - \mathbf{w}\| + \|\mathbf{S}\mathbf{y}_{n} - \mathbf{w}\| : n \ge 0\} + \|\mathbf{x}_{0} - \mathbf{w}\|$$

$$\mathbf{M}_2 = \sup\{\|\mathbf{u}_n\| + \|\mathbf{v}_n\| : n \ge 0\}$$

 $\mathbf{M} = \mathbf{M}_1 + \mathbf{M}_2$

From (2) and (5), we get

$$||x_{n+1} - w|| \le (1 - \alpha_n) ||x_n - w|| + \alpha_n ||Sy_n - w|| + a_n ||u_n||$$

$$\le (1 - \alpha_n) ||x_n - w|| + \alpha_n M_1 + \alpha_n M_2$$

and hence

$$||x_{n+1} - w|| \le (1 - \alpha_n) ||x_n - w|| + \alpha_n M$$
 ...(8)

Now, from (1) and (5), we have

$$\begin{aligned} \|y_{n} - w\| &\leq (1 - \beta_{n}) \|x_{n} - w\| + \beta_{n} \|Sx_{n} - w\| + b_{n} \|v_{n}\| \\ &\leq (1 - \beta_{n}) \|x_{n} - w\| + \beta_{n} M_{1} + \beta_{n} M_{2} \end{aligned}$$

and hence

$$\|y_n - w\| \le (1 - \beta_n) \|x_n - w\| + \beta_n M$$
 ...(9)
 $\|x_n - w\| \le M$...(10)

Now, we show by induction that

for all $n \geq 0.$ For n=0 we have $\left\|x_0-w\right\| \leq M_{_1} \leq M$, by definition of $M_{_1}$ and M.

Assume now that $\|\mathbf{x}_n - \mathbf{w}\| \le \mathbf{M}$ for some $n \ge 0$.

Then by (8), we have

$$\|\mathbf{x}_{n+1} - \mathbf{w}\| \le (1 - \alpha_n) \|\mathbf{x}_n - \mathbf{w}\| + \alpha_n \mathbf{M}$$

 $\le (1 - \alpha_n) \mathbf{M} + \alpha_n \mathbf{M} = \mathbf{M}.$

Therefore, by induction we conclude that (10) holds substrituting (10) into (9), we get

$$\|y_n - w\| \le M$$

From (9), we have

$$\|y_n - w\|^2 \le (1 - \beta_n)^2 \|x_n - w\|^2 +$$

$$2\beta_{\scriptscriptstyle n}(1\!-\!\beta_{\scriptscriptstyle n})M\left\|x_{\scriptscriptstyle n}-w\right\|\!+\!\beta_{\scriptscriptstyle n}^2M^2$$

Since
$$1-\beta_{n}\leq 1$$
 and $\left\Vert \boldsymbol{x}_{n}-\boldsymbol{w}\right\Vert \leq \boldsymbol{M}$, we get

$$\left\|\boldsymbol{y}_{n}-\boldsymbol{w}\right\|^{2}\leq\left\|\boldsymbol{x}_{n}-\boldsymbol{w}\right\|^{2}+2\beta_{n}\boldsymbol{M}^{2} \qquad \qquad ...(12)$$

Using lemma (1.1), we get

$$\begin{split} \left\| x_{n+1} - w \right\|^2 & \leq \left\| (1 - \alpha_n)(x_n - w) + a_n u_n + \alpha_n (Sy_n - w) \right\|^2 \\ & \leq \left\| (1 - \alpha_n)(x_n - w) + a_n u_n \right\|^2 + \\ & 2\alpha_n < Sy_n - w, j(x_{n+1} - w) > \\ & \leq (1 - \alpha_n)^2 \left\| x_n - w \right\|^2 + \\ & 2(1 - \alpha_n)a_n \left\| x_n - w \right\| \left\| u_n \right\| + a_n^2 \left\| u_n \right\|^2 + \\ & 2\alpha_n < Sy_n - w, j(y_n - w) > + \\ & 2\alpha_n < Sy_n - w, j(x_{n+1} - w) - j(y_n - w) > \end{split}$$

Hence, using (6) and definition of M, we get

$$\begin{split} \left\| x_{n+1} - w \right\|^2 & \leq \left\| x_n - w \right\|^2 - 2\alpha_n \left\| x_n - w \right\|^2 + \alpha_n^2 \left\| x_n - w \right\|^2 + \\ & 2(1 - \alpha_n) a_n M^2 + a_n^2 M^2 + 2\alpha_n \left\| y_n - w \right\|^2 - \\ & 2\alpha_n \Phi(\left\| y_n - w \right\|) \cdot \left\| y_n - w \right\| + 2\alpha_n c_n \end{split}$$

where

$$c_n = \langle Sy_n - w, j(x_{n+1} - w) - j(y_n - w) \rangle$$
 ...(13)

By (10) and (12) and using that $a_n \le \alpha_n \alpha_n^c$, we obtain

$$\begin{aligned} \left\| x_{n+1} - w \right\|^2 & \le \left\| x_n - w \right\|^2 - 2\alpha_n \left\| x_n - w \right\|^2 + \alpha_n^2 M^2 + \\ & 2\alpha_n \alpha_n^c M^2 + 2\alpha_n \left\| x_n - w \right\|^2 + \\ & 4\alpha_n \beta_n M^2 - 2\alpha_n k_x \left\| y_n - w \right\|^2 + 2\alpha_n c_n \end{aligned}$$

and hence

$$\|x_{n+1} - w\|^{2} \le \|x_{n} - w\|^{2} - 2\alpha_{n}\Phi(\|y_{n} - w\|) \cdot \|y_{n} - w\| + \alpha_{n}\lambda_{n}$$
...(14)

where
$$\lambda_n = (\alpha_n + 2\alpha_n^c + 4\beta_n)M^2 + 2c_n$$
.

First we show that $c_n \longrightarrow 0$ as $n \longrightarrow \infty$, observe that from (1) and (2), we have

$$\begin{split} \left\| x_{n+1} - y_n \right\| & \leq \left\| (\beta_n - \alpha_n)(x_n - w) + \alpha_n (Sy_n - w) - \right. \\ & \beta_n (Sx_n - w) + a_n u_n - b_n v_n \right\| \quad \text{and} \\ & \leq (\beta_n - \alpha_n) \left\| x_n - w \right\| + \alpha_n \left\| Sy_n - w \right\| + \\ & \beta_n \left\| Sx_n - w \right\| + \alpha_n \left\| u_n \right\| + \beta_n \left\| v_n \right\| \end{split}$$

hence, by (10) and definition of M.

$$\|\mathbf{x}_{n+1} - \mathbf{y}_n\| \le (3\beta_n + \alpha_n)\mathbf{M}$$
 ...(15)

Therefore
$$\left\|x_{n+1} - w - (y_n - w)\right\| \longrightarrow 0$$
 as

 $\longrightarrow \infty$.

Since $< x_{n+1} - w>$, $< y_n - w>$ and $< Sy_n - w>$ are bounded and j is uniformly continuous on any bounded subset of X, we have

$$\begin{array}{l} j(x_{n+1}-w)-j(y_n-w) \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty \\ c_n = < Sx_n - w, \ j(x_{n+1} - w) - j(y_n - w) > \longrightarrow 0 \\ \text{as} \ n \longrightarrow \infty. \ \text{Thus} \ \lim_{n \to \infty} \lambda_n = 0 \ , \end{array}$$

$$\inf\{\|y_n - w\| : n \ge 0\} = S \ge 0.$$

We prove that S=0. Assume the contrary, i.e., S>0.

Then
$$\|y_n - w\| \ge S > 0$$
 for all $n \ge 0$.

Hence

$$\Phi(\|\mathbf{y}_n - \mathbf{w}\|) \ge \Phi(S) > 0.$$

Thus from (14)

$$\|\mathbf{x}_{n+1} - \mathbf{w}\|^2 \le \|\mathbf{x}_n - \mathbf{w}\|^2 - \alpha_n \Phi(\mathbf{S}) \cdot \mathbf{S} - \dots (16)$$

 $\alpha_n [\Phi(\mathbf{S}) \cdot \mathbf{S} - \lambda_n]$

for all $n \geq 0.$ Since $\underset{n \rightarrow \infty}{lim} \lambda_n = 0$, there exists a

positive integer n_0 such that $\lambda_n \leq \Phi$ (S)·S for all $n \geq n_0$

Therefore, from (16), we have

$$\|\mathbf{x}_{n+1} - \mathbf{w}\|^2 \le \|\mathbf{x}_n - \mathbf{w}\|^2 - \alpha_n \Phi(\mathbf{S}) \cdot \mathbf{S},$$

or

$$\alpha_n \Phi(S) \cdot S \le \left\| \boldsymbol{x}_n - \boldsymbol{w} \right\|^2 - \left\| \boldsymbol{x}_{n+1} - \boldsymbol{w} \right\|^2 \text{ for all } n \ge n_0.$$
 Hence

$$\begin{split} \Phi(S) \cdot S \cdot \sum_{j=n_0}^n \alpha_j &= \left\| \boldsymbol{x}_{n_0} - \boldsymbol{w} \right\|^2 - \left\| \boldsymbol{x}_{n+1} - \boldsymbol{w} \right\|^2 \\ &\leq \left\| \boldsymbol{x}_{n_0} - \boldsymbol{w} \right\|^2, \end{split}$$

which implies $\sum_{n=0}^{\infty}\alpha_{n}<\infty\,,$ contradicting (4).

Therefore, S = 0.

From definition of S, there exists a subsequence of $< \left\| y_n - w \right\| >$, which we will denote by

$$< \|y_i - w\| >$$
, such that
$$\lim_{i \to \infty} \|y_j - w\| = 0 \qquad ...(17)$$

Observe that from (1) for all $n \ge 0$, we have

$$\begin{aligned} \left\| \mathbf{x}_{n} - \mathbf{w} \right\| & \leq \left\| \mathbf{y}_{n} - \mathbf{w} + \beta_{n} (\mathbf{x}_{n} - \mathbf{w}) - \right. \\ & \beta_{n} (\mathbf{S} \mathbf{x}_{n} - \mathbf{w}) + \mathbf{b}_{n} \mathbf{v}_{n} \right\| \\ & \leq \left\| \mathbf{y}_{n} - \mathbf{w} \right\| + \beta_{n} \left\| \mathbf{x}_{n} - \mathbf{w} \right\| + \\ & \beta_{n} \left\| \mathbf{S} \mathbf{x}_{n} - \mathbf{w} \right\| + \mathbf{b}_{n} \left\| \mathbf{v}_{n} \right\|. \end{aligned}$$

Since $b_n \le \beta_n$, by definition of A, B and M we get

$$\|\mathbf{x}_{n} - \mathbf{w}\| \le \|\mathbf{y}_{n} - \mathbf{w}\| + 3\beta_{n} \mathbf{M}$$
, for all $n \ge 0$...(18)

Thus by (3), (17) and (18), we have

$$\lim_{j \to \infty} \left\| \mathbf{x}_j - \mathbf{w} \right\| = 0 \qquad \dots (19)$$

Let $\epsilon>0$ be arbitrary. Since $\underset{n\to\infty}{lim}\alpha_n=0,\underset{n\to\infty}{lim}\beta_n=0$

and $\underset{n\rightarrow\infty}{lim}\lambda_n=0$, there exists a positive integer N_0 such that

$$\alpha_{_{n}} \leq \frac{\epsilon}{3M}, \, \beta_{_{n}} \leq \frac{\epsilon}{3M}, \lambda_{_{n}} \leq \Phi\left(\frac{\epsilon}{3}\right) \cdot \frac{\epsilon}{3} \quad \text{ for } \quad \text{all}$$

 $n \ge N_0$.

From (19), there exists $k \ge N_0$ such that

$$\|\mathbf{x}_{k} - \mathbf{w}\| < \varepsilon \tag{20}$$

We prove by induction that

$$\left\| \mathbf{x}_{k+n} - \mathbf{w} \right\| < \varepsilon \text{ for all } n \ge 0$$
 ...(21)

For n = 0 we see that (21) holds by (20).

Suppose that (21) holds for some $n \ge 0$ and that $\left\|x_{k+n+1} - w\right\| \ge \epsilon$. Then by (15), we get

$$\begin{split} \epsilon & \leq \left\| \boldsymbol{x}_{k+n+1} - \boldsymbol{w} \right\| = \left\| \boldsymbol{y}_{k+n} - \boldsymbol{w} + \boldsymbol{x}_{k+n+1} - \boldsymbol{y}_{k+n} \right\| \\ & \leq \left\| \boldsymbol{y}_{k+n} - \boldsymbol{w} \right\| + \left\| \boldsymbol{x}_{k+n+1} - \boldsymbol{y}_{k+n} \right\| \quad \text{Hence} \\ & \leq \left\| \boldsymbol{y}_{k+n} - \boldsymbol{w} \right\| + (\alpha_{k+n} + 3\beta_{k+n}) \boldsymbol{M} \\ & \leq \left\| \boldsymbol{y}_{k+n} - \boldsymbol{w} \right\| + \frac{2\epsilon}{3} \end{split}$$

$$\|\mathbf{y}_{k+n} - \mathbf{w}\| \ge \frac{\varepsilon}{3}$$

From (14), we get

$$\begin{split} \epsilon^2 \leq & \left\| \boldsymbol{x}_{k+n+1} - \boldsymbol{w} \right\|^2 \leq & \left\| \boldsymbol{x}_{k+n} - \boldsymbol{w} \right\|^2 - 2\alpha_{k+n} \Phi \left(\frac{\epsilon}{3} \right) \cdot \frac{\epsilon}{3} + \\ & \alpha_{k+n} \Phi \left(\frac{\epsilon}{3} \right) \cdot \frac{\epsilon}{3} \\ \leq & \left\| \boldsymbol{x}_{k+n} - \boldsymbol{w} \right\|^2 < \epsilon^2, \end{split}$$

which is a contradiction. Thus we proved (21). Since ϵ is arbitrary, from (21), we have $\lim_{n\to\infty} \left\|x_{_n}-w\right\|=0\,.\,\blacksquare$

2.1 Remark:

If in theorem (2.1), $\beta_n = 0$, $b_n = 0$, then we obtain a result that deals with the Mann iterative process with errors.

Now, we state the Ishikawa and Mann iterative process with errors for the Φ -hemi contractive operators.

2.2 Theorem:

 $\overline{\beta_n} = 1 - \beta_n - b_n$.

Let X be a uniformly smooth Banach space, let K be a non empty bounded closed convex subset of X and $T:K\longrightarrow K$ be a Φ -hemi-contractive operator. Let W be a fixed point of Y and let for Y and Y the Ishikawa iteration sequence Y be defined by

$$\begin{split} &y_n = \overline{\beta_n} \ x_n + \beta_n T x_n + b_n v_n \\ &x_{n+1} = \overline{\alpha_n} \ x_n + \alpha_n T y_n + a_n u_n, \ n \geq 0 \\ &\text{where} \ <\!\! u_n\!\!>, <\!\! v_n\!\!> \subset K, <\!\! \alpha_n\!\!>, <\!\! \beta_n\!\!>, <\!\! a_n\!\!>, <\!\! b_n\!\!> \text{ are sequences as in theorem (2.1) and} \\ &\overline{\alpha_n} = 1 - \alpha_n - a_n, \end{split}$$

Then $\langle x_n \rangle$ converges strongly to the unique fixed point of T.

proof: Obviously $< x_n >$ and $< y_n >$ are both contained in K and therefore, bounded. Since T is Φ -hemicontractive, then (I-T) is Φ -strongly quasi accretive. The rest of the proof is identical the proof of theorem 2.1 with y=w and T=S, and is therefore omitted. \blacksquare **2.2 Remark:**

If in theorem (2.2), $\beta_n=0$ and $b_n=0$, then we obtain the corresponding result for the Mann iteration process with errors.

References

- XU.Y., (2005). Iterative Procresses with Random Errors for Fixed Point of φ-Pseudo Contractive Operators, J. Math. Kolloq 59:87-97.
- L.Z., U.J.S., and Kang, J.M., (2005). Strongly Convergence and Pseudo Stability for Operators of the φ-Accretive Type in Uniformly Smooth Banach Space, *J.Math.* Kollog 59: 29-40.
- 3. L.L.S., (1995), Ishikawa and Mann Iterative Process with Errors for Non Linear Strongly Accretive Mapping in Banach Spaces, *J. Math. Anal. Appl.* 194: 114-125.
- 4. XU.Y., (1998). Ishikawa and Mann Iterative Process with Errors for Non Linear Strongly Accretive Operator Equations, *J. Math. Anal. Appl.* 224: 91-101.
- C.L.B. and U.J.S., (2004). Ishikawa Iterative Processes with Errors for Approximations of Zeros of Strongly Accretive Operator Equations, *Polonia LVIII*:27-36.
- Z.XU and Z.W., (2006). Ishikawa Iterative Sequence for the Generalized Lipschitzian and Φ-Strongly Accretive Mapping in Banach Spaces, J. Math. 29: 203-213.
- 7. R.A., Acu, A.M., and A.M., (2008). Steepest Descent Approximations in Banach Space, *General Math.* 16: 133-143

بعض نظريات التقارب للنقطة الصامدة في فضاءات بناخ

زينة حسين معيبد

E.mail: dean_coll.science@uoanbar.edu.iq

الخلاصة:

ليكن X فضاء بناخ املس منتظم، $X \longleftarrow T:X$ تطبيقات Φ -القوية شبه المتزايدة (Φ -نصف انكماشية). بُرهن تحت شروط مدروسة إنه متتابعة التكرار اشيكاوا تقترب بقوة الى الحل الوحيد للمعادلة T = f . إحدى نتائجنا هي لتحسين وتوسيع بعض النتائج حول تكرار اشيكاوا لاتواع من الاتكماشية المعلنة لدى آخرين كثيرين.