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Abstract: More theories and algorithms in non-linear programming with titles convexity (Convex). 
When the objective function is fractional function, will not have to have any swelling, but can get other 

good properties have a role in the development of algorithms decision problem.In this work we focus 

on the weights method- (one of the classical methods to solve Multi objective convex case problem). 

Since we have no convex or no concave objective functions, and this condition is essential part on this 

method implementation, we these valid conditions under method as generator sets efficient and weakly 

efficient this problem. This raises the need to a detailed study of pseudoconvex idea, cause convex 

idea, Invex, pseudoinvex idea,…, etc. concepts. Offer a numerical example to show the valid by the 

conditions previously set generate all weakly efficient set our problem.  
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1Introduction 
The possibility of mod conditioned by the 

reality is complex and, in most cases, the best 

representing model is determined by 

possibility consideration of more than one 
conflict objective. This leads to the problem no 

longer obtain an optimal solution and becomes 

a problem of decision making in.  

Through functions represented by a ratio. Of 

course, a quotient of functions is simply a 

nonlinear function. However, the structure 

ratio leads to establish some special properties 

that do not share the nonlinear functions in 

general, which motivates the study of such 

functions separately from the non-linear. 

Generally the functions are expressed of any 

other ratio as neither convex nor concave .That 

is why the result are great importance to 

extend the basic results of convex 

programming to less restrictive assumptions. 

Moreover within these functions, the most 

relevant those with associated with numerator 
and denominator. These dues to the good 

properties they possess. 
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where c, d ∈ R
n
, αi  , βi ∈ R, A ∈ Mmxn (R) and 

b ∈ R
m
. We call X the set of opportunities of 

this problem,  ( i.e.  X = { x ∈ R
n
 / Ax ≤ b, x ≥ 

0 } ). 

Which is bounded. In this problem, ranging 

from definitions of natural and efficient point 
weakly efficient point are given in Multi 

objective Programming. One way to solve this 

problem is to determine the set of efficient and 

weakly efficient solutions in a strictly 

technical, way not incorporating into the 

analysis any information about the preferences 

of central decision-maker. The purpose of such 

methods is to provide sufficient information of 

the efficient or the weakly efficient structure of 

the whole problem. One method of generation 

the classic efficient Multi objective linear 

problem is the Weights method. 

The method on converting the problem that 

scalar construct an objective function is sum of 

the objective functions starting weighted 

relative weight assigned to each of them. Thus, 

for each possible weight you get a problem 

subject to the restrictions of the original 
problem consisting a minimizing scale 

resulting function.[5] & [11]. 

Well, in this work problem. To do this, we 

have divided the work in to five sections as 

what is follow: 

In the next section we shall briefly show the 

method that we encountered in wanting to 

apply it to the case fractional linear. Section 3 

provides the literature review of theory basis 
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on generalized convexity which is necessary to 

section fourth in which we establish the main 

result that, due to the non convexity of 

functions, the conditions under which they can 

ensure that the solutions of a weighted 

problem are Optimal solution of multi 

objective the original problem are rather 

weaker than those given in the case of convex 

functions. This also is reinforced by a counter 

example.  

Finally we will see, in section five, the 

conclusions of this work.   

2. Method of Weights 
To give the problem of Multi objective 

fractional linear programming problem 

(MFLP) Vector objective function, with φ (x) 

= (φ1 (x), ..., φp (x)) , and to give a weight 

vector λ∈ R
p+ as not identically zero, 

considering the problem as the following 
weighted problem (Pλ ) 
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If we denote by S ( Pλ ) set of solutions to this 
problem is clear S ( Pλ ) coincides with  

S (Pαλ ) for all α > 0. Therefore, loss of 

generality usually takes the standard weight 

vector. That is,  

if λ = ( λ1 ,..., λp ), then λi ≥ 0 , for all i = 1 ,..., 

p and 1
i

i    . 

The following results are easy to show and can 

be found among others. To be set all together 

under one statement, including the following 

theorem.[9] 

2.1.Theorem 1. 
If x* is solution of the problem ( Pλ ), then x* 

is a weak point efficient of the original 

problem.  

If x* is solution of the problem (Pλ ) with all 

weights strictly positive that is, if  λi > 0 for all 

i = 1 ,..., p, then x* is optimal solution of 

problem Multi objective original. 

If x* is unique solution of problem (Pλ ), then 

x* is the optimal solution of original problem. 

Proof.  
The weakness of this method is found in the 

reciprocal of these results, since not all 

efficient solutions will be obtained under the 

scalar problems weighting. When we have 

secured the convexity of all functions objective 

reaches a certain reciprocal states that if  x* ∈ 

X is Pareto optimal, then there exists a weight 

vector is not necessarily strictly positive such 

that x* is the solution of the weighting scalar 

problem associated with this vector. [9]. 

However, the functions that make up our 

multi-objective problem are not convex 

functions and therefore we can ask a question 

whether we can found under our conditions 

some kind of mutual, albeit weak, of previous 

results. We will do this by a result that is 

established in terms of low efficiency and 
problems without restrictions. This is possible 

thanks to special form of our functions are 

concave but not convex nor do enter within a 

classification to be more relaxed pseudolinear. 

 

3. Generalized Convexity 
Consider a general mathematical programming 

problem of minimizing whose objective 

function differentiable assume S ⊆ R
n
, 

min φ (x) 

s.t.  x ∈ S 
A first immediate generalization that emerges 

from the familiar definition of 

convexity is the quasiconvex idea. 

1.3. Definition 1.  
It is said that φ is quasiconvex if ∀ x, y ∈ S, ∀ 

λ ∈ (0,1), we have: 

φ (λx + (1 - λ) y) ≤ max 

(φ (x), φ (y)) 

A function is quasiconcave if -φ is φ and is 

said quasiconvex if quasiconvex and 

quasiconcave at a time. 

Since we are dealing with differentiable 

functions, we can make another 

generalization of convexity which is based on 

the characterization of convex functions 

differentiable. We are referring to the concept 
of pseudoconvexidad. 

2.3. Definition 2.  
It is said that φ is a function quasiconvex on S 

if ∀ x, y ∈ S with  φ (y) < φ (x) then necessarily 

∇ φ (x) t (y - x) < 0. 

As with the quasiconvex idea, a function is 
pseudoconcave if your pseudolinear opposite 

is quasiconvex and if both pseudoconcave and 

quasiconvex.  

Generally, the pseudoconcave idea property is 

stronger than quasiconcave when the functions 

are differentiable. 

Turning to the case, which is the fractional 

linear programming, when we have the ratio of 

two related functions,  

φ (x) = f (x) / g (x),  

Where denominator g(x) we assume strictly 
greater than zero, then the ratio φ (x) is a 

function pseudolinear and, consequently, 

quasilinear. [3] 

Many of the properties of linear programming 

in range natural functions are such fractional 

linear programming. Among them one of the 

most important, is the generalization of the 
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sufficient conditions of optimality Kuhn-

Tucker for such functions as shown in the 

following theorem. 

3.3.Theorem 2. 
Let S be a nonempty open set of Rn and are φ, 

hi with i = 1, ..., m  

functions defined actual S, that is, φ, hi : S ⊂ 

R
n
 → R.  

Suppose the problem  

min φ (x)  

s.t.   x ∈ X  

  … (1) 

 
Where X = ( x ∈ S ⊂ R

n
 / hi (x) ≤ 0, i = 1, ..., 

m).  

Suppose x* a workable solution 

call  I = ( i / hi (x*) = 0 ).  

Let φ pseudoconvex at x* and hi quasiconvex 

and differentiable at x* for i ∈ I. 
If x* verifies the Kuhn-Tucker conditions for 

(1), then x* is a global optimal solution of the 

problem. 

 Proof. [7] 
As we know, another property of convexity is 

the fact that it must 

φ (x) - φ (x*) ≥ (x - x*) 
t
 ∇ φ (x*) for all x, x* 

∈ S.  
However, considered a class of functions for 

which there is a vector function [6] 

η: S × S → R
n
 such that φ (x) - φ (x*) ≥ η (x, 

x*) 
t
 ∇ φ (x*) for all x, x* ∈ S. More Craven 

later (1981) named these functions as functions 

INVEX.[2] 

4.3. Definition 3. 
Let φ: S ⊆ R

n
 → R a differentiable function in 

the set S open.  

Then INVEX if φ is a function η: S × S → R
n 

such that for all x, x* ∈ S, has to 

φ (x) - φ (x*) ≥ η (x, x*) 
t
 ∇ φ (x*). 

A generalization of the functions INVEX is in 
the definition of pseudoconvex defined 

functions.[1] 

5.3. Definition 4. 
Let φ: S ⊆ R

n
 → R a differentiable function in 

the set S open.  

Then φ as pseudoconvex if there exists a 
function η: S × S → R

n such that for all x, x* 

∈ S have that η (x, x*) 
t
 ∇ φ (x*) ≥ 0 implies φ 

(x) - φ (x*) ≥ 0. 
In the same way that the functions 

pseudoconvex generalize the convex, the 

pseudoconvex INVEX generalize the 

functions. Martin (1985) established 

the most important result related to the 

functions INVEX, in which characterized these 

functions as follows:[8] 

a differentiable function φ is INVEX on S if 

and only if each critical point of φ is 

global minimum of in S. 

Because this function is verifying property 

pseudoconvex so, it is clear that we have the 

following implications: 

convex ⇒ pseudoconvex ⇒ INVEX ⇒ 

Pseudoconvex 

Therefore, in conclusion, as the functions are 
linear fractional pseudoconvex, we can also 

ensure that a function is a linear fractional 

INVEX function and, consequently, 

pseudoconvex. 

Let in the following section we establish the 

desired result of mutual of Theorem 1 for 

which we will use this property of fractional 

linear functions. 

4. Method of Fractional 

Programming Weightings 
Let's see Multi objective problem:  

when we apply the method of Weights. 

Given the Multi objective fractional linear 
problem (MFLP), as seen previously, each 

objective function φi is a pseudoconvex 

function, INVEX and pseudoconvex result. 

Naturally generalize the concepts of function 

and pseudoconvex INVEX 

for vector functions, and suppose now are an 

unrestricted vector problem: 

min (φ1 (x), ... , φp (x))  

s.t     x ∈ S   

  …(2) 

where S is the open set of R
n
 in 

which φ is defined. [10] 

pseudoinvex idea is imposing the condition for 

the vector objective function (2), theorem from 

the alternative of Gordan, arrive at a 

characterization of pseudoconvex functions. 

Furthermore, in the same way, due 

characterization to that, another result that 

exposes these authors is a certain converse of 

Theorem 1is states: 

1.4.Theorem 3. 
Let x* weakly efficient solution to the problem 

(2). If φ (x) is a INVEX function in S, then 

there exists a λ ≥ 0 such that x* is an optimal 

solution of weighted problem 
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Proof. [10] 
To with the Multi objective fractional linear 
problem and to suppose that we have a 

problem with no restrictions.  
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Where S is the set of defining the vector 

function φ = ( φ1, ..., φp ) which is a Rn open. 

We recall that the functions of this problem are 
pseudoconvex, In which it implies, as already 

mentioned, INVEX functions. Therefore we 

can say that (MFLPS) is a problem whose 

objective function is a vector INVEX function 

and pseudoconvex. 

So it makes sense in this particular case to 

apply Theorem 3 which characterizes weakly 

efficient points of the problem. For which you 

have to get a converse of Theorem 1 for this 

problem. 

2.4. Theorem 4. 
x* ∈ S is a weakly efficient point of problem 

(MFLPS), then exists λ ∈ R
p
, λ ≥ 0 is not 

identically zero such that x* is the solution of 

the problem scalar weights ( Pλ ). 

Proof. 
Given the (MFLPS), the objective functions of 

it are all fractional linear therefore, they are 

particularly, pseudoconvex. This implies, as 

mentioned, all functions are INVEX. Therefore 

the objective function of the problem, a vector 

view is a INVEX function. 

Therefore, we faced a problem of Multi 

objective unrestricted INVEX function aims. 

This implies, according to Theorem 3, if x* ∈ 

S is a weakly efficient point in the problem, 

what is more there exists a λ ∈ R
p
, λ ≥ 0  as not 

identically zero such that x* is solution of the 

problem scalar weights ( Pλ ).  

Therefore, using the weights method, we can 

reach conclusion that the same guarantees we 

obtain efficient solutions that always weights 

are all non-zero or the resulting solution was 

unique. Otherwise, the solution obtained may 

not be efficient but weakly efficient. The 

weakness of method is that, even by varying 

the weights in all weights possible, not assured 

of obtaining the whole efficient. If the problem 

has restrictions, then all the theory outlined 

above, we would achieve find the set of weak 

optimal solution of the problem by this 

method. 

However, we able to obtain this result even 

having a problem with restrictions?: 

The answer, as intuition, is negative. That is, 
given a fractional problem 

Multi objective linear restrictions, is not 

generally true that any weaknesses comes as 

efficient as optimal weighted problem. The 

rationale is clear: 

While the problem (MFLP) is a problem that's 

set of opportunities, X, is a coming convex set 

expressed by linear constraints, the set image 

of  X, φ (X), not necessarily a convex set in R+. 

The absence vector of weights λ such that x* 

solve ( Pλ ) is equivalent to the nonexistence of 
a supporting hyper plane of the feasible region 

in objective space φ (X) of problem x*. And 

this condition, a Multi objective fractional 

linear problem is quite common.  

Example 1. 
Consider the Multi fractional linear 

programming problem (maximum) : 
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The point (1, 1 / 2) is an efficient point, and in 

particular weakly efficient. Figure 1b 

look at the whole picture of this problem. The 

image of all weakly efficient frontiers is φ (X) 

that is thicker in the figure and we can see that 

image of point (1, 1 / 2) is part of the non-

convex frontier. 

 
 

Figures 1a and 1b. Efficient point set of the problem of Example 1 in the decision space and space 

goals. 
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As already mentioned, the point (1, 1 / 2) is an 

efficient point, and in particular weakly 

efficient. However, this point cannot be 

obtained as solution weighting no problem. Si 

(1, 1 / 2) out of a problem solution ( Pλ ) then, 

in particular, verify the Kuhn-Tucker 

conditions of this problem. 

The general weighted problem is of the form: 
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We can see that the point (1, 1 / 2) cannot be 

solving any of these problems since it verifies 

the Lagrange conditions thereof. 

If we notice the multipliers Lagrangian for this 

problem as μi , i = 1, ..., 4 to avoid confusion 

with the weights of the objective function, the 

Kuhn-Tucker conditions, which must ensure 

the optimum, taking into account that the 
unique active constraint in (1, 1 / 2) is the 

second, they become the next system: 
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Substituting these conditions in (1 1 / 2), this 

system of equations becomes: 





























0

0
229

4

0
229

2

2

1

1

2
49

20

49

34







 

This system, combined with the fact that the 

vector ( λ1, λ2 ) is a vector of weights 

assume standard  

(λ1 + λ2 = 1) imply that λ1 = 99/148, λ2 

=49/148 and also that μ2 = 3 / 37. 

Therefore, if the point (1, 1 / 2) is a solution of 

a problem of weighting 

just to show that these weights must 

necessarily be λ1 =99 / 148 and λ2 = 49/148.  

But is it really the point (1,1 / 2) to solve this 

problem?. 

Given that the value of the objective function 

of this problem ( Pλ ) 

with λ = (99/148, 49/148), in (1,1 / 2) is worth 

( 0.256757 ) and that in (1 / 2, 3 / 2), which is 

a feasible point of the problem, the objective 

function takes the value 0.4155448 since we 

are maximizing, we conclude that the point (1, 

1 / 2) is not solution of this problem ( Pλ ). 

Therefore, since these were the only weights 

possible to verify that the necessary conditions 

of optimal point (1, 1 / 2) we can say that this 

point cannot be found as optimal for any 

weighting problem remains, however, an 

efficient point of problem multi objective. 

5. Conclusions: 
In short, we want to establish the conclusions 

are established in this work of weights  

λ = (λ1 ,..., λp) with λi > 0 and 

1
i

i   

The converse of these results has been 
established in the literature for problems 

convex. It has been to consider what happens 

in the case of no convex fractional functions 

when there is work just to develop. According 

to results, we have a problem only when we 

have ensured unrestricted Using the method of 

weights will travel throughout the whole weak 

optimal solution. 

It should be noted that, in solving a problem of 

the weighting, when the targets are fractional 

linear, while avoid the Multi objective nature 
of the problem, the nature of the linear 

fractional functions disappears. That is, the 

objective function of a problem ( Pλ ) is a 

function fractional but leaves verified the 

linearity of the numerator and 

denominator.Therefore, to be able to apply the 

method of weights to (MFLPP), we must be 

able to solve nonlinear fractional problems 

which can become a large scale by 

complication of the objective function. Using 

specific properties of linear fractional 

functions, [4] published a method to find the 
optimum of a sum of linear fractional 

functions. 

So, to find efficient solutions (MFLP), must be 

resolved problems (Pλ) for different families 

of strictly positive weights. To carry 

implement this resolution, we propose the use 

of the algorithm of [4].Anyway, this paper 

non-convexity of our functions which prevents 

us to ensure that we get this way the whole 

efficient. If we settle for weakly efficient 

points, allow some weight is zero (not all at 
once) and also, as seen, if our problem is 

unrestricted by this method will succeed in 

obtaining the full range of weak optimal 

solution. 
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 الخلاصة :

 
.ا ظرر توا كررخ ا لنرخالنارر كا لنررخاك رر اخا ا(Convex)أكثر النظر ارروااخلنرخل اتاررواابرمالنغ ت ررخايارر النرنارخا اترردا ظرروخا الن ار  ا

خكان ااكخ ان اظواأيالظ فوخا اخنك ااتك الناصخدا لىارصوئصا ا ةاأر ىااكخ اناوا خ ابما نخا ارخل اتاوااتشكلخالنق ل .ا 
ن اقرخاابرماأ و رما را اهرخالنشر ناخهرالاخ كرخ ا لنرخالنار كايار اتا غرخالخايار اتق ر ةاا ان اقرخالوخال  ا لرىاظ كراالنغار اهرالابم

 Invex اخلنرررا(Convex)لاثغرروااصرراخاهررالالنشرر نالاغرر اترر ا  ل ررخاتفصررلخانفكرر ةالن ارر  ااترر،ا لنن اقررخاغ اهررا ان  ل ررخالن ظفارراا 

functionا.ات النتفوهاما...النخا
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