Eng.& Tech. Journal, Vol.30, NO.6, 2012

A Hybrid Neural Based Dynamic Branch Prediction Unit

AL-Rafidain University College/Baghdad

IGheni A. Ali
Email: rafidain_gheni @yahoo.com

Received on: 7/8/2011 & Accepted on: 2/2/2012

ABSTRACT

Modern high performance processor architectures have come to depend upon
highly pipelined operation in order to achieve improvements in operating speed. As
a result, the cost associated with flushing the pipdine and refilling it when a branch
instruction is mis-predicted can significantly impact processor performance. Many
schemes, from the extremely simple to the highly complex, have been proposed to
improve branch prediction accuracy. Conventiona two-levd branch predictors
predict the outcome of a branch ether based on the(local branch history)
information, comprising the previous outcomes of a single branch (intra-branch
correlation), or based on the (globa branch history) information, comprising the
previous outcomes of all branches (inter-branch correlation). The misprediction
rates for these predictors are very high when they predict branch instructions with
hybrid corrdations. In this paper we suggest a hybrid perceptron based predictor
which employs up to 31-bits of both local and global branch history information to
minimize the misprediction rates. The software written for simulation and testing
shows that the suggested hybrid predictor achieves a high accuracy. Our results
shows that the best response of the predictor is obtained on history length of 16-
bits

Keywords: Branch Prediction, Advanced Processor Architecture, Neurd
Networks, Pipdining

Aol CASLA) aladiuly ale dilly Gl diaa ACaliabaag
adal)
:_\sﬂi\l\ u\.’udhu‘)_u_aujn'&).\.\s&)mj&&\ Q\AJL:A\ Q\JJLQMJA:\::J
L2 i e i Al A ol AN Ale) e ju et Jab e (Pipelining)
Lay Jise Ome g o8 e ity pil) 8 Uad Gipaa vie 4l 3ale) 5 ddinil) dadleall
Cosh s g sl by (Saaliall 5l L (e aall @lia Lxllaad) old e 5 S
ulJ_A}AL USS M‘@LL& L@..auj\hm&_usﬂ\ PRY ua:u‘}uﬂ\ :ﬁdu.\u;ﬂ
L b Claslae Lo el Wl gl ey dainy L o gieall @3 doaliil) il Clas
A lagy) et ALl 4ladll Agill cV e Sl las) (local branch history) ddas
«(intra-branch correlation) Aalall L jlls Cojay Le sa g (Llla 2285 dileny 55ill o
o= (globa branch history) dlels cila glas e faliia (e g daiiny 5l 2 o
Akl g 5@ A B aad AR ok JS L) A5 sl ¢ ED el aaead daE) <Y

1066

PDF created with pdfFactory Pro trial version www.pdffactory.com

mailto:rafidain_gheni@yahoo.com
http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

Le 135 (5580 el ¥ 5 a0 A6 2wl eV o Wais adiay Al) < Sl
il da jie diaa 48 yk a3 Gl 138 (hybrid correlation) cpaedl b 5l o ey
) Akl (Perceptron) s s dsasl) I o) s o araiis cile il g ol
Dl 28 2)15 e ALl g Ala) Amgl) Glasbeall (o 31 Aa] aadid Sl Ly
e ol ol i 5l A8 (et Jal (e anedl Lol S A sead sle) al (gl
Ll a s il aglle 5w 38y a3 5 s Jiall) sas s LAl 5 5\Ska)

Auagd) Slaglaall e 2 16 ve 3 dlatiul il O Ga A8 Ll

INTRODUCTION

ost commercial processors are implemented on pipeline and superscalar

architecture. In superscalar architecture, branch instructions may reduce

the parallelism because the branch direction or the target address during
the instruction fetch can not be known[1]. A conditiona branch instruction
introduces the added hazard caused by the dependency of the branch condition on
the result of the preceding instruction. The decision to branch cannot be made until
the execution of that instruction has been completed [2].

Branch instructions occur frequently, in fact, they represent about 20 percent of
the dynamic instruction count of most programs (The dynamic count is the number
of instruction executions, taking into account the fact that some program
instructions are executed many times because of loops). Because of the branch
pendlty, this large percentage would reduce the gain in performance expected from
the pipdining. Fortunately, branch instructions can be handled in several ways to
reduce their negative impact on the rate of execution of instructions. One of these
ways is the branch prediction [2].

Branch prediction represents the process of correctly predicting the branch's
direction and target address before it is actually executed. High accuracy branch
prediction is increasingly important in today's superscalar and degp pipeline
processor architecture [3]. Statistically was proven that conditiona branches are
executed about every 7 to 8 instructions a average. Current wide issue
architectures can execute four or more independents instructions per clock cycle.
So, abranch instruction is likey to be executed every two clock cycles or less. This
means that branch prediction is crucia for processor performance [4]. According to
the time and way the prediction is resolved, Smith [5] classify branch prediction
into two categories: Static and Dynamic. Static branch prediction is simpler and
depends mainly on program structure. For example, a branch instruction at the end
of the loop causes a branch to the start of the loop for every pass through the loop
except the last one. Hence, it is advantageous to assume that this branch will be
taken and to have the instruction fetch unit start to fetch instructions at the branch
target address. On the other hand, for branch instructions on the beginning of a
program loop, it is advantageous to assume that the branch will not be taken. The
strategy described aboveis called FTBNT (Forward Taken Backward Not Taken).

1067

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

A backwards branch is a branch instruction that has a target with a lower
address (i.e. one that comes earlier in the program) [6].

Generaly, Static branch prediction algorithms tend to be very simple, and by
definition do not incorporate any feedback from the run-time environment. By not
paying any attention to the dynamic run-time behavior of a program, the branch
prediction is incapable of adapting to changes in branch prediction patterns. The
advantage of datic branch prediction techniques is that they are very simple to
implement, and do require very little hardware resources. Static branch prediction
algorithms are of less interest in the context of future generation [7]. A dynamic
algorithm keeps a record of previous branch behavior, dlowing it to improve its
predictions over time. A simple scheme, published by James Smith [5], maintains a
single history bit for each branch. When a branch is encountered, it is predicted to
go the same way it did the previous time, as indicated by the bit. This technique
which used by Digitad’s Alpha, AMD’s K5, and other processors, can push
accuracy to 80% [8]. Processors such as Pentium store the history bits in a separate
Branch History Table (BHT), assigning one entry per branch to achieve improved
accuracy. Alternatively, similar accuracy is achieved with fewer entries. The BHT,
however, must maintain its own set of tags, grestly increasing the amount of
storage required.

Given the overhead of tag storage, most processors with a separate BHT store
two bits of history per entry instead of just one bit. In this method, also ducidated
by Smith [5], the two bits can be thought of as a saturating counter that is
incremented when the branch is taken and decremented when it is not; the most-
significant bit is used to predict future occurrences. Another way to look at this
implementation is as a state machine, which is depicted in Fig. 1. In two bit Smith
algorithm (recent literature has often referred to it as “bimoda™ prediction), the
two history bits implement a state machine with four possible states: strongly taken
(ST), weskly taken (WT), weakly not taken (WNT), and strongly not taken (SNT).
In ST and WT, future branches are predicted taken; in WNT and SNT, branches are
predicted not taken. The advantage of bimoda method is that a single unusual
iteration will not change the predicted direction. For example, if a branch has been
taken many times in succession, the state machine will be in the Strongly Taken
state (3). If the branch is then not taken, the history bits will indicate Weakly Taken
but still predict the next iteration as taken. Only if the branch is not taken two or
more times consecutively will the prediction change to not taken. This hysteresis
effect can boost prediction accuracy to 85% , depending on the size and type of
history tablethat is used [8].

TWO LEVEL PREDICTIONS

Bimodal prediction can be improved in two ways, both of which explicitly track
prior branch outcomes and were introduced by Yeh and Patt [9]. Local-history
prediction maintains a table of per-branch histories. Instead of tracking each
branch’s predominant direction, this Branch History Table (BHT) tracks explicit
history in order to detect patterns. For example alocal history can detect patterns
like TNTN... that confound simple saturating counters. The predictor still keeps a
PHT (Pattern History Table) of two-bit counters, but these are now indexed using

1068

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

the local history pattern, and the counters now learn outcomes for each history
pattern. A schematic of alocal history predictor appearsin fig. 2.

All local branch predictors, predict the outcomes of a branch based on the local
branch history, i.e. the previous outcomes of the branch itsdf. This kind of
correlation between the results of a single branch is called intra-branch correation.
The Intra-branch correlation often arises from loop branches with a regular number
of iterations and branches with periodic outcome patterns. Consider the example in
Fig.3: the While-Do loops in the code fragment will be translated to conditional
branches, denoted as branches E and F, after compilation. Branches E and F will be
taken nine times and then untaken once repeatedly. Per-address two-leve
predictors keep a dedicated BHR for each branch to record its previous outcomes.
If a branch has periodic outcomes and the length of the BHR is long enough to
capture the whole periodic pattern, per-address two-level predictors are able to
predict the result of the branch perfectly. In real programs many branches exhibit
intra-branch correlation, which is why per-address two-level (local) predictors
work well .

The table of per-branch histories (Branch History Table BHT) can be replaced
with a single, global shift register, the Global Branch History Register (GBHR).
All branches shift their outcomes into this register, which typically is 10 -15 bits
wide. This may seem a strange thing to do, but global history prediction allows
branches to easily see the behavior of other recent branches [9]. A typical global
history predictor appears in Fig. 4. This figure dso shows the inclusion of some
address bits in the index for the table of two-bit counters (the pattern history table
PHT). The preceding discussion has assumed each branch has a unique entry in
these tables, but these are hardware structures and necessarily of finite size.

Two branches may therefore share the same entry, either because the table is not
sufficiently large or because the two branches share the same prior history. This
may be harmless, and sometimes even helps when it accidently permits related
branches to communicate additional information among each other. But if often
results in destructive interference as the branches overwrite each others state. This
aliasing can be dleviated in both global and local history predictors by combining
the history bits with some bits from the branch's address. One simple way to do
this, proposed by McFarling [10] is to XOR the two patterns together, creating a
gshare predictor. Now branches that share the same history are usualy
distinguished by their different addresses. The code example shown in Fig. 5,
summarize the second type of corrdation; the inter-branch correation. There are
four if-statements in the code fragment, and they will be translated to conditional
branch instructions after compilation. In this example, branches C and D are
corrdated with branches A and B. When the results of branches A and B are
determined, the results of branches C and D are adso determined. A global two-
level branch predictor is able to record the various outcomes of branches C and D
corresponding to different outcome combinations of branches A and B. When a
specific outcome combination of branches A and B happens again, the branch
predictor can predict the results of branches C and D by looking up the pattern
history table. In real programs there exists a large amount of inter-branch

1069

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

correlation, which is the reason why globa two-level branch predictors can work
[12].

Some branches, like that shown in the example of fig. 6, are not predictable
based on merely the global branch history or merely the local branch history. This
example contains three if-statements, each of which will be trandated to a
conditional branch after compilation. We shall use the notation C1 to denote the
condition (I mod 35 = 0) , and the notation C2 to denote the condition (| mod 3<>
0). In this example, branch Z has partia correlation with branches X and Y. That
is, if the results of branches X and Y are both known, the condition C1 can be
determined. However, since the outcome of branch Z also depends on condition
C2, it is not sufficient to derive the outcome of branch Z from the outcomes of
branches X and Y. In this example, globa two-levd branch predictors cannot
predict the outcome of branch Z exactly due to lacking the information of C2.
Similarly, local two level predictors cannot predict the outcome of branch Z
exactly because the BHR fails to capture the whole periodic outcome pattern of
branch Z unless the BHR has a nonrealistic length of more than 105 bits. M.-C.
Chang and Y .-W. Chou [12] proposed a branch predictor, called LGshare, which
exploits both of the globa branch history and the loca branch history
simultaneously to enhance branch prediction accuracy. The LGshare predictor has
an n-bit global BHR to record the recent n outcomes of all branches and an m-bit
local BHR for each branch to record the m recent outcomes of the branch. Every
time when the PHT is to be accessed, the m-bit history in local BHR and the n-bit
history in global BHR are concatenated to form the hybrid branch history, and then
the hybrid branch history is XORed with the branch address to form the index to
PHT.

BRANCH PREDICTION USING NEURAL NETWORKS

The first perceptron based dynamic branch prediction was proposed by Jimenez
and Lin [11]. Fig.(7) shows a graphica model of a sample branch predicting
perceptron. The input values x; through X, are prior branch outcomes coming from
the global branch history register. These are bipolar; each x; is ether 1, meaning
the branch was taken, or —1, in the case which the branch was not taken. Weights
w; through w, are weights associated with their respective input, the larger the
absolute value of w;, the higher degree of corrdation of x; has with the output.
These values come from a table of weights, indexed by the branch address. The
output, y, is computed as the dot product of these weighted input vectors.
According to the following equation:

n

y = bias ,, + Z X ;Wi

i=1
Another neural based branch predictor is given by P.B. Osofisan, and O.A.
Afunlehin, [13]. In their work they used two types of neural networks;, Back
propagation and Learning Vector Quantization (LVQ) nets. These methods which
are formerly used by others, indudes some limitations that makes them not
dtrective solutions to implement efficient predictors. Because of its

1070

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

implementation complexity, there is no way to implement back-propageation in
hardware such that a prediction can be produced in just a few cycles. While LVQ
does not lend itsdf well to high-speed implementation because it performs
complex computations involving floating point numbers [14].

THE PROPOSED PREDICTOR

The main purpose of our work is applying the most smple neural network
(perceptron) in the implementation of LGshare predictor described in section 2
above. Fig.(8). Shows the structure of the proposed predictor.

PREDICTOR STRUCTURE

The suggested structure includes a branch target buffer which contains the per —
branch history for number of branch instructions. The size of BTB depends on the
number of branch instructions that it can contains their history and the number of
history bits for each branch. Each branch instruction associates with an entry in the
perceptron table, this table is a two dimensional array, each entry in the row
represent the weight, which is an integer whose value dictates how strongly the
current branch correlates with a corresponding entry in the LBHR, these weights
are updated dynamically according to the training rules which will be described
later. With each branch instruction the BTB is accessed, in the case of hit, its
history is loaded into the LBHR. Some bits of LBHR is concatenated with a
portion of GBHR to formulate a specia register called HBHR which contains some
history about this branch and the most recently occurrence of some other branches
that may affect the execution of the present one. The suggested contribution of
local history and global history in the formulation of HBHR depends on the
history length of HBHR. Local bits aways will take the RHS part of the HBHR
(the least significant bits) Table (1). Summarize this contribution. The history bits
are stored in binary (O for not taken, and 1 for taken), but in the time of processing
(prediction and training) they are converted into bipolar; either 1, in the case of
taken, or -1 , when the branch was not taken. X ORing branch address with its local
history is used to aleviate the aliasing that may be occurs if two different branches
have same history. Actudly, the formulation of HBHR is a bit manipulation
operation between GBHR and LBHR of the branch to be predicted, we use the
built-in assembler to perform this operation. Fig. 9, shows a simple assembly code
to formulate aHBHR with length of 15-bits (7 global bits, 8 local hits)

PERCEPTRON PREDICTION AND TRAINING

The perceptron, shown in fig.. (7)., like any neural network, must be trained in
order to operates properly. The training is done by changing the value of each
weight according to the actual branch occurrence. The training (weights updating)
is only done in the case of a misprediction or if the output value of the perceptron
is less than or equal to a certain value caled the threshold. The threshold value
depends mainly on the number of history bits[11], and it is calculated by:

threshold=1.93* history length+14 ... 2

1071

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

The perceptron prediction is implemented by applying equation 1. The code shown
in fig. (10), shows the implementation of perceptron prediction. The history (local
and global) is updated with each branch execution, while weights updating is done
under certain conditions fig. (11) shows the code for weight updating:

SIMULATION RESULTS

In order to evd uate the prediction accuracy of the hybrid predictor, a program is
written in Turbo Pascal 7 and its associated built in turbo assembler. All of the
conditional branches to be tested are gathered by recording their actual outcomes in
a specid matrix called Actual, while their addresses and history (initially assumed
to be taken i.e. dl history bits are 1's) are recorded in BTB. For each branch, this
simulator program gets the branch address and predicts the direction of the branch
according to the code shown in fig. 10). It then compares the prediction with the
actual outcome to collect the statistics of prediction accuracy.

The prediction accuracy is calculated according to equation (3).

Na. of correctly predicted bronches
Total Nao.of reeted branches

Aviwrey =

...... (3
While the percentage of misprediction rateis calculated using equation 4.

Misprediction rate = 1- Accuracy ... 4

The test program includes different types of branch instructions with various
correlation types. The same conditiona branches are tested using local, global and
suggested hybrid history scheme. Fig. (12). shows the relationship between the
history length and misprediction rates for different types of history information.
Clearly that the local history based predictor provides the best performance for
most of the tested history lengths, while the suggested predictor gives a better
response than the global one for the range (2-18) bits while they behaves likdy for
history lengths of 19 bits and above Fig.(13). describes the behavior of the three
predictors when they process the hybrid correlated branch instructions only. It is
clear that the local predictor gives a better response for history lengths (4-10 bits)
and there is no significant improvements in its performance beyond history length
of 11 bits. While the suggested hybrid predictor provides best performance
between history lengths of (11 — 18) bits.

HARDWARE BUDGET

The hardware required to implement the suggested unit depends mainly on
history length, number of BTB entries (branches) to be considered and the type of
data will be allocated for weights. The weights for the predictor are signed integers.
Although many neural networks have floating-point weights, we found that
integers are very sufficient, and simplify the design. We find that using integer
weights provides the best trade-off between accuracy and hardware budget. Table

1072

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

(2), shows a summary for a hardware budget for a 32-entries BTB. Note that the
registers sizeis excluded from the budget

CONCLUSIONS

Branch prediction is important in high-performance processors and its
importance continues to grow. In the drive for higher execution frequencies,
pipelines are lengthened and memory latencies are increased. This increases the
cost of branch mispredictions. To aleviate the negative impact of conditiona
branches, a branch predictor with very high accuracy is essentia to a superscalar
processor. Conventional two-level branch predictors make predictions either based
on global branch history only or based on local branch history only. In this paper a
dynamic neural branch predictor is proposed. Different types of branches are
considered including that with hybrid correation. The written program tests the
suggested predictor for history lengths of up to 31 bits. Figures 14 and 15 shows
that the hybrid predictor provide a high performance especially in predicting the
branches with hybrid corrdations. There are many parameters effects on the
performance of the predictor. The most important ones are history length,
threshold and initial assumptions of the weights and branch history. Our study
shows that the best results are obtained when the initial history is dways taken
(T,T,T,T,....,T) for local branches history and (T, NT, T, NT, T, NT...) for globa
branches history. Also the results of the study summarized in figures 14 and 15
shows that the best response is obtained at history length of 16 bits.

REFERENCES

[1] Ribas, V. M. Figueiredo and R. Goncalves, " Simulating a simple neural
network on branch prediction”, Acta Scentiarum Technology V. 50, no. 2, pp
153-160, 2003.

[2] Hamacher, C. Z. Vranesic and S. Zaky, " Computer Organization", 5" edition,
Mc Graw Hill, 2002.

[3] Steven, G. B. B. Christianson, R. Coallins, R. Potter, and F. Steven, " A
Superscalar Architecture to Exploit Indruction Level Parallelism®,
Microprocessors and Microsystems, Vol.20, No 7, March 1997, pp.391-400.

[4] Sbera, M. "Some contributions to static and dynamic branch prediction
challenge', MSc. Thesis University of L. Blaga, sibiu, Romania, July 2001.

[5] J. E. Smith, " A study of branch prediction strategies’. Annua International
Symposium On Computer Architecture, Minneapolis, 1981, pp. 135-148.

[6] G. H. Loh, " Microarchitecture for Billion-Transistor VLS| Superscalar
Processors', Ph. D. Dissertation, Y ae University,2002.

[7] Kadi, D. and P. Chung Yew, “Speculative Execution in High Performance
Computer Architectures”, Taylor & Francis Group, 2005.

[8] Gwennap, L. “New Algorithm Improves Branch Prediction, Better Accuracy
Required for Highly Superscalar Designs”, Micro Design Resources, Vol. 9, No.
4, March 27, 1995

[9] Yeh, T.-Y. and Patt, Y. N. " Two-level adaptive training branch prediction”, ,
in Proc. 24th Ann. Int. Symp.on Microar chitecture, pp. 51-61, November 1991.

1073

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

[10] McFarling.S " Combining branch predictors' . Tech. Note TN-36, DEC
WRL, June 1993.

[11] Jimenez, D. A. and C. Lin, " Dynamic Branch Prediction with Perceptrons" .
Proceedings of the 7th International Symposium on High-Performance Computer
Architecture, Jan. 2001.

[12] Chang, M.-C. and Y.-W. Chou. " Branch prediction using both global and
local branch history information”, IEE Proc.-Comput. Digit. Tech., Vol. 149,
No. 2, March 2002.

[13] Osofisan, P.B. and O.A. Afunlehin, " Application of Neural Network to
Improve Dynamic Branch Prediction of Superscalar Microprocessors', The
Pacific Journa of Science and Technology, Volume 8. Number 1. May 2007
(Spring).

[14] Jimenez and C. Lin, D. A. " Neural Methods for Dynamic Branch
Prediction", ACM Transactions on Computer Systems, Vol. 20, No. 4,
November 2002, Pages 369-397.

. hnlﬁr\@j: e \@\ state Description
Y Y 00 | SNT (Strongly Not Taken)
net-takon |tamn 01 | WNT (Weakly Not Taken)
10 WT (Weakly Taken)

takan! A}}?»Mim)‘ 11 ST (Strongly Taken)

Figure (1) a Simple State Machine for Branch Prediction
(Two Bit Smith Algorithm)

Branch Address — | ——»Taken / Not

BHT PHT taken

A4

Figure (2) alocal-history-based two-level predictor

1074

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

i:=1¢

while(i<10) do{Branch E}
begin

ji=1¢

while (j<10) do {branch F}
begin

writen(i," * ',j," =",i*j);
j:=j+1¢ ends

i:=i+1¢end:s

Figure (3) a code for an example of intra-branch correlation

branch address

global history @ t — taken/not—taken

PHT

Figure (4) aglobal-history-based two-level predictor.

if (x <y)thenflagl:=1; { Branch A}

if (x <2 thenflag2:=1; { Branch B}

if (x<y)or(x<z)then {BranchC}
writeln (" x isnot larger ');

if (flagl = 1) and (flag2 = 1) then { Branch D }
writeln (' x issmallest');

Figure (5) a code for an example of inter-branch correlation

1075

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

i :integer¢

begin

i:=1¢

while (i < 1000) do begin

if imod5=0)then {branch X}
writeln (' 5divides ',i)

if imod7=0)then {branchY }
writeln (' 7 divides ', i)¢

if (i mod35=0)and (imod3<>0) then {branch Z }
begin

writeln (' 35divides ',i);

writeln (' 3 does not divides ', i);
end¢

=i+ 1¢

end¢

end;

Figure (6) A codefor an example of hybrid correlation

bias w) 0 Wy

Figure(7) Perceptron Model

1076

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic

Branch Prediction Unit

_l select Actual Branch Qutcome
Updat:
lanch Address) PC(Branch pdate (T/NT)
Target
Buffer
(BTB) Update
GBHR l
LBHR
Concatenate
Perceptor
Predictor
: . and
HBHR Weight Register Trainer

L

Branch Prediction
(T/NT)

select Table
) Index Register of
Perceptron

weights

GBHR (Global Branch History Register), LBHR (Local Branch History Register)
HBHR (Hybrid Branch History Register)., T/ NT (Taken/ Not Taken)

Figure 8. The structure of the proposed per ceptron based Hybrid predictor

Tablel. Contribution of Local and Global Historiesin the formulation

of HBHR
HBHR GLOBAL | LOCAL HBHR GLOBAL | LOCAL
LENGTH | HISTORY | HISTORY |LENGTH |HISTORY | HISTORY
(BITS) (BITS) (BITS) (BITS) (BITS) (BITS)
2 1 1 17 8 9
3 1 2 18 9 9
4 2 2 19 9 10
5 2 3 20 10 10
6 3 3 21 10 11
7 3 4 22 11 11
8 4 4 23 11 12
9 4 5 24 12 12
10 5 5 25 12 13
11 5 6 26 13 13
12 6 6 27 13 14
13 6 7 28 14 14
14 7 7 29 14 15
15 7 8 30 15 15
16 8 8 31 15 16

1077

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

procedure concatl5; assembler ¢
label b+
label b2¢
asm
push ax¢
push bx¢
push cx¢
push dx¢
push si¢
push di¢
mov bx, offset GBHR+2¢
mov si,[bx ¢
mov bx, offset GBHR¢
mov ax,[bx{
mov cl,8¢
b1: shl 5,1¢
shl ax,1¢
jnc b2+
or §,01H¢
b2: deccl¢
jnzbls
mov bx,offset LBH R
mov dx,[bx{
and dx,00ffH ¢
or ax,dx¢
mov bx, offset HBHR
mov [bx], ax¢
mov bx, offset HBHR+2¢
mov [bx],s ¢
pop di¢
pop Si¢
pop dx ¢
pop cx¢
pop bx ¢
pop ax#
end:¢

Figure (9) Assembly language procedur e for formulation of 15-bits HB

1078

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

sum :=0;

Fori:=1to HBHR length do

sum :=sum + Weight[i] * HBHRYi];

sum :=sum+ bias wW[i];

if sum >=0 then prediction := +1 { Prediction is Taken}
else prediction :=-1; {prediction is Not Taken}

Figure (10) A simple code for implementation of Perceptron Prediction

if (prediction <> actual_BranchOutcome) and (abs(sum) <= threshold) then
begin

for i:=1to HBHR length do begin

if HBHR[i] = actual_BranchOutcome then
weight[i]:= weight[i] + 1 else

weight[i]:= weight[i] -1

end;

if actual_BranchOutcome = 1 then

bias w[i]:= bias w{i]+1 else

bias [i]:=bias w[i] -1;

end;

Figure (11) A simplecode for implementation of Perceptron's weight updating

1079

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

1l Y] "o 4 -

B 3-a. , 5, A ﬁ
B =34 o o
e : Eh-g_‘:ﬁ‘—ﬂ-.\-_d_-:' g A Sarlie P 1
- _p-d
4 [N N A et | (R I (S AT FO s I I ok PR-B-F—F—G G-p-F-B—F T |
23 4 3 B 7T E 0 0 23 08 6T 8 19 20 21 X 2% 24 25 26 27 28 10 303
Hizlery lenglh (Bil)

Figure (12) Performance comparisons of three branch predictors with
different history lengthsin processing different types of correated branches

o ! —=—cal |
-T*S'i*'_*""‘“-rn i —g-—hibrind |
3 v H o gobal|

T T T T 1771
5
1

= S
T
.-'@'..
i

i

=
rT 1T 1T T TT

e

LS =

o
=t
| I I Y R (R R N A B |

b—-EI—-L‘I—-E—{b—'-g:b—{b—-u—-n--n--n--n-'-n--n—n-n--d:—r—-d:—a_—;r__—z—.p__—n
Loy P 1 s il ISl e P i s o
5 L 50 T 8 QI MAZ15 4295 10 17 15 19 20.2° 27 23 24 25 26 27 28 29 30 3
Higlery lengih £oH:

e T
g

Figure (13) Performance comparisons of three branch predictorswith
different history lengthsin processing branch instructions with hybrid
correlations

1080

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,vVal.30, NO.6, 2012} A Hybrid Neural Based Dynamic
Branch Prediction Unit

Table(2) A summary for the hardware budget for the suggested
predictor assuming a BTB with 32 entriesonly

HISTORY [.o ¢, | PERCEPTRON TOTAL
LENGTH @ITs) | TABLE SIZE HARDWARE
(BITS) (BITS) | BUDGET (BITS)
2 1056 1536 2592
3 1088 2048 3136
4 1088 2560 3648
5 1120 3072 4192
6 1120 3584 4668
7 1152 4069 5221
8 1152 4608 5760
9 1184 5120 6304
10 1184 5632 6816
11 1216 6144 7360
12 1216 6656 7872
13 1248 7168 8416
14 1248 7680 8928
15 1280 8192 9472
16 1280 8704 9984
17 1312 9216 10528
18 1312 9782 11094
19 1344 10240 11584
20 1344 10752 12096
21 1376 11264 12640
22 1376 11776 13152
23 1408 12288 13696
24 1408 12800 14208
25 1440 13312 14752
26 1440 13824 15264
27 1472 14336 15808
28 1472 14848 16320
29 1504 15360 16864
30 1504 15872 17376
31 1536 16384 17920
1081

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

