$\boldsymbol{\delta}(\mathbf{M})$ - Supplemented Modules

Sahira M.Yaseen and Zainab T.Salman
Department of Mathematics, College of Science, University of Baghdad.

Abstract

Let R be an associative ring with identity and M a non-zero unitary R -module. We introduce the concept of $\delta(M)-$ Supplement Submodule that if $A, B \leq M$ and $M=A+B$ then B is called $\delta(\mathrm{M})$ - supplement of A if $\mathrm{A} \cap \mathrm{B} \leq \delta(\mathrm{B})$ We give some properties of this kind of module.

1. Introduction and Preliminaries

For an associative ring with identity and a right R module M , a submodule N of M is said to be small in $\mathrm{M}(\mathrm{N} \ll \mathrm{M})$ if whenever $\mathrm{N}+\mathrm{X}=\mathrm{M}$,then $\mathrm{X}=\mathrm{M}$. let U be a submodule of an R - module M , A submodule $\mathrm{V}<\mathrm{M}$ is called supplement of U if V is minimal element in the set of submodules $\mathrm{L}<\mathrm{M}$ with $\mathrm{U}+\mathrm{L}=\mathrm{M}, \mathrm{V}$ is a supplement of U if and only if $U+V=M$ and $\mathrm{U} \cap \mathrm{V} \ll \mathrm{V}$.

An R - module M is called supplemented if every submodule of M has supplement in M [1].

Let M be a module the concept of δ-small submodules was introduced by Zhou in [2]. Let M be an R -module and $\mathrm{N} \leq \mathrm{M}, \mathrm{N}$ is said to be δ-small $\left(\mathrm{N} \ll_{\delta} \quad \mathrm{M}\right)$ if $\mathrm{N}+\mathrm{X}=\mathrm{M}$ with $\frac{M}{X}$ singular then $\mathrm{X}=\mathrm{M}$. A submodule N of an R -module M is called δ-supplement of L if $\mathrm{M}=\mathrm{N}+\mathrm{L}$ and $\mathrm{N}+\mathrm{L} \ll_{\delta} \mathrm{N}, \mathrm{M}$ is called δ-supplemented module if for each submodule A of M there exists a submodule B of M such that $\mathrm{M}=\mathrm{A}+\mathrm{B}$ and $\mathrm{A} \cap \mathrm{B} \ll_{\delta} B$ [3]. A module M is called δ - hollow if every proper submodule of M is $\delta-$ small [4]. A submodule N of M is called essential in M if for every non-zero submodules $\mathrm{L} \leq \mathrm{M}$ we have $\mathrm{N} \cap \mathrm{L} \neq 0$ and we write $\mathrm{N} \leq_{e} \mathrm{M}$

The following lemma show the properties of δ-small submodules .

Lemma 1.1[2]:

let M be an R- module

1-For submodules N, K, L of M with $\mathrm{N} \leq \mathrm{K}$ we have $\mathrm{N} \ll_{\delta} \mathrm{M}$ if and only if $\mathrm{K}<_{\delta} \mathrm{M}$ and $\frac{N}{K} \lll_{\delta} \frac{M}{K}$ and $\mathrm{N}+\mathrm{L}<_{\delta} \mathrm{M}$ if and only if N $<_{\delta} \mathrm{M}$ and $\mathrm{L} \ll_{\delta} \mathrm{M}$.

2-If $\mathrm{K} \lll_{\delta} \quad \mathrm{M}$ and $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ is a homomorphism then $\mathrm{f}(\mathrm{K}) \ll_{\delta} \mathrm{M} \leq \mathrm{N}$ in particular if $\mathrm{K} \ll_{\delta} \mathrm{M} \leq \mathrm{N}$ then $\mathrm{K} \ll_{\delta} \mathrm{N}$.
3 - Let $\mathrm{K}_{1} \leq \mathrm{M}_{1} \leq \mathrm{M}, \mathrm{K}_{2} \leq \mathrm{M}_{2} \leq \mathrm{M}$ and $\mathrm{M}=\mathrm{M}_{1}$ $+\mathrm{M}_{2}$ then $\mathrm{K}_{1}+\mathrm{K}_{2}<_{6} \mathrm{M}_{1}+\mathrm{M}_{2}$ if and only if $\mathrm{K}_{1} \ll_{\delta} \mathrm{M}_{1}$ and $\mathrm{K}_{2} \ll_{\delta} \mathrm{M}_{2}$

Let M be an R-module and $\mathrm{N} \leq \mathrm{M}$ let $\delta(\mathrm{M})=\cap\left\{\mathrm{N} \leq \mathrm{M} \left\lvert\, \frac{M}{N} \in \rho\right.\right\}$ where ρ is the class of singular simple modules [3]. The following lemma shows some properties of $\delta(\mathrm{M})$.

Lemma (1.2) [2]:

$1-\delta(\mathrm{M})=\sum\left\{\mathrm{L} \leq \frac{M}{L}\right.$ is $\delta-$ small submodule of M\} .
2-If $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ an R -homomorphism then $\mathrm{f}(\delta(\mathrm{M})) \leq \delta(\mathrm{N})$.
3- If every proper submodule of M contained in a maximal submodule the $\delta(\mathrm{M})$ is largest δ-small submodule of M
4 - If $\mathrm{M}=\oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{Mi}$ then $\delta(\mathrm{M})=\oplus_{\mathrm{i} \in \mathrm{I}} \delta(\mathrm{Mi})$.
The concepts of generalized supplemented module introduced in [5], let M be a module if $\mathrm{A}, \mathrm{B} \leq \mathrm{M}$ and $\mathrm{M}=\mathrm{A}+\mathrm{B}$ then B is called generalized supplement of A in case $A \cap B \leq \operatorname{Rad} \quad$ (B). $\quad M$ is called generalized supplemented module if each submodule A has a generalized supplement B [6]. In this paper we introduce the concept of $\delta(\mathrm{M})$-supplemented module as a generalized supplemented module (GS-module) and some properties of this kind of modules was given.

2. $\delta(\mathbf{M})$ - Supplemented Modules

Let M be a module. If $\mathrm{A}, \mathrm{B} \leq \mathrm{M}$ and $M=A+B$ then B is called a generalized supplement of A in case $\mathrm{A} \cap \mathrm{B} \leq \operatorname{Rad}(\mathrm{B})$ [2].
M is called a generalized supplemented module or GS-module in case each submodule A has a generalized supplement B. In this section as a generalization of generalized supplement submodule, $\delta(\mathrm{M})$-supplemented modules are introduced many properties of $\delta(\mathrm{M})$-supplemented module are given .

Definition 2.1:

Let M be a module, and let A, B be submodules of M, B is called $\delta(\mathrm{M})-$ supplement of A , if $\mathrm{M}=\mathrm{A}+\mathrm{B}$ and $\mathrm{A} \cap \mathrm{B} \leq \delta(\mathrm{B})$.

M is called a $\delta(\mathrm{M})$-supplemented module in case each submodule A has a $\delta(\mathrm{M})$-supplemented B . hollow modules and δ-hollow modules are $\delta(\mathrm{M})$-upplemented module

It clear that M is $\delta(\mathrm{M})$-supplemented of $\delta(\mathrm{M})$ in M .

Clearly each GS-module is $\delta(\mathrm{M})$-supplemented module but the converse is not true in general as we see in the next remark.

Remark 2.2:

It is easy to check that if R is a semisimple ring and M a nonzero right R -module then M is nonsingular and semisimple. for any nonzero $\mathrm{N} \leq \mathrm{M}$, N is direct summand of M and hence is not small in M. but every submodule of M is δ-small in M then M is δ-hollow and then M is $\delta(\mathrm{M})$-supplemented module.

Proposition 2.3:

let A, B be submodules of an R - module
M , if B is $\delta(\mathrm{M})$ supplement sub-module of A then:
1- If $\mathrm{W}+\mathrm{B}=\mathrm{M}$ for some $\mathrm{W} \subset \mathrm{A}$ then B is a $\delta(\mathrm{M})$-supplement of W.
2 - If $\mathrm{K} \ll_{\delta} \mathrm{M}$ then B is $\delta(\mathrm{M})$ - supplement of A +K .
3-For $\mathrm{K} \ll_{\delta} \mathrm{M}$ then $\mathrm{K} \cap \mathrm{B} \ll_{\delta} \mathrm{B}$ and so $\delta(\mathrm{B})=\mathrm{B} \cap \delta(\mathrm{M})$.
4- For $\mathrm{L} \subset \mathrm{A},(\mathrm{B}+\mathrm{L}) / \mathrm{L}$ is $\delta(\mathrm{M})-$ supplement of $\frac{A}{L}$ in $\frac{M}{L}$.

Proof:

1. Let $\mathrm{M}=\mathrm{A}+\mathrm{B}$, since B is $\delta(\mathrm{M})$ - supplement of A then $\mathrm{A} \cap \mathrm{B} \leq \delta(\mathrm{B})$ and $\mathrm{A} \cap \mathrm{B}<{ }_{\delta} \mathrm{B}$. Let $\mathrm{W} \leq \mathrm{A}, \mathrm{W} \cap \mathrm{B} \leq \mathrm{A} \cap \mathrm{B} \leq \delta(\mathrm{B})$ then $\mathrm{W} \cap \mathrm{B} \leq$ $\delta(\mathrm{B})$ we have B is $\delta(\mathrm{M})$ - supplemented of W.
2. If $\mathrm{K} \ll{ }_{\delta} \mathrm{M}$ then for $\mathrm{X} \leq \mathrm{B}$ with $(\mathrm{A}+\mathrm{K})+\mathrm{X}=\mathrm{M}$, $A+X=M$. Since B is $\delta(M)$ - supplemented of A and $M=A+B$ then $X=B$. We have B is $\delta(\mathrm{M})$ - supplemented of $\mathrm{A}+\mathrm{K}$.
3. Let $\mathrm{K} \ll_{\delta} \mathrm{M}$ and $\mathrm{X} \leq \mathrm{B}$ with $\mathrm{M}=\mathrm{A}+\mathrm{B}=\mathrm{A}+(\mathrm{K} \cap \mathrm{B})+\mathrm{X}=\mathrm{A}+\mathrm{X}$
Then $M=A+X$ is there for $X=B$ and since $\frac{M}{B}$ is singular then $\frac{B}{X}$ is singular. That means $\mathrm{K} \cap \mathrm{B}<{ }_{\delta} \mathrm{B}$. this yields $\mathrm{B} \cap \delta(\mathrm{M}) \leq \delta(\mathrm{B})$. Since $(\mathrm{B}) \leq \mathrm{V} \cap \delta(\mathrm{M})$ always holds we get $\delta(B)=B \cap \delta(M)$
4. For $L \leq A$, we have $A \cap(B+L)$ $=\mathrm{B}+(\mathrm{A} \cap \mathrm{L})$ by (Modularity) $\frac{A}{L} \cap \frac{B+L}{L}$ Since $\mathrm{A} \cap \mathrm{B} \leq \delta(\mathrm{B})[\mathrm{B}$ is $\delta(\mathrm{M})$-supplemented of A that means if $\mathrm{A} \cap \mathrm{B} \ll_{\delta} \mathrm{B}$ then $\left.\frac{A \cap B+L}{L} \ll_{\delta} \frac{B+L}{L}\right]$.
It follow that $\frac{A \cap B+L}{L} \leq \delta\left(\frac{B+L}{L}\right)$ Then $\frac{A}{L} \cap \frac{B+L}{L} \leq\left(\frac{B+L}{L}\right)$ and $\frac{A}{L}+\frac{B+L}{L}=\frac{M}{L}$

Lemma 2.4 [7]:

Suppose that $K_{1} \leq M_{1} \leq M, K_{2} \leq M_{2} \leq M$ and $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ then $\mathrm{K}_{1} \oplus \mathrm{~K}_{2} \leq_{e} \mathrm{M}_{1} \oplus \mathrm{M}_{2}$ if and only if $\mathrm{K}_{1} \leq_{e} \mathrm{M}_{1}$ and $\mathrm{K}_{2} \leq_{e} \mathrm{M}_{2}$.

Proposition 2.5 :

Let M be $\delta(M)$ - supplemented modules then :
1 - If A submodule of M with $\mathrm{A} \cap \delta(M)=0$ then A is semisimple
$2-\mathrm{M}=\mathrm{A}+\mathrm{B}$ for some semi simple and some module B with $\delta(B) \leq_{e} \mathrm{~B}$.

Proof:

1 - Let $\mathrm{B} \leq \mathrm{A}$. Since M is $\delta(M)$ - supplemented module then there exists $\mathrm{C} \leq \mathrm{M}$ such that $\mathrm{B}+\mathrm{C}=\mathrm{M}$ and $\mathrm{B} \cap \mathrm{C} \leq \delta(\mathrm{C})$ thus $A=A \cap M=A \cap(B+C)=B+A \cap C$ we have $\mathrm{A}=\mathrm{B}+(\mathrm{A} \cap \mathrm{C}), \quad \mathrm{B} \cap \mathrm{C} \leq \delta(\mathrm{C}) \quad$ and
$\mathrm{B} \cap(\mathrm{A} \cap \mathrm{C})=\mathrm{B} \cap \mathrm{C} \leq \mathrm{A} \cap \delta(\mathrm{C}) \leq \mathrm{A} \cap \quad \delta(\mathrm{M})=0$ We have $B \cap(A \cap C)=0$ since $A=B \oplus(A \cap C)$ then A is semisimple.
2 - For $\delta(M)$, let $A \leq M$ such that $A \cap \delta(M)=0$ and $A \oplus \delta(M) \leq_{e} M$ see[2,prop.1.3].since M is $\delta(\mathrm{M})$-supplemented module then there exist $\mathrm{B} \leq \mathrm{M}$ Such that $\mathrm{M}=\mathrm{A}+\mathrm{B}, \mathrm{A} \cap \mathrm{B} \leq$ $\delta(\mathrm{B}), \quad \mathrm{A} \cap \mathrm{B}=\mathrm{A} \cap(\mathrm{A} \cap \mathrm{B}) \leq \quad \mathrm{A} \cap \delta \quad(\mathrm{B}) \leq$ $A \cap \delta(M)=0$ Then $A \cap B=0$ by (1) $M=A \oplus B$, A is semisimple Since $\delta(\mathrm{M})=\delta(\mathrm{A})+\delta(\mathrm{B})=\delta$ (B) and since $\mathrm{A} \oplus \delta(\mathrm{M}) \leq_{e} \mathrm{M}=\mathrm{A} \oplus \mathrm{B}$ and $\mathrm{A} \leq_{e} \mathrm{~A}$ and $\delta(\mathrm{M}) \leq_{e} \mathrm{~B}$ by [Lemma 2.4] $\delta(\mathrm{B}) \leq_{e} \mathrm{~B}$.

Proposition 2.6 :

Let A, B be submodules of R . module M . and A is $\delta(M)$-supplemented module if $A+B$ has $\delta(\mathrm{M})$ - supplement submodule in M then B is $\delta(\mathrm{M})$-supplemented submodule.

Proof:

Since $A+B$ be $\delta(M)$ - supplemented module then there exist $X \leq M$ such that $X+(A+B)=M$ and $\mathrm{X} \cap(\mathrm{A}+\mathrm{B}) \leq \delta(\mathrm{X})$ For $(\mathrm{X}+\mathrm{B}) \cap \mathrm{A}$, since A is $\delta(\mathrm{M})-$ supplement submodule then there exist $\mathrm{Y} \leq \mathrm{A}$ such that $(\mathrm{X}+\mathrm{B}) \cap \mathrm{A}+\mathrm{Y}=\mathrm{A}$ and $(\mathrm{X}+\mathrm{B}) \cap \mathrm{Y} \leq \delta(\mathrm{Y})$ since $\mathrm{X}+\mathrm{B}+\mathrm{Y}=\mathrm{M}$ that is Y is $\delta(\mathrm{M})$ - supplement of $\mathrm{X}+\mathrm{B}$ in M . Next show $\mathrm{X}+\mathrm{Y}$ is $\delta(\mathrm{M})-$ supplement of B in M , since $(X+Y)+B=0$, so it is to show that $(X+Y) \cap B \leq \delta(X+Y)$. Since $Y+B \leq A+B$, $\mathrm{X} \cap(\mathrm{Y}+\mathrm{B}) \leq \mathrm{X} \cap(\mathrm{A}+\mathrm{B}) \leq \delta(\mathrm{M})$, thus $(\mathrm{X}+\mathrm{Y})$ $\cap \mathrm{B} \leq \mathrm{X} \cap(\mathrm{Y}+\mathrm{B})+\mathrm{Y} \cap(\mathrm{X}+\mathrm{B}) \leq \delta(\mathrm{X})+\delta(\mathrm{Y}) \leq \delta(\mathrm{X}+$ Y)

Corollary 2.7 :

Let $\mathrm{M}_{1}, \mathrm{M}_{2}$ be $\delta(\mathrm{M})$-supplemented module such that $M=M_{1}+M_{2}$ then M is $\delta(\mathrm{M})$-supplemented module .

Proof:

Let U be submodule of M, since $\mathrm{M}=\mathrm{M}_{1}+\mathrm{M}_{2}+\mathrm{U}$ trivially has $\delta(\mathrm{M})-$ supplemented in $\mathrm{M} . \mathrm{M}_{2}+\mathrm{U}$ has $\delta(\mathrm{M})-$ supplemented in by [Proposition. 2.6] thus U has $\delta(\mathrm{M})$ - supplemented in M by [proposition. 2.6] so is M is $\delta(\mathrm{M})$ - supplemented module .

Proposition 2.8 :

Every factor module of $\delta(\mathrm{M})-$ supplemented module is $\delta(\mathrm{M})$-supplemented module.

Proof:

Let M be $\delta(\mathrm{M})-$ supplemented module and $\frac{M}{N}$ any factor module of M, for any submodule $\mathrm{L} \leq \mathrm{M}$ cautioning N . since M is $\delta(\mathrm{M})$ - supplemented module then there exist $\mathrm{K} \leq \mathrm{M}$ such that $\mathrm{L}+\mathrm{K}=\mathrm{M}$ and $\mathrm{L} \cap \mathrm{K} \leq \delta(\mathrm{K})$.
$\frac{M}{N}=\frac{L}{N}+\frac{K+N}{N}$ and $\frac{l}{N} \cap \frac{N+K}{N}=\frac{L \cap(N+K)}{N}=$ $\frac{N+(L \cap K)}{N} \leq \delta\left(\frac{N+K}{N}\right)$ that is $\frac{N+K}{N}$ is $\delta(\mathrm{M})$ - supplemented module of $\frac{L}{N}$ in $\frac{M}{N}$.

Proposition 2.9:

If M is $\delta(\mathrm{M})$ - supplemented module then $\frac{M}{\delta(\mathrm{M})}$ is semisimple.

Proof:

Let $\mathrm{N} \leq \mathrm{M}$ contain $\delta(\mathrm{M})$, there exist $\delta(\mathrm{M})$-supplement submodule K of N in M such that $\mathrm{M}=\mathrm{N}+\mathrm{K}$.

Since $\frac{M}{\delta(\mathrm{M})}=\frac{N}{\delta(\mathrm{M})} \oplus \frac{K+\delta(\mathrm{M})}{\delta(\mathrm{M})}$ then every submodule of $\frac{M}{\delta(M)}$ is direct summand. we have $\frac{M}{\delta(M)}$ is semi -simple.

3- $\delta(\mathbf{M})$ - amply supplement Modules

M is called generalized amply supplemented modules or briefly GASmodule in case $\mathrm{M}=\mathrm{A}+\mathrm{B}$ implies that A has a generalized supplement $K \leq B$.

In this section as a generalization of $\delta(M)$-supplemented module we introduce $\delta(\mathrm{M})$-amply supplemented Modules

Definition 3.1 :

M is called $\delta(\mathrm{M})$ - amply supplemented modules in case $\mathrm{M}=\mathrm{A}+\mathrm{B}$ implies that A has a $\delta(\mathrm{M})$ - supplement $K \leq B$.

Is clear every $\delta(\mathrm{M})$ - supplemented module is $\delta(\mathrm{M})$ - amply supplemented module.

Proposition 3.2:

Let M be $\delta(\mathrm{M})$-amply supplemented module and K a direct summand of M then K is a $\delta(\mathrm{M})$ - amply supplemented module.

Proof:

Since K is a direct summand of M, there exists $L \leq M$ such that $\mathrm{M}=\mathrm{K} \oplus \mathrm{L}$
suppose that $\mathrm{K}=\mathrm{C}+\mathrm{D}$, then $\mathrm{M}=\mathrm{D}+(\mathrm{C} \oplus \mathrm{L})$ since M is a $\delta(\mathrm{M})$-amply supplemented module, there exist $\mathrm{P} \leq \mathrm{D}$ such that $\mathrm{M}=\mathrm{P}+(\mathrm{C} \oplus \mathrm{L}) \quad$ and $\quad \mathrm{p} \cap(C \oplus \mathrm{~L}) \leq \delta(\mathrm{P})$. Therefore $\mathrm{K}=\mathrm{K} \cap \mathrm{M}=\mathrm{K} \cap(\mathrm{P}+(\mathrm{C} \oplus \mathrm{L}))=\mathrm{P}+\mathrm{C}$ and $\mathrm{P} \cap \mathrm{C}=\mathrm{P} \cap(\mathrm{C} \oplus \mathrm{L}) \leq \delta(\mathrm{P})$, as required.

Proposition 3.3:

Let M be a module. If every submodule of M is a $\delta(M)$-supplemented module, then M is a $\delta(M)$-amply supplemented module.

Proof:

Let $\mathrm{K}, \quad \mathrm{N} \leq \mathrm{M}$ ancl $\mathrm{M}=\mathrm{M}+\mathrm{L}$. By assumption, there is $\mathrm{H} \leq \mathrm{L}$ such that $(\mathrm{L} \cap \mathrm{N})+\mathrm{H}$ $=\mathrm{L}$ and $(\mathrm{L} \cap \mathrm{N}) \cap H=\mathrm{N} \cap H \leq \delta(\mathrm{H})$. thus $\mathrm{L}=\mathrm{H}+(\mathrm{L} \cap \mathrm{N}) \leq \mathrm{H}+\mathrm{N} \quad$ and hence $\mathrm{M}=\mathrm{N}+\mathrm{L} \leq \mathrm{N}+\mathrm{H}$.therefor $\mathrm{M}=\mathrm{H}+\mathrm{N}$ as required.

Corollary 3.4:

Let R be any ring. Then the following statement are equivalent:

1. Every module is a $\delta(M)$-amply supplemented module
2. Every module is a $\delta(M)$-supplementedmodule.

References

[1] R. Wesbauer "foundation of module and ring theory algebra logic and application, USA, Vol. 3, 1991.
[2] Y. Zhow "Generalization of perfect semperfevt and semiregular rings "algebra Coll. Vol.7, No.3, 2000, pp. 305-318.
[3] Y .Wany " δ - small submodule and δ - supplement module" International Journal of Math Sciences Volume 2007.
[4] M.J. Nematoilahi, "on- δ-supplemented modules", Toallem University, 20 th seminar on Algebra (Apv, 22-23, 2009, pp.155-158.
[5] W .Xue "characterization of semi perfect Rings" publications Math. 40 (1996) 115 125.
[6] Y .Wany and N. Ding "Genera neseJournal of Math", Vol. 10, 2006, pp.1587-1601.
[7] F. W. Anderson and K. R .Fuller, "Rings and Categories of Modules, Sprenger Verlag, 1974.

الخلاصة

لنكن R حقة، M مقاسات في هذا البحث نقدم تعريف المقاس الدكمل من النوع (M) الجزئي حيث اذا كان A A ال
 يكون مقاس جزئي مكمل من النوع وكذلك قمنا بأعطاء خواص هذا النوع A و $\cap \mathrm{B} \leq \delta(\mathrm{M})$

