
Eng.& Tech. Journal, Vol.30, N0.6, 2012

1066

A Hybrid Neural Based Dynamic Branch Prediction Unit

Gheni A. Ali
AL-Rafidain University College/Baghdad
Email: rafidain_gheni@yahoo.com

Received on: 7/8/2011 & Accepted on: 2/2/2012

ABSTRACT

Modern high performance processor architectures have come to depend upon
highly pipelined operation in order to achieve improvements in operating speed. As
a result, the cost associated with flushing the pipeline and refilling it when a branch
instruction is mis-predicted can significantly impact processor performance. Many
schemes, from the extremely simple to the highly complex, have been proposed to
improve branch prediction accuracy. Conventional two-level branch predictors
predict the outcome of a branch either based on the(local branch history)
information, comprising the previous outcomes of a single branch (intra-branch
correlation), or based on the (global branch history) information, comprising the
previous outcomes of all branches (inter-branch correlation). The misprediction
rates for these predictors are very high when they predict branch instructions with
hybrid correlations. In this paper we suggest a hybrid perceptron based predictor
which employs up to 31-bits of both local and global branch history information to
minimize the misprediction rates. The software written for simulation and testing
shows that the suggested hybrid predictor achieves a high accuracy. Our results
shows that the best response of the predictor is obtained on history length of 16-
bits.

Keywords: Branch Prediction, Advanced Processor Architecture, Neural
 Networks, Pipelining

 وحدة ديناميكية هجينة للتنبؤ بالتفرعات باستخدام الشبكات العصبية

 الخلاصة

عـرف بالمعالجـة التدفقيـة تعتمد معماريات المعالجات الحديثة وبدرجة كبيرة على مـا ي
(Pipelining) لذلك فإن التكلفة التي تنتج من تفريـغ خـط . من أجل تحسين سرعها التشغيلية

المعالجة التدفقية وإعادة ملئه عند حدوث خطأ في التنبؤ بتنفيذ إيعاز تفرع معين سيؤثر بدرجـة
بعمليات التفرع والتي طورت هناك العديد من تقنيات التنبؤ الديناميكي. كبيرة على أداء المعالج

لكن عمومـا فـإن . بعض هذه التقنيات بسيطة جدا وبعضها غاية في التعقيد، لتحسين دقة التنبؤ
وحدات التنبؤ التقليدية ذات المستويين تتنبأ بنتيجة إيعاز التفرع أما بناءا على معلومات تاريخيـة

يذ الفعلية السابقة لنفس الإيعاز الذي معلومات عن حالات التنف((local branch history)محلية
، (intra-branch correlation)وهو ما يعرف بالترابط الداخلي) يراد التنبؤ بعملية تنفيذه حاليا

عن (global branch history)أو أن يتم التنبؤ بنتيجة تفرع معين استنادا على معلومات شاملة
كل الطرق السابقة تقدم دقـة تنبـؤ واطئـة . ؤخراحالات التنفيذ لجميع أوامر التفرع المنفذة م

PDF created with pdfFactory Pro trial version www.pdffactory.com

mailto:rafidain_gheni@yahoo.com
http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1067

بإيعازات التفرع التي يعتمد تنفيذها على حالات التنفيذ السابقة للأمر نفسه ولأوامر أخرى وهذا ما
هذا البحث يقدم طريقة هجينة مقترحة للتنبـؤ . (hybrid correlation)يعرف بالترابط الهجين

الطريقـة التـي . (Perceptron)شبكات العصبية وهو بأنواع التفرعات تستخدم ابسط أنواع ال
محلية وشاملة عن تاريخ تنفيذ إيعاز (بت من المعلومات الهجينة 31يقدمها البحث تستخدم لغاية

تم بناء نظـام برمجـي . لمراعاة خصوصية الترابط الهجين من أجل تحسين دقة التنبؤ) التفرع
النتائج التي توصـلت لهـا . ي حققت دقة تنبؤ عاليةلمحاكاة واختبار وحدة التنبؤ المقترحة والت
 . بت من المعلومات الهجينة 16الطريقة تبين أن انسب استجابة تتحقق عند

 INTRODUCTION

ost commercial processors are implemented on pipeline and superscalar
architecture. In superscalar architecture, branch instructions may reduce
the parallelism because the branch direction or the target address during

the instruction fetch can not be known [1]. A conditional branch instruction
introduces the added hazard caused by the dependency of the branch condition on
the result of the preceding instruction. The decision to branch cannot be made until
the execution of that instruction has been completed [2].

Branch instructions occur frequently, in fact, they represent about 20 percent of
the dynamic instruction count of most programs (The dynamic count is the number
of instruction executions, taking into account the fact that some program
instructions are executed many times because of loops). Because of the branch
penalty, this large percentage would reduce the gain in performance expected from
the pipelining. Fortunately, branch instructions can be handled in several ways to
reduce their negative impact on the rate of execution of instructions. One of these
ways is the branch prediction [2].

Branch prediction represents the process of correctly predicting the branch's
direction and target address before it is actually executed. High accuracy branch
prediction is increasingly important in today's superscalar and deep pipeline
processor architecture [3]. Statistically was proven that conditional branches are
executed about every 7 to 8 instructions at average. Current wide issue
architectures can execute four or more independents instructions per clock cycle.
So, a branch instruction is likely to be executed every two clock cycles or less. This
means that branch prediction is crucial for processor performance [4]. According to
the time and way the prediction is resolved, Smith [5] classify branch prediction
into two categories: Static and Dynamic. Static branch prediction is simpler and
depends mainly on program structure. For example, a branch instruction at the end
of the loop causes a branch to the start of the loop for every pass through the loop
except the last one. Hence, it is advantageous to assume that this branch will be
taken and to have the instruction fetch unit start to fetch instructions at the branch
target address. On the other hand, for branch instructions on the beginning of a
program loop, it is advantageous to assume that the branch will not be taken. The
strategy described above is called FTBNT (Forward Taken Backward Not Taken).

M

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1068

A backwards branch is a branch instruction that has a target with a lower
address (i.e. one that comes earlier in the program) [6].

Generally, Static branch prediction algorithms tend to be very simple, and by
definition do not incorporate any feedback from the run-time environment. By not
paying any attention to the dynamic run-time behavior of a program, the branch
prediction is incapable of adapting to changes in branch prediction patterns. The
advantage of static branch prediction techniques is that they are very simple to
implement, and do require very little hardware resources. Static branch prediction
algorithms are of less interest in the context of future generation [7]. A dynamic
algorithm keeps a record of previous branch behavior, allowing it to improve its
predictions over time. A simple scheme, published by James Smith [5], maintains a
single history bit for each branch. When a branch is encountered, it is predicted to
go the same way it did the previous time, as indicated by the bit. This technique
which used by Digital’s Alpha, AMD’s K5, and other processors, can push
accuracy to 80% [8]. Processors such as Pentium store the history bits in a separate
Branch History Table (BHT), assigning one entry per branch to achieve improved
accuracy. Alternatively, similar accuracy is achieved with fewer entries. The BHT,
however, must maintain its own set of tags, greatly increasing the amount of
storage required.

Given the overhead of tag storage, most processors with a separate BHT store
two bits of history per entry instead of just one bit. In this method, also elucidated
by Smith [5], the two bits can be thought of as a saturating counter that is
incremented when the branch is taken and decremented when it is not; the most-
significant bit is used to predict future occurrences. Another way to look at this
implementation is as a state machine, which is depicted in Fig. 1. In two bit Smith
algorithm (recent literature has often referred to it as “bimodal” prediction), the
two history bits implement a state machine with four possible states: strongly taken
(ST), weakly taken (WT), weakly not taken (WNT), and strongly not taken (SNT).
In ST and WT, future branches are predicted taken; in WNT and SNT, branches are
predicted not taken. The advantage of bimodal method is that a single unusual
iteration will not change the predicted direction. For example, if a branch has been
taken many times in succession, the state machine will be in the Strongly Taken
state (3). If the branch is then not taken, the history bits will indicate Weakly Taken
but still predict the next iteration as taken. Only if the branch is not taken two or
more times consecutively will the prediction change to not taken. This hysteresis
effect can boost prediction accuracy to 85% , depending on the size and type of
history table that is used [8].

TWO LEVEL PREDICTIONS

Bimodal prediction can be improved in two ways, both of which explicitly track
prior branch outcomes and were introduced by Yeh and Patt [9]. Local-history
prediction maintains a table of per-branch histories. Instead of tracking each
branch’s predominant direction, this Branch History Table (BHT) tracks explicit
history in order to detect patterns. For example, a local history can detect patterns
like TNTN… that confound simple saturating counters. The predictor still keeps a
PHT (Pattern History Table) of two-bit counters, but these are now indexed using

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1069

the local history pattern, and the counters now learn outcomes for each history
pattern. A schematic of a local history predictor appears in fig. 2.

All local branch predictors, predict the outcomes of a branch based on the local
branch history, i.e. the previous outcomes of the branch itself. This kind of
correlation between the results of a single branch is called intra-branch correlation.
The Intra-branch correlation often arises from loop branches with a regular number
of iterations and branches with periodic outcome patterns. Consider the example in
Fig.3: the While-Do loops in the code fragment will be translated to conditional
branches, denoted as branches E and F, after compilation. Branches E and F will be
taken nine times and then untaken once repeatedly. Per-address two-level
predictors keep a dedicated BHR for each branch to record its previous outcomes.
If a branch has periodic outcomes and the length of the BHR is long enough to
capture the whole periodic pattern, per-address two-level predictors are able to
predict the result of the branch perfectly. In real programs many branches exhibit
intra-branch correlation, which is why per-address two-level (local) predictors
work well .

The table of per-branch histories (Branch History Table BHT) can be replaced
with a single, global shift register, the Global Branch History Register (GBHR).
All branches shift their outcomes into this register, which typically is 10 -15 bits
wide. This may seem a strange thing to do, but global history prediction allows
branches to easily see the behavior of other recent branches [9]. A typical global
history predictor appears in Fig. 4. This figure. also shows the inclusion of some
address bits in the index for the table of two-bit counters (the pattern history table
PHT). The preceding discussion has assumed each branch has a unique entry in
these tables, but these are hardware structures and necessarily of finite size.

Two branches may therefore share the same entry, either because the table is not
sufficiently large or because the two branches share the same prior history. This
may be harmless, and sometimes even helps when it accidently permits related
branches to communicate additional information among each other. But if often
results in destructive interference as the branches overwrite each others' state. This
aliasing can be alleviated in both global and local history predictors by combining
the history bits with some bits from the branch's address. One simple way to do
this, proposed by McFarling [10] is to XOR the two patterns together, creating a
gshare predictor. Now branches that share the same history are usually
distinguished by their different addresses. The code example shown in Fig. 5,
summarize the second type of correlation; the inter-branch correlation. There are
four if-statements in the code fragment, and they will be translated to conditional
branch instructions after compilation. In this example, branches C and D are
correlated with branches A and B. When the results of branches A and B are
determined, the results of branches C and D are also determined. A global two-
level branch predictor is able to record the various outcomes of branches C and D
corresponding to different outcome combinations of branches A and B. When a
specific outcome combination of branches A and B happens again, the branch
predictor can predict the results of branches C and D by looking up the pattern
history table. In real programs there exists a large amount of inter-branch

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1070

correlation, which is the reason why global two-level branch predictors can work
[12].

Some branches, like that shown in the example of fig. 6, are not predictable
based on merely the global branch history or merely the local branch history. This
example contains three if-statements, each of which will be translated to a
conditional branch after compilation. We shall use the notation C1 to denote the
condition (I mod 35 = 0) , and the notation C2 to denote the condition (I mod 3<>
0). In this example, branch Z has partial correlation with branches X and Y. That
is, if the results of branches X and Y are both known, the condition C1 can be
determined. However, since the outcome of branch Z also depends on condition
C2, it is not sufficient to derive the outcome of branch Z from the outcomes of
branches X and Y. In this example, global two-level branch predictors cannot
predict the outcome of branch Z exactly due to lacking the information of C2.
Similarly, local two level predictors cannot predict the outcome of branch Z
exactly because the BHR fails to capture the whole periodic outcome pattern of
branch Z unless the BHR has a nonrealistic length of more than 105 bits. M.-C.
Chang and Y.-W. Chou [12] proposed a branch predictor, called LGshare, which
exploits both of the global branch history and the local branch history
simultaneously to enhance branch prediction accuracy. The LGshare predictor has
an n-bit global BHR to record the recent n outcomes of all branches and an m-bit
local BHR for each branch to record the m recent outcomes of the branch. Every
time when the PHT is to be accessed, the m-bit history in local BHR and the n-bit
history in global BHR are concatenated to form the hybrid branch history, and then
the hybrid branch history is XORed with the branch address to form the index to
PHT.

BRANCH PREDICTION USING NEURAL NETWORKS

The first perceptron based dynamic branch prediction was proposed by Jimenez
and Lin [11]. Fig.(7) shows a graphical model of a sample branch predicting
perceptron. The input values x1 through xn are prior branch outcomes coming from
the global branch history register. These are bipolar; each xi is either 1, meaning
the branch was taken, or –1, in the case which the branch was not taken. Weights
w1 through wn are weights associated with their respective input, the larger the
absolute value of wi, the higher degree of correlation of xi has with the output.
These values come from a table of weights, indexed by the branch address. The
output, y, is computed as the dot product of these weighted input vectors.
According to the following equation:

 …………(1)

Another neural based branch predictor is given by P.B. Osofisan, and O.A.
Afunlehin, [13]. In their work they used two types of neural networks; Back
propagation and Learning Vector Quantization (LVQ) nets. These methods which
are formerly used by others, includes some limitations that makes them not
attractive solutions to implement efficient predictors. Because of its

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1071

implementation complexity, there is no way to implement back-propagation in
hardware such that a prediction can be produced in just a few cycles. While LVQ
does not lend itself well to high-speed implementation because it performs
complex computations involving floating point numbers [14].

THE PROPOSED PREDICTOR

The main purpose of our work is applying the most simple neural network
(perceptron) in the implementation of LGshare predictor described in section 2
above. Fig.(8). Shows the structure of the proposed predictor.

 PREDICTOR STRUCTURE

The suggested structure includes a branch target buffer which contains the per –
branch history for number of branch instructions. The size of BTB depends on the
number of branch instructions that it can contains their history and the number of
history bits for each branch. Each branch instruction associates with an entry in the
perceptron table, this table is a two dimensional array, each entry in the row
represent the weight, which is an integer whose value dictates how strongly the
current branch correlates with a corresponding entry in the LBHR, these weights
are updated dynamically according to the training rules which will be described
later. With each branch instruction the BTB is accessed, in the case of hit, its
history is loaded into the LBHR. Some bits of LBHR is concatenated with a
portion of GBHR to formulate a special register called HBHR which contains some
history about this branch and the most recently occurrence of some other branches
that may affect the execution of the present one. The suggested contribution of
local history and global history in the formulation of HBHR depends on the
history length of HBHR. Local bits always will take the RHS part of the HBHR
(the least significant bits) Table (1). Summarize this contribution. The history bits
are stored in binary (0 for not taken, and 1 for taken), but in the time of processing
(prediction and training) they are converted into bipolar; either 1, in the case of
taken, or -1 , when the branch was not taken. XORing branch address with its local
history is used to alleviate the aliasing that may be occurs if two different branches
have same history. Actually, the formulation of HBHR is a bit manipulation
operation between GBHR and LBHR of the branch to be predicted, we use the
built-in assembler to perform this operation. Fig. 9, shows a simple assembly code
to formulate a HBHR with length of 15-bits (7 global bits, 8 local bits)

 PERCEPTRON PREDICTION AND TRAINING

The perceptron, shown in fig.. (7)., like any neural network, must be trained in
order to operates properly. The training is done by changing the value of each
weight according to the actual branch occurrence. The training (weights updating)
is only done in the case of a misprediction or if the output value of the perceptron
is less than or equal to a certain value called the threshold. The threshold value
depends mainly on the number of history bits [11], and it is calculated by:

threshold=1.93* history_length+14 ………(2)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1072

The perceptron prediction is implemented by applying equation 1. The code shown
in fig. (10), shows the implementation of perceptron prediction. The history (local
and global) is updated with each branch execution, while weights updating is done
under certain conditions fig. (11) shows the code for weight updating:

SIMULATION RESULTS

In order to evaluate the prediction accuracy of the hybrid predictor, a program is
written in Turbo Pascal 7 and its associated built in turbo assembler. All of the
conditional branches to be tested are gathered by recording their actual outcomes in
a special matrix called Actual, while their addresses and history (initially assumed
to be taken i.e. all history bits are 1's) are recorded in BTB. For each branch, this
simulator program gets the branch address and predicts the direction of the branch
according to the code shown in fig. 10). It then compares the prediction with the
actual outcome to collect the statistics of prediction accuracy.

The prediction accuracy is calculated according to equation (3).

 …… (3)

While the percentage of misprediction rate is calculated using equation 4.

Misprediction rate = 1- Accuracy …..(4)

The test program includes different types of branch instructions with various
correlation types. The same conditional branches are tested using local, global and
suggested hybrid history scheme. Fig. (12). shows the relationship between the
history length and misprediction rates for different types of history information.
Clearly that the local history based predictor provides the best performance for
most of the tested history lengths, while the suggested predictor gives a better
response than the global one for the range (2-18) bits while they behaves likely for
history lengths of 19 bits and above. Fig.(13). describes the behavior of the three
predictors when they process the hybrid correlated branch instructions only. It is
clear that the local predictor gives a better response for history lengths (4-10 bits)
and there is no significant improvements in its performance beyond history length
of 11 bits. While the suggested hybrid predictor provides best performance
between history lengths of (11 – 18) bits.

HARDWARE BUDGET

The hardware required to implement the suggested unit depends mainly on
history length, number of BTB entries (branches) to be considered and the type of
data will be allocated for weights. The weights for the predictor are signed integers.
Although many neural networks have floating-point weights, we found that
integers are very sufficient, and simplify the design. We find that using integer
weights provides the best trade-off between accuracy and hardware budget. Table

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1073

(2), shows a summary for a hardware budget for a 32-entries BTB. Note that the
registers size is excluded from the budget

CONCLUSIONS

Branch prediction is important in high-performance processors and its
importance continues to grow. In the drive for higher execution frequencies,
pipelines are lengthened and memory latencies are increased. This increases the
cost of branch mispredictions. To alleviate the negative impact of conditional
branches, a branch predictor with very high accuracy is essential to a superscalar
processor. Conventional two-level branch predictors make predictions either based
on global branch history only or based on local branch history only. In this paper a
dynamic neural branch predictor is proposed. Different types of branches are
considered including that with hybrid correlation. The written program tests the
suggested predictor for history lengths of up to 31 bits. Figures 14 and 15 shows
that the hybrid predictor provide a high performance especially in predicting the
branches with hybrid correlations. There are many parameters effects on the
performance of the predictor. The most important ones are: history length,
threshold and initial assumptions of the weights and branch history. Our study
shows that the best results are obtained when the initial history is always taken
(T,T,T,T,….,T) for local branches history and (T, NT, T, NT, T, NT…) for global
branches history. Also the results of the study summarized in figures 14 and 15
shows that the best response is obtained at history length of 16 bits.

REFERENCES
[1] Ribas, V. M. Figueiredo and R. Goncalves, "Simulating a simple neural

network on branch prediction", Acta Scientiarum Technology V. 50, no. 2, pp
153-160, 2003.

[2] Hamacher, C. Z. Vranesic and S. Zaky, "Computer Organization", 5th edition,
Mc Graw Hill, 2002.

[3] Steven, G. B. B. Christianson, R. Collins, R. Potter, and F. Steven, " A
Superscalar Architecture to Exploit Instruction Level Parallelism",
Microprocessors and Microsystems, Vol.20, No 7, March 1997, pp.391-400.

[4] Sbera, M. "Some contributions to static and dynamic branch prediction
challenge", MSc. Thesis University of L. Blaga, sibiu, Romania, July 2001.

[5] J. E. Smith, " A study of branch prediction strategies". Annual International
Symposium On Computer Architecture, Minneapolis, 1981, pp. 135-148.

[6] G. H. Loh, " Microarchitecture for Billion-Transistor VLSI Superscalar
Processors", Ph. D. Dissertation, Yale University,2002.

[7] Kaeli, D. and P. Chung Yew, “Speculative Execution in High Performance
Computer Architectures”, Taylor & Francis Group, 2005.

[8] Gwennap, L. “New Algorithm Improves Branch Prediction, Better Accuracy
Required for Highly Superscalar Designs”, Micro Design Resources, Vol. 9, No.
4, March 27, 1995

[9] Yeh, T.-Y. and Patt, Y. N. "Two-level adaptive training branch prediction", ,
in Proc. 24th Ann. Int. Symp.on Microarchitecture, pp. 51–61, November 1991.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1074

[10] McFarling.S. "Combining branch predictors" . Tech. Note TN-36, DEC
WRL, June 1993.

[11] Jimenez, D. A. and C. Lin, "Dynamic Branch Prediction with Perceptrons".
Proceedings of the 7th International Symposium on High-Performance Computer
Architecture, Jan. 2001.

[12] Chang, M.-C. and Y.-W. Chou. " Branch prediction using both global and
local branch history information", IEE Proc.-Comput. Digit. Tech., Vol. 149,
No. 2, March 2002.

[13] Osofisan, P.B. and O.A. Afunlehin, "Application of Neural Network to
Improve Dynamic Branch Prediction of Superscalar Microprocessors", The
Pacific Journal of Science and Technology, Volume 8. Number 1. May 2007
(Spring).

[14] Jimenez and C. Lin, D. A. " Neural Methods for Dynamic Branch
Prediction", ACM Transactions on Computer Systems, Vol. 20, No. 4,
November 2002, Pages 369–397.

Figure (1) a Simple State Machine for Branch Prediction

(Two Bit Smith Algorithm)

Figure (2) a local-history-based two-level predictor

Description state
SNT (Strongly Not Taken) 00
WNT (Weakly Not Taken) 01

WT (Weakly Taken) 10
ST (Strongly Taken) 11

Branch Address

BHT

PHT

Taken / Not
taken

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1075

Figure (3) a code for an example of intra-branch correlation

Figure (4) a global-history-based two-level predictor.

Figure (5) a code for an example of inter-branch correlation

i:=1؛
while(i<10) do{Branch E}
begin
j:=1؛
while (j<10) do {branch F}
begin
writeln(i,' * ',j,' = ',i*j);
j:=j+1؛ end؛
i:=i+1؛ end؛

if (x < y) then flag1:= 1; { Branch A}
if (x < z) then flag2:= 1; { Branch B }
if (x < y) or (x < z) then { Branch C }
writeln (' x is not larger ');
if (flag1 = 1) and (flag2 = 1) then { Branch D }
writeln (' x is smallest ');

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1076

Figure (6) A code for an example of hybrid correlation

Figure(7) Perceptron Model

i : integer؛
begin
i:=1؛
while (i < 1000) do begin
if (i mod 5 = 0) then { branch X }
writeln (' 5 divides ',i)
if (i mod 7 = 0) then { branch Y }
writeln (' 7 divides ', i)؛
if (i mod 35 = 0) and (i mod 3 <> 0) then {branch Z }
begin
writeln (' 35 divides ',i);
writeln (' 3 does not divides ', i);
end؛
i:= i + 1؛
end؛
end;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1077

GBHR (Global Branch History Register), LBHR (Local Branch History Register)
HBHR (Hybrid Branch History Register)., T / NT (Taken / Not Taken)
Figure 8. The structure of the proposed perceptron based Hybrid predictor

Table1. Contribution of Local and Global Histories in the formulation

of HBHR
HBHR
LENGTH
(BITS)

GLOBAL
HISTORY
(BITS)

LOCAL
HISTORY
(BITS)

HBHR
LENGTH
(BITS)

GLOBAL
HISTORY
(BITS)

LOCAL
HISTORY
(BITS)

2 1 1 17 8 9
3 1 2 18 9 9
4 2 2 19 9 10
5 2 3 20 10 10
6 3 3 21 10 11
7 3 4 22 11 11
8 4 4 23 11 12
9 4 5 24 12 12
10 5 5 25 12 13
11 5 6 26 13 13
12 6 6 27 13 14
13 6 7 28 14 14
14 7 7 29 14 15
15 7 8 30 15 15
16 8 8 31 15 16

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1078

Figure (9) Assembly language procedure for formulation of 15-bits HB

procedure concat15; assembler؛
label b1؛
label b2؛
asm
push ax؛
push bx؛
push cx؛
push dx؛
push si؛
push di؛

mov bx, offset GBHR+2؛
mov si,[bx ؛]
mov bx, offset GBHR؛
mov ax,[bx ؛]
mov cl,8؛

b1: shl si,1؛
shl ax,1؛
jnc b2؛
or si,01H؛

b2: dec cl؛
jnz b1؛
mov bx,offset LBHR؛
mov dx,[bx ؛]
and dx,00ffH؛
or ax,dx؛
mov bx, offset HBHR؛
mov [bx], ax؛
mov bx, offset HBHR+2؛
mov [bx],si؛

pop di؛
pop si؛
pop dx؛
pop cx؛
pop bx؛
pop ax؛
end؛

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1079

Figure (10) A simple code for implementation of Perceptron Prediction

Figure (11) A simple code for implementation of Perceptron's weight updating

sum := 0;
For i:= 1 to HBHR_length do
sum := sum + Weight[i] * HBHR[i];
sum := sum + bias_w[i];
if sum >= 0 then prediction := +1 { Prediction is Taken}
else prediction := -1; {prediction is Not Taken}

if (prediction <> actual_BranchOutcome) and (abs(sum) <= threshold) then
begin
for i:= 1 to HBHR_length do begin
if HBHR[i] = actual_BranchOutcome then
weight[i]:= weight[i] + 1 else
weight[i]:= weight[i] – 1
end;
if actual_BranchOutcome = 1 then
bias_w[i]:= bias_w[i]+1 else
bias_[i]:= bias_w[i] -1;
end;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1080

Figure (12) Performance comparisons of three branch predictors with
different history lengths in processing different types of correlated branches

Figure (13) Performance comparisons of three branch predictors with
different history lengths in processing branch instructions with hybrid

correlations

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, N0.6, 2012 A Hybrid Neural Based Dynamic
 Branch Prediction Unit

1081

Table (2) A summary for the hardware budget for the suggested

predictor assuming a BTB with 32 entries only

TOTAL
HARDWARE

BUDGET (BITS)

PERCEPTRON
TABLE SIZE

(BITS)

BTB SIZE
(BITS)

HISTORY
LENGTH

(BITS)
2592 1536 1056 2
3136 2048 1088 3
3648 2560 1088 4
4192 3072 1120 5
4668 3584 1120 6
5221 4069 1152 7
5760 4608 1152 8
6304 5120 1184 9
6816 5632 1184 10
7360 6144 1216 11
7872 6656 1216 12
8416 7168 1248 13
8928 7680 1248 14
9472 8192 1280 15
9984 8704 1280 16

10528 9216 1312 17
11094 9782 1312 18
11584 10240 1344 19
12096 10752 1344 20
12640 11264 1376 21
13152 11776 1376 22
13696 12288 1408 23
14208 12800 1408 24
14752 13312 1440 25
15264 13824 1440 26
15808 14336 1472 27
16320 14848 1472 28
16864 15360 1504 29
17376 15872 1504 30
17920 16384 1536 31

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

