δ (M) - Supplemented Modules

Sahira M. Yaseen and Zainab T. Salman Department of Mathematics, College of Science, University of Baghdad.

Abstract

Let R be an associative ring with identity and M a non-zero unitary R-module. We introduce the concept of $\delta(M)$ - Supplement Submodule that if A,B $\leq M$ and M=A+B then B is called $\delta(M)$ – supplement of A if $A \cap B \leq \delta(B)$ We give some properties of this kind of module.

1. Introduction and Preliminaries

For an associative ring with identity and a right R module M, a submodule N of M is said to be small in M (N << M) if whenever N+X=M, then X=M. let U be a submodule of an R- module M, A submodule V< M is called supplement of U if V is minimal element in the set of submodules L < M with U + L = M, Vis a supplement of U if and only if U+V= M and $U \cap V \leq V$.

An R – module M is called supplemented if every submodule of M has supplement in M[1].

Let M be a module the concept of δ -small submodules was introduced by Zhou in [2]. Let M be an R-module and $N \le M$, N is said to be δ -small $(N \ll_{\delta} M)$ if N+X=M with $\frac{M}{X}$ singular then X=M. A submodule N of an R-module M is called δ -supplement of L if M = N+L and $N+L \ll_{\delta} N$, M is called δ-supplemented module if for each submodule A of M there exists a submodule B of M such that M=A+B and A \cap B $\ll_{\delta} B$ [3]. A module M is called δ - hollow if every proper submodule of M is δ – small [4]. A submodule N of M is called essential in M if for every non-zero submodules $L \le M$ we have $N \cap L \ne 0$ and we write $N \leq_{\epsilon} M$

The following lemma show the properties of δ – small submodules.

Lemma 1.1 [2] :

let M be an R- module

1- For submodules N,K, L of M with N≤K we have $N \ll_{\delta} M$ if and only if $K \ll_{\delta} M$ and $\frac{N}{K} \ll_{\delta} \frac{M}{K}$ and $N + L \ll_{\delta} M$ if and only if N $\ll_{\delta} M$ and $L \ll_{\delta} M$.

- 2- If $K \ll_{\delta} M$ and f: $M \rightarrow N$ homomorphism then $f(K) \ll_{\delta} M \leq N$ in particular if $K \ll_{\delta} M \leq N$ then $K \ll_{\delta} N$.
- 3- Let $K_1 \le M_1 \le M$, $K_2 \le M_2 \le M$ and $M=M_1$ +M₂ then $K_1+K_2 \ll_{\delta} M_1+M_2$ if and only if $K_1 \ll_{\delta} M_1$ and $K_2 \ll_{\delta} M_2$

Let M be an R-module and $N \le M$ let $\delta(M) = \bigcap \{N \le M \mid \frac{M}{N} \in \rho\}$ where ρ is the class of singular simple modules [3]. The following lemma shows some properties of $\delta(M)$.

- <u>Lemma (1.2) [2]:</u> $1-\delta \text{ (M)} = \sum \{L \leq \frac{M}{L} \text{ is } \delta \text{ small submodule of } \delta \in \mathcal{S} \}$
- 2-If $f: M \rightarrow N$ an R-homomorphism then $f(\delta(M)) \leq \delta(N)$.
- 3- If every proper submodule of M contained in a maximal submodule the $\delta(M)$ is largest *δ*−small submodule of M
- 4- If $M = \bigoplus_{i \in I} Mi$ then $\delta(M) = \bigoplus_{i \in I} \delta(Mi)$.

The concepts of generalized supplemented module introduced in [5], let M be a module if A, $B \le M$ and M=A+B then B is called generalized supplement of A in case A∩B≤Rad (B). M is called generalized supplemented module if each submodule A has a generalized supplement B [6]. In this paper we introduce the concept of $\delta(M)$ -supplemented module as a generalized supplemented module (GS-module) and some properties of this kind of modules was given.

2. δ (M) – Supplemented Modules

Let M be a module. If A, $B \le M$ and M = A+B then B is called a generalized supplement of A in case $A \cap B \leq Rad$ (B) [2]. M is called a generalized supplemented module or GS-module in case each submodule A has a generalized supplement B. In this section as a generalization of generalized supplement submodule, $\delta(M)$ -supplemented modules are introduced many properties of $\delta(M)$ -supplemented module are given .

Definition 2.1:

Let M be a module, and let A, B be submodules of M, B is called $\delta(M)$ — supplement of A, if M=A+B and $A \cap B \leq \delta(B)$.

M is called a $\delta(M)$ -supplemented module in case each submodule A has a $\delta(M)$ -supplemented B. hollow modules and δ -hollow modules are $\delta(M)$ -upplemented module

It clear that M is $\delta(M)$ -supplemented of $\delta(M)$ in M.

Clearly each GS-module is $\delta(M)$ -supplemented module but the converse is not true in general as we see in the next remark.

Remark 2.2:

It is easy to check that if R is a semisimple ring and M a nonzero right R-module then M is nonsingular and semisimple. for any nonzero $N \le M$, N is direct summand of M and hence is not small in M. but every submodule of M is δ -small in M then M is δ -hollow and then M is δ (M)—supplemented module.

Proposition 2.3:

let A, B be submodules of an R- module M, if B is $\delta(M)$ supplement sub-module of A then:

- 1-If W+B=M for some W \subset A then B is a δ (M)-supplement of W.
- 2- If $K \ll_{\delta} M$ then B is δ (M) supplement of A + K.
- 3- For $K \ll_{\delta} M$ then $K \cap B \ll_{\delta} B$ and so $\delta(B) = B \cap \delta(M)$.
- 4- For L \subset A, (B+L) / L is δ (M)– supplement of $\frac{A}{L}$ in $\frac{M}{L}$.

Proof:

- 1. Let M=A+B, since B is $\delta(M)$ supplement of A then $A \cap B \le \delta(B)$ and $A \cap B \ll_{\delta} B$. Let $W \le A$, $W \cap B \le A \cap B \le \delta(B)$ then $W \cap B \le \delta(B)$ we have B is $\delta(M)$ supplemented of W.
- 2. If $K \ll_{\delta} M$ then for $X \le B$ with (A+K)+X=M, A+X=M. Since B is $\delta(M)$ supplemented of A and M=A+B then X=B. We have B is $\delta(M)$ supplemented of A+K.
- 3. Let $K \ll_{\delta} M$ and $X \le B$ with $M = A + B = A + (K \cap B) + X = A + X$ Then M = A + X is there for X = B and since $\frac{M}{B}$ is singular then $\frac{B}{X}$ is singular. That means $K \cap B \ll_{\delta} B$. this yields $B \cap \delta$ $(M) \le \delta(B)$. Since $(B) \le V \cap \delta(M)$ always holds we get $\delta(B) = B \cap \delta(M)$
- 4. For L \(\le A \), we have $A \cap (B+L)$ $= B + (A \cap L) \text{ by (Modularity)} \quad \frac{A}{L} \cap \frac{B+L}{L} \text{Since}$ $A \cap B \leq \delta(B) \text{ [B is } \delta(M) \text{-supplemented of A}$ that means if $A \cap B \ll_{\delta} B$ then $\frac{A \cap B + L}{L} \ll_{\delta} \frac{B + L}{L} \text{]}.$

It follow that
$$\frac{A \cap B + L}{L} \le \delta\left(\frac{B + L}{L}\right)$$
 Then $\frac{A}{L} \cap \frac{B + L}{L} \le \left(\frac{B + L}{L}\right)$ and $\frac{A}{L} + \frac{B + L}{L} = \frac{M}{L}$

Lemma 2.4 [7]:

Suppose that $K_1 \le M_1 \le M$, $K_2 \le M_2 \le M$ and $M = M_1 \bigoplus M_2$ then $K_1 \bigoplus K_2 \le_{\mathfrak{g}} M_1 \bigoplus M_2$ if and only if $K_1 \le_{\mathfrak{g}} M_1$ and $K_2 \le_{\mathfrak{g}} M_2$.

Proposition 2.5:

Let M be $\delta(M)$ - supplemented modules then:

- 1- If A submodule of M with $A \cap \delta(M) = 0$ then A is semisimple
- 2-M=A+B for some semi simple and some module B with $\delta(B) \leq_{\varepsilon} B$.

Proof:

1- Let B \leq A. Since M is $\delta(M)$ - supplemented module then there exists C \leq M such that B+C =M and B \cap C \leq δ (C) thus A=A \cap M =A \cap (B+C)=B+A \cap C we have A=B+(A \cap C), B \cap C \leq δ (C) and

 $B \cap (A \cap C) = B \cap C \le A \cap \delta(C) \le A \cap \delta(M) = 0$ We have $B \cap (A \cap C) = 0$ since $A = B \oplus (A \cap C)$ then A is semisimple.

2- For $\delta(M)$, let $A \leq M$ such that $A \cap \delta(M) = 0$ and $A \oplus \delta(M) \leq_{\varepsilon} M$ see[2,prop.1.3].since M is $\delta(M)$ —supplemented module then there exist $B \leq M$ Such that M = A + B, $A \cap B \leq \delta(B)$, $A \cap B = A \cap (A \cap B) \leq A \cap \delta$ (B) $\leq A \cap \delta(M) = 0$ Then $A \cap B = 0$ by (1) $M = A \oplus B$, A is semisimple Since $\delta(M) = \delta(A) + \delta(B) = \delta$ (B) and since $A \oplus \delta(M) \leq_{\varepsilon} M = A \oplus B$ and $A \leq_{\varepsilon} A$ and $\delta(M) \leq_{\varepsilon} B$ by [Lemma 2.4] $\delta(B) \leq_{\varepsilon} B$.

Proposition 2.6:

Let A, B be submodules of R. module M. and A is $\delta(M)$ -supplemented module if A+B has $\delta(M)$ - supplement submodule in M then B is $\delta(M)$ -supplemented submodule.

Proof:

Since A+B be δ (M)- supplemented module then there exist X \leq M such that X+(A+B)=M and X \cap (A+B) \leq δ (X) For (X+B) \cap A, since A is δ (M)— supplement submodule then there exist Y \leq A such that (X+B) \cap A+Y=A and (X+B) \cap Y \leq δ (Y) since X+B+Y=M that is Y is δ (M)- supplement of X+B in M. Next show X+Y is δ (M)- supplement of B in M, since (X+Y)+B=0, so it is to show that (X+Y) \cap B \leq δ (X+Y). Since Y+B \leq A+B, X \cap (Y+B) \leq X \cap (A+B) \leq δ (M), thus (X+Y) \cap B \leq X \cap (Y+B)+Y \cap (X+B) \leq δ (X)+ δ (Y) \leq δ (X+Y)

Corollary 2.7:

Let M_1,M_2 be $\delta(M)$ —supplemented module such that $M=M_1+M_2$ then M is $\delta(M)$ —supplemented module .

Proof:

Let U be submodule of M, since $M=M_1+M_2+U$ trivially has $\delta(M)-$ supplemented in M. M_2+U has $\delta(M)-$ supplemented in by [Proposition. 2.6] thus U has $\delta(M)-$ supplemented in M by [proposition. 2.6] so is M is $\delta(M)-$ supplemented module .

Proposition 2.8:

Every factor module of $\delta(M)$ -supplemented module is $\delta(M)$ -supplemented module.

Proof:

Let M be $\delta(M)$ — supplemented module and $\frac{M}{N}$ any factor module of M, for any submodule L \leq M cautioning N. since M is $\delta(M)$ — supplemented module then there exist $K \leq M$ such that L+K=M and L $\cap K \leq \delta(K)$.

$$\frac{M}{N} = \frac{L}{N} + \frac{K+N}{N} \quad \text{and} \quad \frac{l}{N} \cap \frac{N+K}{N} = \frac{L \cap (N+K)}{N} = \frac{M+(L\cap K)}{N} = \frac{M+(L\cap K)}{N} \quad \text{is} \quad \frac{M+K}{N} \quad \text{is} \quad \frac{M+K}{N} \quad \text{is} \quad \frac{M+K}{N} = \frac{M+K}{N} = \frac{M}{N}.$$

Proposition 2.9:

If M is $\delta(M)$ – supplemented module then $\frac{M}{\delta(M)}$ is semisimple.

Proof:

Let $N \le M$ contain $\delta(M)$, there exist $\delta(M)$ -supplement submodule K of N in M such that M = N + K.

Since
$$\frac{M}{\delta \, (\mathrm{M})} = \frac{N}{\delta \, (\mathrm{M})} \oplus \frac{K + \delta \, (\mathrm{M})}{\delta \, (\mathrm{M})}$$
 then every submodule of $\frac{M}{\delta \, (\mathrm{M})}$ is direct summand. we have $\frac{M}{\delta \, (\mathrm{M})}$ is semi-simple.

3- δ (M)- amply supplement Modules

M is called generalized amply supplemented modules or briefly GAS-module in case M=A+B implies that A has a generalized supplement $K \leq B$.

In this section as a generalization of $\delta(M)$ -supplemented module we introduce $\delta(M)$ -amply supplemented Modules

Definition 3.1:

M is called δ (M)- amply supplemented modules in case M=A+B implies that A has a δ (M)- supplement $K \leq B$.

Is clear every δ (M)- supplemented module is δ (M)- amply supplemented module.

Proposition 3.2:

Let M be δ (M)-amply supplemented module and K a direct summand of M then K is a δ (M)- amply supplemented module.

Proof:

Since K is a direct summand of M, there exists $L \le M$ such that $M=K \oplus L$

suppose that K=C+D, then M=D+(C \bigoplus L) since M is a δ (M)-amply supplemented module, there exist P \leq D such that M=P+(C \bigoplus L) and p \cap (C \bigoplus L) \leq δ (P). Therefore K=K \cap M= K \cap (P+(C \bigoplus L)) =P+C and P \cap C=P \cap (C \bigoplus L) \leq δ (P), as required.

Proposition 3.3:

Let M be a module. If every submodule of M is a $\delta(M)$ - supplemented module, then M is a $\delta(M)$ -amply supplemented module.

Proof:

Let K, N \leq M ancl M=M+L. By assumption, there is H \leq L such that (L \cap N) +H = L and (L \cap N) \cap H=N \cap H \leq δ (H). thus L=H+(L \cap N) \leq H+N and hence M=N+L \leq N+H .therefor M=H+N as required.

Corollary 3.4:

Let R be any ring. Then the following statement are equivalent:

- 1. Every module is a $\delta(M)$ -amply supplemented module
- 2. Every module is a $\delta(M)$ -supplemented-module.

References

- [1] R. Wesbauer "foundation of module and ring theory algebra logic and application, USA, Vol. 3, 1991.
- [2] Y. Zhow "Generalization of perfect semperfevt and semiregular rings "algebra Coll. Vol.7, No.3, 2000, pp. 305 318.
- [3] Y .Wany "δ- small submodule and δ- supplement module" International Journal of Math Sciences Volume 2007.
- [4] M.J. Nematoilahi, "on-δ-supplemented modules", Toallem University, 20 th seminar on Algebra (Apv, 22-23, 2009, pp.155-158.
- [5] W .Xue "characterization of semi perfect Rings" publications Math. 40 (1996) 115 – 125.
- [6] Y .Wany and N. Ding "Genera neseJournal of Math", Vol. 10, 2006, pp.1587 1601.

[7] F. W. Anderson and K. R. Fuller, "Rings and Categories of Modules, Sprenger – Verlag, 1974.

الخلاصة

لتكن R حلقة، M مقاسات في هذا البحث نقدم تعريف A المقاس المكمل من النوع $\delta(M)$ الجزئي حيث اذا كان A مقاسات جزئية من A و A B B فأن B مقاس جزئي مكمل من النوع $\delta(M)$ اذا كان $\delta(M)$ و كذلك قمنا بأعطاء خواص هذا النوع من الموديلات.