Open, closed and continuous function in bi-pre-supra topological space

Taha H. Jasim
University of Tikrit, College of Computer Science and Mathematics, Department of Mathematics

Ghaith Abbas
University of Tikrit, College of Education, Department of Mathematics

Abstract
In this paper we constructed a new space called bi-pre-supra topological space. Many concepts \((\mathcal{T}, \mathcal{PT})\)-open set, \((\mathcal{T}, \mathcal{P}^*\mathcal{T})\)-open set, bi-open set) were introduced. At last through this paper we introduced a new class of functions (open, closed and continuous) in bi-pre-supra topological space. We study and investigate some properties and characterization of above concepts.

Keywords: \((\mathcal{T}, \mathcal{PT})\)-open function, \((\mathcal{T}, \mathcal{P}^*\mathcal{T})\)-open function, bi-open function \((\mathcal{T}, \mathcal{PT})\)-closed function, \((\mathcal{T}, \mathcal{P}^*\mathcal{T})\)-closed function, bi-closed function, \((\mathcal{T}, \mathcal{PT})\)-continuous function, \((\mathcal{T}, \mathcal{P}^*\mathcal{T})\)-continuous function, bi-continuous function.

1-Introduction
In 1963 Kelley J. C. [5] was first introduced the concept of bi-topological spaces, where \(X\) is a non-empty set and \(\mathcal{T}_1, \mathcal{T}_2\) are topologies on \(X\). In 1982 Almashhor [1] introduced the concept of pre-open sets in topological space. By using this concept, several authors’ [4], [6], [7] defined and studies stronger or weaker types of topological concept.

In this paper, we introduced the concepts of bi-pre-supra topological space, via \((\mathcal{T}, \mathcal{PT})\)-open set, \((\mathcal{T}, \mathcal{P}^*\mathcal{T})\)-open set and bi-open set in bi-pre-supra topological space, and we study their basic properties and relationships with other concepts of sets. At last through this paper we introduced a new class of functions (open, closed and continuous) in bi-pre-supra topological space. We study and investigate some properties and characterization of above concepts.

2-Preliminaries
Definition 2.1 [1] A subset \(A\) of a space \((X, \mathcal{T})\) is called pre-open, if \(A \subseteq \text{int (cl}(A))\). The complement of pre-open set is said to be pre-closed.

Definition 2.2 [2] A subfamily \(\mathcal{T}\) of a family of subset of \(X\) is said to be a supra topology on \(X\) if:
1) \(X, \emptyset \in \mathcal{T}\)
2) If \(A_i \in \mathcal{T}\) for all \(i \in I\) then \(\bigcup A_i \in \mathcal{T}\)
\((X, \mathcal{T})\) is called a supra topological space. The element of \(\mathcal{T}\) are called supra open set in \((X, \mathcal{T})\) and complement of a supra open set is called a supra closed set.
Definition 2.3 [7] Let \((X, \mathcal{T}_1, \mathcal{T}_2)\) be a bi-topological space, and let \(G\) be a subset of \(X\). Then \(G\) is said to be \((i,j)\)-open set if \(G = A \cup B\) where \(A \in \mathcal{T}_1\) and \(B \in \mathcal{T}_2\). The complement of \((i,j)\)-open set is called \((i,j)\)-closed set.

Remark 2.4 [7] Notice that \((i,j)\)-open set need not necessarily form a topology.

Definition 2.4 [3] A subset \(A\) of a bi-topological space \((X, \mathcal{T}_1, \mathcal{T}_2)\) is called \((i,j)\)-neighborhood of a point \(x\) in \(X\) if there exists an \((i,j)\)-open set \(G\) such that \(x \in G \subseteq A\). And denoted \((i,j)\)-nbd.

Definition 2.5 [3] Let \(A\) be a subset of bi-topological space \((X, \mathcal{T}_1, \mathcal{T}_2)\). A point \(x\) in \(X\) is said to \((i,j)\)-limit point of \(A\) if for each \((i,j)\)-open set \(G\) containing \(x\) such that \(A \cap (G \setminus \{x\}) \neq \emptyset\). The set of all \((i,j)\)-limit point of \(A\) is called \((i,j)\)-derived set of \(A\) and denoted by \((i,j)\)-d\((A)\).

Definition 2.6 [7] Let \(A\) be a subset of bi-topological space \((X, \mathcal{T}_1, \mathcal{T}_2)\). Then the \((i,j)\)-closure of \(G\) denoted by \((i,j)\)-cl\((A)\), is defined by \(\bigcap\{F : A \subseteq F \text{ and } F \text{ is } (i,j)\text{-closed set}\}\).

Definition 2.7 [7] Let \(A\) be a subset of bi-topological space \((X, \mathcal{T}_1, \mathcal{T}_2)\). Then the \((i,j)\)-interior of \(A\) denoted by \((i,j)\)-int\((A)\), is defined by \(\bigcup\{G : G \subseteq A \text{ and } F \text{ is } (i,j)\text{-open set}\}\).

Definition 2.8 [8] A function \(f:(X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y)\) is called open function if the image of every open set is open.

Definition 2.9 [8] A function \(f:(X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y)\) is called closed function if the image of every closed set is closed.

Definition 2.10 [8] A function \(f:(X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y)\) is called continuous function if the inverse image of any \(\mathcal{T}_Y\)-open set \(G\) is \(\mathcal{T}_X\)-open set.

3-Bi-pre-supra topological spaces

Definition 3.1 Let \(X\) be a non-empty set, let \(\mathcal{T}\) be a topology on \(X\) and let \(\mathcal{PT}\) is the set of all pre-open subset of \(X\) (for short \(\text{Po}(X)\)), then We say that \((X, \mathcal{T}, \mathcal{PT})\) is a bi-pre-supra topological space.

Now the deference between bi-topological space [Kelly] and bi-pre-supra topological space \(\mathcal{PT}\) is supra topology not topology.

Example 3.2 Let \(X = \{1,2,3,4\}\)
\[
\mathcal{T} = \{\emptyset, X, \{1\}, \{2,3\}, \{1,2,3\}\}
\]
\[
\text{Po}(X) = \mathcal{PT} = \{\emptyset, X, \{1\}, \{2,3\}, \{1,2,3\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{1,2,4\}, \{1,3,4\}\}
\]
\((X, \mathcal{T}, \mathcal{PT})\) is bi-pre-supra topological space

Definition 3.3 Let \((X, \mathcal{T}, \mathcal{PT})\) be a bi-pre-supra topological space, and let \(G\) be a subset of \(X\). Then

i) \(G\) is said to be \((\mathcal{T}, \mathcal{PT})\)-open set if \(G = A \cup B\) where \(A \in \mathcal{T}\) and \(B \in \mathcal{PT}\).

ii) The complement of \((\mathcal{T}, \mathcal{PT})\)-open set is called \((\mathcal{T}, \mathcal{PT})\)-closed set.

iii) \(G\) is said to be \((\mathcal{T}, \mathcal{PT})^*\)-open set if \(G = A \cup B\) where \(A \in \mathcal{T}\), \(B \in \mathcal{PT}\) and \(B \notin \mathcal{T}\).

iv) The complement of \((\mathcal{T}, \mathcal{PT})^*\)-open set is called \((\mathcal{T}, \mathcal{PT})^*\)-closed set.
v) G is said to be bi-open set if \(G = A \) where \(A \in \mathcal{T} \) and \(A \in \mathcal{P} \mathcal{T} \).

vi) The complement of bi-open set is called bi-closed set.

Proposition 3.4

1) Every bi-open set is \((\mathcal{T}, \mathcal{P} \mathcal{T})\)-open set and every bi-closed set is \((\mathcal{T}, \mathcal{P} \mathcal{T})\)-closed set but the converse is not true.

2) Every \((\mathcal{T}, \mathcal{P} \mathcal{T})^*\)-open set is \((\mathcal{T}, \mathcal{P} \mathcal{T})\)-open set and every \((\mathcal{T}, \mathcal{P} \mathcal{T})^*\)-closed set is \((\mathcal{T}, \mathcal{P} \mathcal{T})\)-closed set but the converse is not true.

Example 3.5

Let \(X = \{1, 2, 3, 4\} \)
\[\mathcal{T} = \{\emptyset, X, \{2\}, \{1,3\}, \{1,2,3\}\} \]
\[\mathcal{T}^c = \{\emptyset, X, \{1,3,4\}, \{2,4\}, \{4\}\} \]
\[\mathcal{P} \mathcal{T} = \{\emptyset, X, \{4\}, \{1,3\}, \{1,3,4\}, \{1,2,4\}, \{2,3\}, \{2,4\}\} \]
\[(\mathcal{T}, \mathcal{P} \mathcal{T})\)-open sets = \{\emptyset, X, \{2\}, \{1,2,3\}, \{2,3\}, \{1,2\}, \{1,3\}, \{1,2,4\}, \{2,3,4\}\}
\[(\mathcal{T}, \mathcal{P} \mathcal{T})\)-closed sets = \{\emptyset, X, \{1,3,4\}, \{3\}, \{2,3\}, \{1,2\}\}
\[(\mathcal{T}, \mathcal{P} \mathcal{T})^*\)-open sets = \{\emptyset, X, \{4\}, \{1,3,4\}, \{1,2\}, \{2,4\}\}
\[(\mathcal{T}, \mathcal{P} \mathcal{T})^*\)-closed sets = \{\emptyset, X, \{1,4\}, \{3\}, \{1\}, \{2,4\}\}

Definition 3.6 Let \((X, \mathcal{T}, \mathcal{P} \mathcal{T})\) be a bi-pre-supra topological space, and let \(A \) be a subset of \(X \). Then

i. The \((\mathcal{T}, \mathcal{P} \mathcal{T})\)-closure of \(G \) denoted by \((\mathcal{T}, \mathcal{P} \mathcal{T})\)-cl\((A)\), is defined by \(\cap \{ F : A \subseteq F \text{ and } F \text{ is } (\mathcal{T}, \mathcal{P} \mathcal{T})\text{-closed set} \} \)

ii. The \((\mathcal{T}, \mathcal{P} \mathcal{T})^*\)-closure of \(A \) denoted by \((\mathcal{T}, \mathcal{P} \mathcal{T})^*\)-cl\((A)\), is defined by \(\cap \{ F : A \subseteq F \text{ and } F \text{ is } (\mathcal{T}, \mathcal{P} \mathcal{T})^*\text{-closed set} \} \)

iii. The bi- closure of \(A \) denoted by bi-cl\((A)\), is defined by \(\cap \{ F : A \subseteq F \text{ and } F \text{ is bi-closed set} \} \)

Example 3.7 Let \(X = \{1, 2, 3, 4\} \)
\[\mathcal{T} = \{\emptyset, X, \{4\}, \{1,3\}, \{1,3,4\}\} \]
\[\mathcal{T}^c = \{\emptyset, X, \{1,3,4\}, \{2,4\}, \{4\}\} \]
\[\mathcal{P} \mathcal{T} = \{\emptyset, X, \{4\}, \{1,3\}, \{1,3,4\}, \{1\}, \{3\}, \{1,4\}, \{3,4\}, \{1,2,4\}, \{2,3\}, \{2,3,4\}\} \]
\[(\mathcal{T}, \mathcal{P} \mathcal{T})\)-open sets = \{\emptyset, X, \{4\}, \{1,3,4\}, \{1,4\}, \{3,4\}, \{1,2,4\}, \{2,3,4\}, \{1,3\}\}
\[(\mathcal{T}, \mathcal{P} \mathcal{T})\)-closed sets = \{\emptyset, X, \{1,2,3\}, \{2\}, \{1,2\}\}
\[(\mathcal{T}, \mathcal{P} \mathcal{T})^*\)-open sets = \{\emptyset, X, \{1,4\}, \{3,4\}, \{1,2,4\}, \{2,3,4\}, \{1,3\}\}
\[(\mathcal{T}, \mathcal{P} \mathcal{T})^*\)-closed sets = \{\emptyset, X, \{3\}, \{1\}, \{2,4\}\}

bi-open sets = \{\emptyset, X, \{2\}, \{1,3\}\}
bi-closed sets = \{\emptyset, X, \{1,3,4\}, \{2,4\}\}

Take \(G = \{1,2\} \), \(H = \{1,2,3\} \)
\((\mathcal{T}, \mathcal{P} \mathcal{T})\)-cl\((G)\) = \{1,2\}
\(\text{bi-cl}(G) = \{1,2,3\} \)
\((\mathcal{T}, \mathcal{P} \mathcal{T})\)-cl\((H)\) = \{1,2,3\}
\((\mathcal{T}, \mathcal{P} \mathcal{T})^*\)-cl\((H)\) = \{1,2,3\}
Definition 3.8 Let \((X, \mathcal{T}, \mathcal{P}_\mathcal{T})\) be a bi-pre-supra topological space, and let \(A\) be a subset of \(X\). Then:

(i) The \((\mathcal{T}, \mathcal{P}_\mathcal{T})\)-interior of \(A\) denoted by \((\mathcal{T}, \mathcal{P}_\mathcal{T})\)-int\(\{A\}\), is defined by \(\bigcup\{F : F \subseteq A \text{ and } F \text{ is } (\mathcal{T}, \mathcal{P}_\mathcal{T})\text{-open set}\}\).

(ii) The \((\mathcal{T}, \mathcal{P}_\mathcal{T})^*\)-interior of \(A\) denoted by \((\mathcal{T}, \mathcal{P}_\mathcal{T})^*\)-int\(\{A\}\), is defined by \(\bigcup\{F : F \subseteq A \text{ and } F \text{ is } (\mathcal{T}, \mathcal{P}_\mathcal{T})^*\text{-open set}\}\).

(iii) The bi-interior of \(A\) denoted by bi-int\(\{A\}\), is defined by \(\bigcup\{F : F \subseteq A \text{ and } F \text{ is bi-open set}\}\).

Example 3.9 Let \(X = \{1,2,3,4\}\)
\[\mathcal{T} = \{\emptyset, X, \{1\}, \{2,4\}, \{1,2,4\}\}\]
\[\mathcal{T}^c = \{\emptyset, X, \{2,3,4\}, \{1,3\}, \{3\}\}\]
\[\mathcal{P}_\mathcal{T} = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,4\}, \{1,2,3\}, \{1,3,4\}, \{2,4\}\}\]

\((\mathcal{T}, \mathcal{P}_\mathcal{T})\)-open sets = \(\{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\}\)

\((\mathcal{T}, \mathcal{P}_\mathcal{T})^*\)-open sets = \(\{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,3,4\}, \{2,4\}\}\)

bi-open sets = \(\{\emptyset, X, \{1\}, \{2\}, \{1,2,4\}\}\)

Take \(G = \{1,2,3\}\)
\((\mathcal{T}, \mathcal{P}_\mathcal{T})\)-int\(\{G\}\) = \(\{1,2,3\}\)
\((\mathcal{T}, \mathcal{P}_\mathcal{T})^*\)-int\(\{G\}\) = \(\{1,2,3\}\)

bi-int\(\{G\}\) = \(\{1\}\)

4-Open and closed function in bi-pre-supra topological space

In this section we introduce a new class of open and closed function in bi-pre-supra topological space.

Definition 4.1 A function \(f:(X, \mathcal{T}_X, \mathcal{P}_\mathcal{T}_X) \to (Y, \mathcal{T}_Y, \mathcal{P}_\mathcal{T}_Y)\) is called

1- bi\((\mathcal{T}, \mathcal{P}_\mathcal{T})\)-open function if the image of every \((\mathcal{T}_X, \mathcal{P}_\mathcal{T}_X)\)-open set is \((\mathcal{T}_Y, \mathcal{P}_\mathcal{T}_Y)\)-open.

2- bi\((\mathcal{T}, \mathcal{P}_\mathcal{T})^*\)-open function if the image of every \((\mathcal{T}_X, \mathcal{P}_\mathcal{T}_X)^*\)-open set is \((\mathcal{T}_Y, \mathcal{P}_\mathcal{T}_Y)^*\)-open.

3- bi-open function if the image of every bi-open set is bi-open

Definition 4.2 A function \(f:(X, \mathcal{T}_X, \mathcal{P}_\mathcal{T}_X) \to (Y, \mathcal{T}_Y, \mathcal{P}_\mathcal{T}_Y)\) is called

1- bi\((\mathcal{T}, \mathcal{P}_\mathcal{T})\)-closed function if the image of every \((\mathcal{T}_X, \mathcal{P}_\mathcal{T}_X)\)-closed set is \((\mathcal{T}_Y, \mathcal{P}_\mathcal{T}_Y)\)-closed.

2- bi\((\mathcal{T}, \mathcal{P}_\mathcal{T})^*\)-closed function if the image of every \((\mathcal{T}_X, \mathcal{P}_\mathcal{T}_X)^*\)-closed set is \((\mathcal{T}_Y, \mathcal{P}_\mathcal{T}_Y)^*\)-closed.

3- bi-closed function if the image of every bi-closed set is bi-closed

Example 4.3
\[X = \{1,2,3,4\}\]
\[\mathcal{T}_X = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}\]
\[\mathcal{T}_X^c = \{\emptyset, X, \{2,3,4\}, \{1,3\}, \{3\}\}\]
\[\mathcal{P}_\mathcal{T}_X = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,4\}\}\]

\((\mathcal{T}_X, \mathcal{P}_\mathcal{T}_X)\)-open sets = \(\{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\}\)

\((\mathcal{T}_X, \mathcal{P}_\mathcal{T}_X)^*\)-open sets = \(\{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,3,4\}\}\)

\((\mathcal{T}_X, \mathcal{P}_\mathcal{T}_X)^*\)-open sets = \(\{\emptyset, X, \{1,2\}, \{1,2,3\}, \{1,4\}\}\)

\((\mathcal{T}_X, \mathcal{P}_\mathcal{T}_X)^*\)-closed sets = \(\{\emptyset, X, \{4\}, \{3\}\}\)
\[Y = \{a, b, c, d\} \]
\[T_Y = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} \]
\[T_Y^c = \{\emptyset, Y, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{d\}\} \]
\[\mathcal{P}_T = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\} \]

- \((T_Y, \mathcal{P}_T)\)-open sets = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}
- \((T_Y, \mathcal{P}_T)\)-closed sets = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}
- \((T_Y, \mathcal{P}_T)\)-open sets = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, c\}, \{a, d\\}\}
- \((T_Y, \mathcal{P}_T)\)-closed sets = \{\emptyset, Y, \{a\}, \{b\}, \{c\}\}

Let \(f : (X, T_X, \mathcal{P}_T_X) \rightarrow (Y, T_Y, \mathcal{P}_T_Y)\) defined by \(f(1) = a\), \(f(2) = b\), \(f(3) = c\), \(f(4) = d\). Then all types of function in def.[4.1],[4.2] are holding.

Diagram 4.4

The following diagram is valid

- \(bi-(T, \mathcal{P}_T)\)-open function
- \(bi-(T, \mathcal{P}_T)\)-closed function
- \(bi\)-open function

Example 4.5

\[X = \{1, 2, 3, 4\} \]
\[T_X = \{\emptyset, X, \{1\}\} \]
\[T_X^c = \{\emptyset, X, \{2, 3, 4\}\} \]
\[\mathcal{P}_T_X = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\} \]
- \((T_X, \mathcal{P}_T_X)\)-open sets = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}
- \((T_X, \mathcal{P}_T_X)\)-closed sets = \{\emptyset, X, \{2, 3, 4\}, \{1, 3, 4\}, \{3, 4\}\}

Let \(f : (Y, T_Y, \mathcal{P}_T_Y) \rightarrow (X, T_X, \mathcal{P}_T_X)\) defined by \(f(1) = a\), \(f(2) = b\), \(f(3) = c\), \(f(4) = d\). Then \(f\) is \(bi-(T, \mathcal{P}_T)\)-open (closed) function not bi-open (closed) function.

Example 4.6

\[X = \{1, 2, 3, 4\} \]
\[T_X = \{\emptyset, X, \{1\}, \{2\}\} \]
\[T_X^c = \{\emptyset, X, \{2, 3, 4\}, \{1, 3, 4\}\} \]
\[\mathcal{P}_X = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{4\}, \{1,2,3\}, \{1,2,4\}\} \]
\[(\mathcal{T}_X, \mathcal{P}_X) \text{-open sets} = \{\emptyset, X, \{1\}, \{2\}, \{1,2,3\}, \{1,2,4\}\} \]
\[(\mathcal{T}_X, \mathcal{P}_X) \text{-closed sets} = \{\emptyset, X, \{2,3,4\}, \{3,4\}, \{1,3,4\}, \{4\}, \{3\}\} \]
\[(\mathcal{T}_X, \mathcal{P}_X)^* \text{-open sets} = \{\emptyset, X, \{1,2\}, \{1,2,4\}\} \]
\[(\mathcal{T}_X, \mathcal{P}_X)^* \text{-closed sets} = \{\emptyset, X, \{4\}, \{3\}, \{4\}\} \]
\[Y = \{a, b, c, d\} \]
\[\mathcal{T}_Y = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,d\}\} \]
\[\mathcal{T}_Y^* = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\} \]
\[\mathcal{P}_Y = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\} \]
\[(\mathcal{T}_Y, \mathcal{P}_Y) \text{-open sets} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\} \]
\[(\mathcal{T}_Y, \mathcal{P}_Y) \text{-closed sets} = \{\emptyset, Y, \{b,c,d\}, \{a,c,d\}, \{c,d\}, \{d\}, \{c\}\} \]
\[(\mathcal{T}_Y, \mathcal{P}_Y)^* \text{-open sets} = \{\emptyset, Y, \{a,b,c\}\} \]
\[(\mathcal{T}_Y, \mathcal{P}_Y)^* \text{-closed sets} = \{\emptyset, Y, \{d\}\} \]

Let \(f : (X, \mathcal{T}_X, \mathcal{P}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}_Y) \) defined by
\[
\begin{align*}
f(1) & = a, \quad f(2) = b, \quad f(3) = c, \quad f(4) = d. \end{align*}
\]
Then \(f \) is bi-(\(\mathcal{T}_X, \mathcal{P}_X \))-open (closed) function not bi-
\(\mathcal{T}, \mathcal{P}^* - \mathcal{T} - \mathcal{P} \)-open (closed) function.

Theorem 4.7

A function \(f : (X, \mathcal{T}_X, \mathcal{P}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}_Y) \) is bi-(\(\mathcal{T}_X, \mathcal{P}_X \))-open iff \(f((\mathcal{T}_X, \mathcal{P}_X)-\text{int}(A)) \subseteq (\mathcal{T}_Y, \mathcal{P}_Y)-\text{int}(f(A)) \) for all \(A \subseteq X \)

Proof:

Let \(f \) be-(\(\mathcal{T}_X, \mathcal{P}_X \))-open function and \(A \subseteq X \)

Since \((\mathcal{T}_X, \mathcal{P}_X)-\text{int}(A) \) is \((\mathcal{T}_X, \mathcal{P}_X) \)-open set and \(f \) is bi-(\(\mathcal{T}_X, \mathcal{P}_X \))-open function then

\(f((\mathcal{T}_X, \mathcal{P}_X)-\text{int}(A)) \) is \((\mathcal{T}_Y, \mathcal{P}_Y) \)-open set subset of \(Y \)

Since \((\mathcal{T}_Y, \mathcal{P}_Y)-\text{int}(A) \subseteq A \) then:

\(f((\mathcal{T}_Y, \mathcal{P}_Y)-\text{int}(A)) \subseteq (\mathcal{T}_Y, \mathcal{P}_Y)-\text{int}(f(A)) \)

Conversely:

Suppose that the condition is true and \(A \) is \((\mathcal{T}_X, \mathcal{P}_X) \)-open set subset of \(X \)

Now \(f(A) = f((\mathcal{T}_X, \mathcal{P}_X)-\text{int}(A)) \subseteq (\mathcal{T}_Y, \mathcal{P}_Y)-\text{int}(f(A)) \)

i.e \(f(A) = (\mathcal{T}_Y, \mathcal{P}_Y)-\text{int}(f(A)) \)

then \(f(A) \) is \((\mathcal{T}_Y, \mathcal{P}_Y) \)-open

Theorem 4.8

A function \(f : (X, \mathcal{T}_X, \mathcal{P}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}_Y) \) is bi-(\(\mathcal{T}_X, \mathcal{P}_X \))-closed iff \((\mathcal{T}_X, \mathcal{P}_X)-\text{cl}(f(A)) \subseteq f((\mathcal{T}_Y, \mathcal{P}_Y)-\text{cl}(A)) \) for all \(A \subseteq X \).

Proof:

Let \(f \) be-(\(\mathcal{T}_X, \mathcal{P}_X \))-closed function and \(A \subseteq X \)

Since \((\mathcal{T}_X, \mathcal{P}_X)-\text{cl}(A) \) is \((\mathcal{T}_X, \mathcal{P}_X) \)-closed set and \(f \) is bi-(\(\mathcal{T}_X, \mathcal{P}_X \))-closed function then

\(f((\mathcal{T}_X, \mathcal{P}_X)-\text{cl}(A)) = (\mathcal{T}_Y, \mathcal{P}_Y)-\text{cl}(f((\mathcal{T}_X, \mathcal{P}_X)-\text{cl}(A))) \)

But \(A \subseteq (\mathcal{T}_Y, \mathcal{P}_Y)-\text{cl}(A) \)

This \(f(A) \subseteq f((\mathcal{T}_X, \mathcal{P}_X)-\text{cl}(A)) \)

\(\Rightarrow (\mathcal{T}_Y, \mathcal{P}_Y)-\text{cl}(f(A)) \subseteq (\mathcal{T}_Y, \mathcal{P}_Y)-\text{cl}(f((\mathcal{T}_X, \mathcal{P}_X)-\text{cl}(A))) \)

\(\Rightarrow (\mathcal{T}_Y, \mathcal{P}_Y)-\text{cl}(f(A)) \subseteq f((\mathcal{T}_X, \mathcal{P}_X)-\text{cl}(A)) \)
Conversely:
If the condition is true and $A \subseteq X$ closed set
Then $(\mathcal{T}, \mathcal{P}\mathcal{T})$-cl$(f(A)) \subseteq f((\mathcal{T}, \mathcal{P}\mathcal{T})$-cl$(A)) = f(A)$
i.e $(\mathcal{T}, \mathcal{P}\mathcal{T})$-cl$(f(A)) = f(A)$
Then $f(A)$ is $(\mathcal{T}, \mathcal{P}\mathcal{T})$-closed set subset of Y.

5- Continuous function in bi-pre-supra topological space
In this section we introduce a new class of continuous function in bi-pre-supra topological space.

Definition 5.1 A function $f : (X, \mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)$ is called
1- bi-$(\mathcal{T}, \mathcal{P}\mathcal{T})$-continuous function if the inverse image of any $(\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)$-open set G is $(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)$-open set.
2- bi-$(\mathcal{T}, \mathcal{P}\mathcal{T})^*$-continuous function if the inverse image of any $(\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)^*$-open set G is $(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)^*$-open set.
3- bi-continuous function if the inverse image of any bi-open set is bi-open.

Example 5.2 $X = \{1, 2, 3, 4\}$
$\mathcal{T}_X = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}$
$\mathcal{P}\mathcal{T}_X = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 4\}\}$
$\mathcal{T}_Y = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$
$\mathcal{P}\mathcal{T}_Y = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$

Let $f : (X, \mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)$ defined by $f(1) = a$ $f(2) = b$ $f(3) = c$ $f(4) = d$.

Diagram 5.3
The following diagram is valid

Example 5.4
$X = \{1, 2, 3, 4\}$
$\mathcal{T}_X = \{\emptyset, X, \{1\}\}$
$\mathcal{P}\mathcal{T}_X = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 2, 3\}, \{1, 3\}, \{1, 4\}, \{1, 2, 4\}, \{1, 3, 4\}\}$
$\mathcal{T}_Y = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}\}$
$\mathcal{P}\mathcal{T}_Y = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}\}$
(\mathcal{T}_Y, \mathcal{P}_T)-open sets = \{\emptyset, Y, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}

(\mathcal{T}_Y, \mathcal{P}_T)^*\text{-open sets} = \{\emptyset, Y, \{a\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}

Let \(f:(Y, \mathcal{T}_Y, \mathcal{P}_T) \rightarrow (X, \mathcal{T}_X, \mathcal{P}_X)\) defined by

\[
\begin{align*}
f(a) &= 1 \\
f(b) &= 2 \\
f(c) &= 3 \\
f(d) &= 4
\end{align*}
\]

Then \(f\) is bi-(\(\mathcal{T}, \mathcal{P}_T\))-continuous function not bi-continuous function.

Example 5.5

\(X = \{1,2,3,4\}\)

\(\mathcal{T}_X = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}\)

\(\mathcal{P}_X = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\}\)

\(\mathcal{T}_Y = \{\emptyset, Y, \{a\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}\)

\(\mathcal{P}_Y = \{\emptyset, Y, \{a\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}\)

Let \(f:(X, \mathcal{T}_X, \mathcal{P}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}_Y)\) defined by

\[
\begin{align*}
f(1) &= a \\
f(2) &= b \\
f(3) &= c \\
f(4) &= d
\end{align*}
\]

Then \(f\) is bi-(\(\mathcal{T}, \mathcal{P}_T\))-continuous function not bi-(\(\mathcal{T}, \mathcal{P}_T^*\))-continuous function.

Theorem 5.6

Let the function \(f:(X, \mathcal{T}_X, \mathcal{P}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}_Y)\) and \(g:(Y, \mathcal{T}_Y, \mathcal{P}_Y) \rightarrow (Z, \mathcal{T}_Z, \mathcal{P}_Z)\) be bi-(\(\mathcal{T}, \mathcal{P}_T\))-continuous. Then the composition function \(gof:(X, \mathcal{T}_X, \mathcal{P}_X) \rightarrow (Z, \mathcal{T}_Z, \mathcal{P}_Z)\) is also bi-(\(\mathcal{T}, \mathcal{P}_T\))-continuous.

Proof:

Let \(G\) be an \((\mathcal{T}, \mathcal{P}_T)\)-open subset of \(Z\).

Then \(g^{-1}(G)\) is \((\mathcal{T}, \mathcal{P}_T)\)-open in \(Y\) since \(g\) is continuous.

But \(f\) is also bi-(\(\mathcal{T}, \mathcal{P}_T\))-continuous, so \(f^{-1}[g^{-1}(G)]\) is \((\mathcal{T}, \mathcal{P}_T)\)-open in \(X\).

Now \((gof)^{-1}(G) = f^{-1}[g^{-1}(G)]\)

Thus \((gof)^{-1}(G)\) is \((\mathcal{T}, \mathcal{P}_T)\)-open in \(X\) for every \((\mathcal{T}, \mathcal{P}_T)\)-open subset \(G\) of \(Z\).

\(gof\) is continuous.

Theorem 5.7

A function \(f:(X, \mathcal{T}_X, \mathcal{P}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}_Y)\) is bi-(\(\mathcal{T}, \mathcal{P}_T\))-continuous iff the inverse image of every \((\mathcal{T}, \mathcal{P}_T)\)-closed subset of \(Y\) is a \((\mathcal{T}, \mathcal{P}_T)\)-closed subset of \(X\).

Proof:

Suppose \(f:(X, \mathcal{T}_X, \mathcal{P}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}_Y)\) is bi-(\(\mathcal{T}, \mathcal{P}_T\))-continuous. Let \(F\) be a \((\mathcal{T}, \mathcal{P}_T)\)-closed subset of \(Y\).

Then \(F^c\) is \((\mathcal{T}, \mathcal{P}_T)\)-open, and so \(f^{-1}(F^c)\) is \((\mathcal{T}, \mathcal{P}_T)\)-open in \(X\).

But \(f^{-1}(F^c) = [f^{-1}(F)]^c\)

Therefore \(f^{-1}(F)\) is \((\mathcal{T}, \mathcal{P}_T)\)-closed.

Conversely:

Assume \(F\) is \((\mathcal{T}, \mathcal{P}_T)\)-closed in \(Y\) implies \(f^{-1}(F)\) is \((\mathcal{T}, \mathcal{P}_T)\)-closed in \(X\).

Let \(G\) be an \((\mathcal{T}, \mathcal{P}_T)\)-open subset of \(Y\).

Then \(G^c\) is \((\mathcal{T}, \mathcal{P}_T)\)-closed in \(Y\), and so \(f^{-1}(G^c) = [f^{-1}(G)]^c\) is \((\mathcal{T}, \mathcal{P}_T)\)-closed in \(X\).

Accordingly, \(f^{-1}(G)\) is \((\mathcal{T}, \mathcal{P}_T)\)-open and therefore \(f\) is bi-(\(\mathcal{T}, \mathcal{P}_T\))-continuous.
Theorem 5.8
A function $f: (X, \mathcal{T}_X, \mathcal{PT}_X) \to (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is bi-$(\mathcal{T}, \mathcal{PT})$-continuous iff for every subset $G \subseteq X$, $f((\mathcal{T}, \mathcal{PT})-\text{cl}(G)) \subseteq (\mathcal{T}, \mathcal{PT})-\text{cl}(f(G))$.

Proof:
Suppose $f: (X, \mathcal{T}_X, \mathcal{PT}_X) \to (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is bi-$(\mathcal{T}, \mathcal{PT})$-continuous
Now $f(G) \subseteq (\mathcal{T}, \mathcal{PT})-(f(G))$, so
$G \subseteq f^{-1}(f(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(f(G)))$
But $(\mathcal{T}, \mathcal{PT})-\text{cl}(f(G))$ is $(\mathcal{T}, \mathcal{PT})$-closed .
And so $f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(f(G)))$ is also $(\mathcal{T}, \mathcal{PT})$-closed .
Hence $G \subseteq (\mathcal{T}, \mathcal{PT})-\text{cl}(G) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(f(G)))$
And therefore $f((\mathcal{T}, \mathcal{PT})-\text{cl}(G)) \subseteq (\mathcal{T}, \mathcal{PT})-\text{cl}(f(G))$
$(\mathcal{T}, \mathcal{PT})-\text{cl}(f(G))=f(f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(f(G)))$

Conversely:
Assume $f((\mathcal{T}, \mathcal{PT})-\text{cl}(G)) \subseteq (\mathcal{T}, \mathcal{PT})-\text{cl}(f(G))$ for any $G \subseteq X$, and let F be a $(\mathcal{T}, \mathcal{PT})$-closed subset of Y .
Set $G=f^{-1}(F)$, i.e $(\mathcal{T}, \mathcal{PT})-\text{cl}(G)=G$.
Now $f((\mathcal{T}, \mathcal{PT})-\text{cl}(G))=f((\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}(F))) \subseteq (\mathcal{T}, \mathcal{PT})-\text{cl}(f(f^{-1}(F)))=(\mathcal{T}, \mathcal{PT})-\text{cl}(F)=F$
Hence $(\mathcal{T}, \mathcal{PT})-\text{cl}(G) \subseteq f^{-1}(f((\mathcal{T}, \mathcal{PT})-\text{cl}(G)) \subseteq f^{-1}(F)=G$
But $G \subseteq (\mathcal{T}, \mathcal{PT})-\text{cl}(G)$
So $(\mathcal{T}, \mathcal{PT})-\text{cl}(G)=G$ and f is bi-$(\mathcal{T}, \mathcal{PT})$-continuous function .

Theorem 5.9
A function $f: (X, \mathcal{T}_X, \mathcal{PT}_X) \to (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is bi-$(\mathcal{T}, \mathcal{PT})$-continuous iff for every subset $G \subseteq Y$, $(\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(G))$.

Proof:
Let $f: (X, \mathcal{T}_X, \mathcal{PT}_X) \to (Y, \mathcal{T}_Y, \mathcal{PT}_Y) \text{ be bi-}(\mathcal{T}, \mathcal{PT})\text{-continuous function}$. To prove that $(\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(G))$ for every subset $G \subseteq X$.
Since $G \subseteq (\mathcal{T}, \mathcal{PT})-\text{cl}(G)$, Then
$(\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}(G)) \subseteq (\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(G))))$…..(1)
$(\mathcal{T}, \mathcal{PT})-\text{cl}(G)$ is $(\mathcal{T}, \mathcal{PT})$-closed in Y, f is bi-$(\mathcal{T}, \mathcal{PT})$-continuous function
Implies $(\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(G)))$ is $(\mathcal{T}, \mathcal{PT})$-closed in X .
Implies $(\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(G)))=f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(G))$.…..(2)
From (1) and (2) we get $(\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(G))$

Conversely:
Suppose that $f: (X, \mathcal{T}_X, \mathcal{PT}_X) \to (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is a function such that $(\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(G))$ for every subset $G \subseteq X$.
To prove that f is bi-$(\mathcal{T}, \mathcal{PT})$-continuous function
Let $F \subseteq Y$ be an arbitrary $(\mathcal{T}, \mathcal{PT})$-closed set then $(\mathcal{T}, \mathcal{PT})-\text{cl}(F)=F$
By hypothesis
$(\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}(F)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})-\text{cl}(F))=f^{-1}(F)$…..(3)
But $f^{-1}(F) \subseteq (\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}(F))$ for every F…..(4)
From (3) and (4) we get $f^{-1}(F) = (\mathcal{T}, \mathcal{PT})-\text{cl}(f^{-1}(F))$
Then $f^{-1}(F)$ is $(\mathcal{T}, \mathcal{PT})$-closed .
So by theorem 3.2.17
f is bi-$(\mathcal{T}, \mathcal{PT})$-continuous .
The Proceedings of the 4th Conference of College of Education for Pure Sciences

Theorem 5.10
A function \(f:(X, \mathcal{T}_X, \mathcal{P}T_X) \to (Y, \mathcal{T}_Y, \mathcal{P}T_Y) \) is bi-(\(\mathcal{T}, \mathcal{P}T \))-continuous iff for every subset \(G \subseteq X \), \(f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}(G)) \).

Proof:
let \(f:(X, \mathcal{T}_X, \mathcal{P}T_X) \to (Y, \mathcal{T}_Y, \mathcal{P}T_Y) \) be bi-(\(\mathcal{T}, \mathcal{P}T \))-continuous function. To prove that \(f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}(G)) \) for every subset \(G \subseteq Y \).

\(G \subseteq Y \) implies \((\mathcal{T}, \mathcal{P}T)\text{-int}(G) \subseteq (Y, \mathcal{T}_Y, \mathcal{P}T_Y) \)

Implies \(f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G)) \subseteq (X, \mathcal{T}_X, \mathcal{P}T_X) \) since \(f \) is bi-(\(\mathcal{T}, \mathcal{P}T \))-continuous function

Implies \((\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G))) \subseteq f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G)). \)

(\(\mathcal{T}, \mathcal{P}T \))-int(G) \subseteq G implies \(f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G)) \subseteq f^{-1}(G) \)

Implies \((\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G))) \subseteq (\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}(G)) \)

Implies \(f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}(G)) \)

Conversely:
Suppose that \(f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}(G)). \)

To prove that \(f \) bi-(\(\mathcal{T}, \mathcal{P}T \))-continuous function.

Let \(G \) be an \((\mathcal{T}, \mathcal{P}T) \)-open subset of \(Y \) and hence \((\mathcal{T}, \mathcal{P}T)\text{-int}(G)=G \).

If we show \(f^{-1}(G) \) is \((\mathcal{T}, \mathcal{P}T) \)-open in \(X \), the result will follow.

\(f^{-1}(G)=f^{-1}((\mathcal{T}, \mathcal{P}T)\text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}(G)) \) [by(2)]

Then \(f^{-1}(G) \subseteq (\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}(G)) \)(3)

But \((\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}(G)) \subseteq f^{-1}(G) \) is always true(4)

From (3) and (4) we get that \(f^{-1}(G)=(\mathcal{T}, \mathcal{P}T)\text{-int}(f^{-1}(G)) \)

So that \(f^{-1}(G) \) is \((\mathcal{T}, \mathcal{P}T) \)-open.

References