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Abstract 
In this paper two invariant sets are derived for a second order nonlinear affine system 

using a sliding mode controller. If the state started in these sets, it will not leave it for all 
future time. The invariant set is found function to the initial condition only, from which the 
state bound is estimated and used when determining the gain of the sliding mode controller. 
This step overcomes an arithmetic difficulty that consists of calculating suitable controller 
gain value that ensures the attractiveness of the switching manifold. Also, by using a 
differentiable form for the approximate signum function in sliding mode controller formula, 
the state will converge to a positively invariant set rather than the origin. The size of this set is 
found function to the parameters that can be chosen by the designer, thus, it enables us to 
control the size of the steady state error. The sliding mode controller is designed to the servo 
actuator system with friction where the derived invariant sets are used in the calculation of the 
sliding mode controller gain. The friction model is represented by the major friction 
components; Coulomb friction, the Stiction friction, and the viscous friction. The simulation 
results demonstrate the rightness of the derived sets and the ability of the differentiable sliding 
mode controller to attenuate the friction effect and regulate the state to the positively invariant 
set with a prescribed steady state error. 

Key words: Positively Invariant Set, Sliding Mode Control, Servo Actuator System, Friction 
Model.  

  الإحتكاكحرك المؤازر بوجود مالمجامیع الامتغیرة في نظریة المسیطر المنزلق مع تطبیقھا على منظومة ال
  

  الخلاصة

في ھذا البحث تم إشتقاق مجموعتین من المجامیع الامتغیرة لمنظومة دینامیكیة لاخطیة من الدرجة الثانیة مسیطر علیھا 
وجدت المجموعة . في ھذه المجامیع إذا نشأ متغیر الحالة بداخلھا فسوف لن یغادرھا أبدا. بواسطة منظومة المسیطر المنزلق

للشروط الإبتدائیة فقط والتي یمكن منھا تخمین المحدد لمتغیر الحالة و إستخدامھ في حساب معامل المسیطر الامتغیرة دالة 
ھذه الخطوة تمكننا من تجاوز صعوبة حسابیة متمثلة بقیمة ھذا المعامل والذي یضمن جاذبیة سطح التحول . المنزلق

)switching manifold .( قابلة للإشتقاق لدالة الإشارة أیظا إن إستخدام دالة تقریبیة)signum function ( سیجعل
إن حجم ھذه المجموعة یمكن إختیاره من قبل . متغیر الحالة یقترب ویبقى في مجموعة لامتغیرة بدلا من نقطة الأصل

 servo(صمم المسیطر المنزلق لمنظومة الدافع المؤازر . المصمم وھو ما یعني قابلیة التحكم بمقدار الخطأ الدائمي
actuator (تم تمثیل الإحتكاك . بوجود الإحتكاك حیث تم إستخدم المجموعة الامتغیرة لحساب معامل المسیطر المنزلق

إن نتائج . والإحتكاك اللزج Stictionإحتكاك ,  Coulombإحتكاك : بعناصر الإحتكاك الرئیسیة) النموذج الریاضي(
تم إشتقاقھا و قدرة المسیطر المنزلق في تقویض وإضعاف تأثیر الإحتكاك المحاكات بینت صحة المجامیع الامتغیرة التي 

  . وأیظا أظھرت قدریھ على قیادة متغیر الحالة  الى المجموعة الامتغیرة والتي تم فیھا تحدید مقدار الخطأ الدائمي مسبقا
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1-Introduction 

In this paper we are interested mainly to 
answer the following: Consider the 
second order affine system with sliding 
mode controller 

푥̇ = 푓(푥) + 푔(푥) ∗ −푘 ∗ 푠푔푛(푠) , 
  푠 = 푠(푥) 

Then, for a certain controller gain value 
푘, what is the area around the origin such 
that if the state initiated inside this region, 
it will not leave it and the origin is an 
attractive point. This area is known as the 
area of attraction. 

The area of attraction forms the so 
called positively invariant set. The set 
notion appears in control theory when we 
considered three aspects, which are crucial 
in control systems design, these are: 
constraints, uncertainties, and design 
specifications [1]. For the sliding mode 
controller  

푢 = −푘 ∗ 푠푔푛(푠) ,푘 > 0 

the main design step is the calculation of  
an appropriate value for the controller 
gain푘. This point is important since a 
large gain value may lead to the chattering 
problem.  So a better estimate to gain 
value may help in reducing the amplitude 
of the chattering behavior (the chattering 
behavior frequently appears in sliding 
mode control system for many reasons 
such as the non ideality of the switching 
process [2]). In fact, this work is an issue 
in this direction. Furthermore, many 
methods are used to eliminate the 
chattering in sliding mode control system 
(see [2]&[3]), but the simplest method is 
introduced by Sloten J. J. [4], where the 
segnum function is replaced by a 
saturation function. This approximate 
sliding mode controller introduces a 
positively invariant set around the origin 
and its size is determined by the design 
parameters [5]. Khalil H.K. [5], derives 

the invariant set formed by the sliding 
mode controller that uses the saturation 
function as suggested by Sloten. The 
saturation function is a continuous but not 
differentiable function; and for this reason 
we are interested in replacing the segnum 
function by a continuous and 
differentiable function, and then derive the 
positively invariant set formed by the 
approximate sliding mode controller. 

In recent applications of control 
theory, many dynamical systems have 
been modeled as interconnected systems 
where the state of the upper system is 
unaffected by the actual controller [6]. For 
this system type a virtual controller is 
used to control the upper system if the 
system be in a certain form to enable the 
application of the so called Backstepping 
approach. So, the presence of the 
disturbances in the upper system will lead 
to the non-matching property for the 
control system. The situation becomes 
more complicated if the disturbances are 
nonsmooth. This situation makes us use 
the arc tan function (the continuous and 
differentiable function), which may be 
used as a virtual controller for the 
interconnected system, and derive for it 
the positively invariant set. The servo 
actuator system is one of the 
interconnected system models, where the 
torque that actuates the mechanical system 
is not the actual input (for a D.C. motor 
the voltage is the actual servo actuator 
system input). Therefore, we select this 
system to design the sliding mode 
controller with the aid of the derived 
positively invariant sets.  

2-Invariant Set 

The terminologies of the invariant and 
positively invariant set are defined in this 
section, where we refer mainly to the 
excellent reference [5]. So, consider the 
second order autonomous system  

푥̇ = 푓(푥)                                                (1) 
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where 푥 ∈ ℛ and 푓(푥) is a locally 
Lipschitz map from a domain 퐷 ⊂ ℛ  
into ℛ . Let 푥(푡) be a solution to the 
second order autonomous system in 
equation (1) and also let 푥 = 0 be an 
equilibrium point; that is 푓(0) = 0. Now, 
the set 푀, with respect to the system in 
equation (1), is said to be invariant set if 

푥(0) ∈ 푀 ⇒ 푥(푡) ∈ 푀,   ∀푡 ∈ ℛ 

It means that: if 푥(푡) belongs to 푀 at 
some time instant, then it belongs to 푀for 
all future and past time, i.e., it will never 
come from a region outside it or leave it 
for all future time. A set 푀 is said to be a 
positively invariant setif  

푥(0) ∈ 푀 ⇒ 푥(푡) ∈ 푀,   ∀푡 ≥ 0 

In this case the state may come from 
outside the positively invariant set but will 
never leave for all future time. We also 
say that 푥(푡) approaches a set 푀 as 
푡approaches infinity, if for each 휀 >
0there is 푇 > 0 such that  

dist(푥(푡),푀) < 휀,∀푡 > 푇 

where dist(푥(푡),푀) denotes the distance 
from a point 푥(푡)to a set 푀. The positive 
limit point is defined as the limit for the 
solution 푥(푡) when the time approaches 
infinity. The set of all positive limit points 
of 푥(푡)is called the positive limit set of 
푥(푡). Accordingly, the asymptotically 
stable equilibrium is the positive limit set 
of every solution starting sufficiently near 
the equilibrium point, while the stable 
limit cycle is the positive limit set of every 
solution starting sufficiently near the limit 
cycle. The solution approaches the limit 
cycle as 푡 → ∞. The equilibrium point and 
the limit cycle are invariant sets, since any 
solution starting in either set remains in 
the set for all 푡 ∈ ℛ. Moreover, let the set 
of positively limit set for a point 푝 
denoted by the 휔 limit set of 푝, namely 

휔(푝), then some properties of  it are 
stated in the following fact [7]: 
Let 푀 be a compact, positively invariant 
set and 푝 ∈ 푀, then 휔(푝) satisfies the 
following properties: 
1. 휔(푝) ≠ ∅, that is, the 휔 limit set of a 
point is not empty. 
2. 휔(푝) is closed. 
3. 휔(푝) in a positively invariant set. 
4. 휔(푝) is connected. 
This fact, in later sections, will be helpful 
in determining the behavior of the state 
trajectory when it is initiated in a 
positively invariant set. 

3-The First Positively Invariant Set 

In the following analysis, the first 
invariant set for a second order system 
that uses a sliding mode controller is 
estimated. Consider the following second 
order affine system 

푥̇ = 푥  
푥̇ = 푓(푥) + 푔(푥)푢 , 푔(푥) > 0            (2) 

Let the controller in equation (2) be the 
sliding mode controller 

푢 = −푘sgn(푠) , 푠 = 푥 + 휆푥  , 휆 > 0  (3) 

where 푠 is the switching function which is 
selected such that the system at the 
switching manifold (푠 = 0) is 
asymptotically stable. The main idea 
behind the selection of the sliding mode 
controller gain 푘 is that the switching 
manifold will be attractive. To do that we 
use the following nonsmooth Lyapunov 
function 

푉 = |푠|                                                   (4) 

The switching manifold is guaranteed to 
be attractive if the derivative of the 
Lyapunov function is negative. 
Consequently,  
 
푉̇ = 푠̇ ∗ sgn(푠) 
= [푓(푥)− 푔(푥)푘 ∗ sgn(푠) + 휆푥 ]sgn(푠) 
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= −[푔(푥)푘 − (푓(푥) + 휆푥 ) ∗ sgn(푠)] (5) 

Now if 푘 is chosen such that 푉̇ < 0,  then 
the switching manifold is attractive. Thus, 

푘 > max ( )
( )

= ℎ                         (6) 

If 푘 satisfies the inequality (6), then 푠 = 0 
is asymptotically stable. In fact satisfying 
inequality (6) is the main calculation 
problem during design process. Formally, 
we may use a large gain value to ensure 
satisfying (6), and consequently the area 
of attraction becomes large. But the gain 
cannot be chosen freely without limit due 
to the control saturation. Accordingly, the 
gain value determines directly the area of 
attraction size. In this work, we aim to 
find the invariant set for a second order 
system that use the sliding mode 
controller as given in (3), such that when 
the state initiated in it will never leave for 
all future time. Hence, the gain is 
calculated depending on the invariant set 
size and the region of attraction will 
include at least the invariant set. In 
literature, the existence of the invariant set 
is assumed (by assigning the maximum 
state value) and accordingly the sliding 
mode controller gain is calculated. In this 
case the sliding controller will be able to 
force the state toward the switching 
manifold at least when it initiated in this 
invariant set. However, the gain value 
may be large and again the saturation 
problem arises. Other designers, use a 
certain gain value in the design of sliding 
controller and, may be, by doing extensive 
simulations they prove that the area of 
attraction will include the nominal initial 
conditions for a certain application [8]. 

To find the invariant set, we need to 
derive its bounds. The first bound on the 
invariant set is derived by using the 
Lyapunov function given in equation (4). 
Suppose that we use a certain value for the 
gain 푘, then there is a certain basin of 
attraction such that the time rate of change 

of the Lyapunov function is less than zero, 
namely 

푉̇ < 0 ⇒ 푉(푡) − 푉(푡 ) < 0 
or 

|푠(푡)| − |푠(푡 )| < 0 

Therefore the switching function level is 
bounded by: 

∴ |푠(푡)| < |푠(푡 )| ,∀푡 > 푡                    (7) 

Of course the inequality (7) holds due to 
the action of the sliding mode controller 
with gain 푘. However, the inequality (7) 
shows that the state will lie in a region 
bounded by 

−푠(푡 ) < 푠(푡) < 푠(푡 ) ,∀푡 > 푡  

but without assigning the equilibrium  
point with respect to the switching 
function. So we need to show that, as it is 
known, that the switching manifold is an 
asymptotically equilibrium manifold due 
to the sliding mode controller. To prove 
the stability of 푠 = 0, the time derivative 
of the switching function is found first 
when 푘 satisfies inequality (6), as follows: 

푠̇ = 푥̇ + 휆푥̇ = 푓(푥)− 푔(푥)푘푠푔푛(푠)
+ 휆푥  

⇒ 푠̇ = −훽(푥)푠푔푛(푠)  ,   0 ≤ 훽(푥) 

Now, we return to the Lyapunov function, 
equation (4), to find its derivative as: 

푉̇(푠) = 푠̇ ∗ 푠푔푛(푠) 
⇒ 푉̇(푠) = −훽(푥) < 0 

Since 푉(0) = 0 and 푉̇(푠) < 0  in the set 
{푥 ∈ ℛ : 푠 ≠ 0}, then 푠 = 0 is 
asymptotically stable (theorem 4-1 in 
reference [5]). Moreover, we must note 
that the solution of the dynamical system 
in (7) at the switching manifold does not 
exist [9]. This is due to the discontinuity 
in sliding mode controller formula. Ideally 
the state will slide along the switching 
manifold to the origin, i.e., the state 
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trajectory will identify the switching 
manifold until it reaches the origin. 
Therefore, the bound given in the 
inequality (7) becomes: 

0 ≤ |푠(푡)| < |푠(푡 )| 
⇒ 0 ≤ 푠(푡) ∗ 푠푔푛(푠) < 푠(푡 ) ∗ 푠푔푛(푠 ) 

But in sliding mode control 푠푔푛(푠) =
푠푔푛(푠 ) ,∀푡 > 푡 , thus, 

0 ≤ 푠(푡) ∗ 푠푔푛(푠) < 푠(푡 ) ∗ 푠푔푛(푠)    (8) 

Accordingly we have  

0 ≤ 푠(푡) < 푠(푡 ) for  푠 > 0 
0 ≥ 푠(푡) > 푠(푡 ) for  푠 < 0                  (9) 

In words, inequality (9) shows that if the 
state initiated in the positive side of the 
switching manifold, then the state will 
stay in an open region bounded by 
푠 = 푠(푡 ) and 푠 = 0,∀푡 > 푡 . The same 
thing happens if the state was initiated 
with negative switching function level. 
Inequality (9) is the first bound; the 
second is derived here for 푥  as follows: 

푥̇ + 휆푥 = 푠(푡) 
⇒ 푑 푒 푥 (푡) = 푒 푠(푡)푑푡 
or 

푒 푥 (푡)− 푥 (푡 ) = 푠(휏)푒 푑휏 

By taking the absolute for both sides and 
considering the inequality (7), we obtain 

푒 푥 (푡) − 푒 푥 (푡 )
≤ 푒 푥 (푡)− 푒 푥 (푡 )  

= 푠(휏)푒 푑휏 ≤ |푠(휏)|푒 푑휏 

≤ |푠(푡 )| 푒 푑휏

=
|푠(푡 )|
휆 푒 − 푒

⇒ 푒 푥 (푡) ≤ 

푒 푥 (푡 ) +
|푠(푡 )|
휆 푒 − 푒  

⇒ |푥 (푡)| ≤ |푥 (푡 )|푒 ( )

+
|푠(푡 )|
휆 1 − 푒 ( )  

∴ |푥 (푡)| ≤ 푚푎푥 |푥 (푡 )| , | ( )|       (10) 

The result in the inequality (10) is a 
consequence of the convexity of the set 

Ψ = {푥 (푡): 푥 (푡) = 휇|푥 (푡 )| 

+(1 − 휇)
|푠(푡 )|
휆 , 0 ≤ 휇 ≤ 1  

In this case the maximum element of the 
set is at 휇 = 0 or at 휇 = 1. Therefore the 
invariant set is bounded by the inequalities 
(9) and (10) in terms of the initial 
condition only and hence, the invariant set 
is given by: 

Θ = 푥 ∈ ℛ : 0 ≤ 푠(푡)푠푔푛(푠) <
                 푠(푡 )푠푔푛(푠), |푥 (푡)| ≤
                                 푚푎푥 |푥 (푡 )|, | ( )| (11) 

The figure below plot the invariant set in 
the phase plane and one can find 
geometrically that the bound for 푥 (푡) 
inside Ψ is 

|푥 (푡)| ≤ 푚푎푥{|푥 (푡 )| , |푠(푡 )|}       (12) 

 

Figure (1):Positively Invariant Set. 

4-The Second Positively Invariant Set 

In classical sliding mode control theory, 
there exist a trivial invariant set. This set 
is the origin of the state space where the 
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controller regulates the state to it and 
keeps the state there for all future time. 
The sliding mode control that does the 
above task is a discontinuous control and 
it may cause the chattering problem. 
Many solutions to the chattering problem 
exist in the literatures (see references [2], 
[3] and [10]). The simplest method to 
remove chattering is by replacing the 
segnum function, which it used in sliding 
mode controller, by an approximate form. 
This idea is first introduced by J.J. Sloten 
in [4] by using the saturation function 
instead of the signum function. Later, 
many other approximate segnum functions 
are used to remove chattering as found in 
reference [11]. However, when replacing 
the signum function the state will not be 
regulated to the origin, instead it will be 
regulated to a certain set around the origin 
known as the positively invariant set. The 
size of this set is determined by the design 
parameters and the approximation form. 
In the present work the signum function is 
replaced by the arc tan function, namely 

푠푔푛 .(푠) = 푡푎푛 (훾푠)             (13) 

Where 푡푎푛 (훾푠) is a continuously 
differentiable, odd, monotonically 
increasing function with the properties: 

푡푎푛 (0) = 0, lim| |→∞ 푡푎푛 (훾푠) =
lim →∞ 푡푎푛 (훾푠) = 푠푔푛(푠)    and   

푠푔푛(푠) ∗ 푡푎푛 (훾푠) = 푡푎푛 (훾|푠|) ≥ 0 

Accordingly, the sliding mode controller, 
given in equation (3), becomes 

푢 . = − 푡푎푛 (훾푠)                  (14) 

Now, let us state the following, and then 
prove it: 
When the sliding mode controller use the 
approximate signum function as given in 
equation (13), and the controller gain 
satisfied the inequality (6), then the state 

will be regulated to a positively invariant 
set defined by  

Δ = 푥 ∈ ℛ : |푥 | < , |푠| ≤ 훿        (15) 

To prove that Δ  is a positively invariant 
set for a second order affine system 
(equation (3)), we return to use the 
Lyapunov function in equation (4) which 
has the time rate of change  

푉̇ = 푓(푥) − 푔(푥)
2푘
휋
푡푎푛 (훾푠)

+ 휆푥 푠푔푛(푠) 

= − 푔(푥)
2푘
휋
푡푎푛 (훾|푠|)

− (푓(푥) + 휆푥 ) ∗ sgn(푠)} 

For the switching manifold to be attractive 
푉̇ must be less than zero, namely 

− 푔(푥)
2푘
휋 푡푎푛 (훾|푠|) − (푓(푥) + 휆푥 )

∗ sgn(푠) < 0 

⇒
2푘
휋 푡푎푛 (훾|푠|) > 푚푎푥

푓(푥) + 휆푥
푔(푥)       

                              = ℎ 
or 

푘 >
( | |)

                                     (16) 

Now, let |푠| = 훿 be the chosen boundary 
layer, then inequality (16) reveals, for a 
certain 훾, that: for any 훿 there is  푘, such 
that the state will be regulated to an open 
region given by 

Γ = {푥 ∈ ℛ : |푠| < 훿}                         (17) 

Accordingly, the gain 푘 will be  

푘 =
( )

   ,훼 > 1                       (18) 

In addition, to determine 훾, equation (18) 
may be written as: 

푘 = 훼ℎ훽,    훽 > 1                                (19) 

provided that; 
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훾훿 = 푡푎푛                                          (20) 

The next step in the determination of the 
invariant set Δ  is to found the boundary 
with respect to 푥  inside Γ. This is done by 
using the following Lyapunov function 

푉 = 푥                                                (21) 

with the 푥  dynamics, from equations (2) 
and (3): 

푥̇ = −휆푥  + 푠(푡)                               (22) 

Therefore the time rate of change for the 
Lyapunov function is 

푉̇ = 푥  푥̇ = 푥  −휆푥  + 푠(푡)  
= −휆|푥  | + |푥  ||푠(푡)|

≤ −휆|푥  | + |푥  |훿
= −|푥  |(휆|푥  | − 훿) 

Thus, 푉̇ ≤ 0  for the following unbounded 
interval: 

|푥  | >                                                (23) 

Inequality (23) proves that the state 푥  will 
reach and stay within the interval − ≤

푥  ≤ .This ends the proof that the set 

푥 ∈ ℛ : |푥 | < , |푠| ≤ 훿  is positively 
invariant for the system in equation (2) 
that uses a sliding mode controller with 
the approximate signum function as given 
in equation (14). 
 Note that the state inside Δ  may or 
may not reaches an equilibrium point; the 
situation depends on system dynamics, 
i.e., the state, instead of that, will reach a 
limit cycle inside Δ . Consequently, and 
for the design purpose,  훿 may be 
determined according to a desired 
permissible steady state deviation of the 
state  푥  and for a selected 휆, as a design 
parameter, as follows: 

훿 =  휆 ∗ 푥 .                                      (24) 

Thus, the set Δ  is now written as: 

Δ = 푥 ∈ ℛ : |푥 | < 푥 ., |푠| ≤ 훿  (25) 

It is also noted that for arbitrary small 
푥 .the positively invariant set Δ  
becomes arbitrary small and it may lead, 
again, to the state chattering. This 
situation may explain the chattering 
phenomena as the state oscillation with a 
very narrow width, i.e., the interval 
|푥 | < 푥 . is very small. 

5-Sliding Mode Controller Design for 
Servo Actuator with Friction 

Consider the following model for the 
servo actuator with friction: 

퐽푥̈ = 푢 − 퐹 − 푇                                   (26) 

Where 푥 is the actuator position, 퐽 is the 
moment of inertia,푢 is the control signal, 
퐹is the friction torque, including the static 
and dynamic components, and 푇  is the 
load torque. The friction model taken here 
is a combination of Coulomb friction 퐹 , 
Stiction friction 퐹 , and the viscous 
friction (for more details one can refer to 
the survey papers [12] &[13]), namely 

퐹 = 퐹 푒
̇
̇ ∗ 푠푔푛(푥̇)

+ 퐹 1 − 푒
̇
̇

∗ 푠푔푛(푥̇) + 휎푥̇ 
or 

퐹 = 퐹 푒
̇
̇ + 퐹 1 − 푒

̇
̇  

                             +휎|푥̇|} ∗ 푠푔푛(푥̇)     (27) 

Where 푥̇  is called the Stribeck velocity and 
휎 is the viscous friction coefficient. In 
addition, the servo actuator model in 
equation (26) is considered uncertain with a 
bounded load torque. The uncertainty in the 
model parameters reaches to 20% of their 
nominal values. Now, define 푒 = 푥 − 푥  
and 푒 = 푥̇ − 푥̇ , then the system model in 
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equation (26) in state space form (in (푒 , 푒 ) 
plane)is written as: 

푒̇ = 푒  
푒̇ = (푢 − 퐹 − 푇 )− 푥̈                    (28) 

In this work the desired position and 
velocity are taken as in reference [14]: 

푥 =  
1

16휋 푠푖푛
(8휋푡) −

1
24휋 푠푖푛

(12휋푡) 

 ⇒ |푥 | ≤
5

48휋 
푥̇ = 푠푖푛(10휋푡) ∗ 푠푖푛(2휋푡) ⇒ |푥̇ | ≤ 1  (29) 

Also, the switching function and its 
derivative are 

푠 = 푒 + 휆푒 & 
푠̇ = (푢 − 퐹 − 푇 )− 푥̈ + 휆푒           (30) 

where 푥̈ = 10휋 ∗ 푐표푠(10휋푡)푠푖푛(2휋푡) −
2휋 ∗ 푠푖푛(10휋푡)푐표푠(2휋푡) and |푥̈ | ≤ 12휋.  
 The sliding mode controller is designed 
for two initial conditions (the position and 
the velocity at time 푡 = 0). The first initial 
condition lies in the 2nd positively invariant 
set (see (15)), while in the second case the 
1st positively invariant set is taken according 
to the initial condition which lies outside the 
2nd positively invariant set. The controller 
parameters are calculated for each case in 
appendices (A) and (B) for the following 
nominal parameters and external load values 
[14] 

Table (1): Nominal Servo Actuator 
Parameters and the External Load values 

Par. Definition Value Units 
퐽  Moment of inertia.  0.2 푘푔푚  
퐹  Stiction friction. 2.19 푁푚 
퐹  Coulomb friction. 16.69 푁푚 

푥̇  Stribeck velocity. 0.01 푟푎푑
/푠푒푐 

휎  viscous friction 
coefficient 0.65 

푁푚
∙ 푠푒푐
/푟푎푑 

푇  External Torque  2 푁푚 

The simulation results and discussions are 
presented in the following section. 

6-Simulations Result and Discussions 

For the first case the state is started 
from the rest, which means 푒(0) = (0,0) 
(this is because 푥 (0) = 푥̇ (0) = 0). In this 
case the state is initiated inside the 2nd 
positively invariant setΔ , and accordingly 
the state will not leave it for 푡 ≥ 0.The state 
after that reaches an invariant set (it stills 
inside Δ ) , namely the 휔 limit set of the 
point 푒(0). For the servo actuator with non-
smooth disturbance (the friction), this set is 
a limit cycle lying inside the positively 
invariant set Δ  (the fact in section 2). 
Indeed, the state will reach the 휔 limit set if 
it is started at any point in Δ . This situation 
will be demonstrated by the simulations 
result below. 
 The approximate sliding mode 
controller in this case is (the details of the 
calculations is found in Appendix (A)) 

푢 . = −(84 휋⁄ ) ∗ 푡푎푛 (141 ∗ 푠)
푠 = (푥̇ − 푥̇ ) + 25 ∗ (푥 − 푥 )  (31) 

This controller will be able to maintain the 
state in the following invariant set: 

Δ = 푥 ∈ ℛ : |푥 − 푥 | < , |푠| ≤   
,                                                            (32) 

The response of the servo actuator system 
when started at the origin is shown in figure 
(2). In this figure the position response is 
plotted with time and it appears very close 
to the desired position. This result is 
demonstrated when plotting the error and 
the maximum error shown in the plot, where 
it does not exceed 1.5 × 10  radian. For 
the velocity, figure (3) plot the time 
response and again the maximum error, 
which does not exceed  6.5 × 10  radian 
per second, reveal the closeness between the 
velocity response and the desired velocity. 
The error phase plot is found in figure (4) 
where the state reaches the 휔 limit set of the 
origin point. The 휔 limit set forms here a 
non-smooth time varying limit cycle and 
accordingly, the error state will oscillate for 
all future time within certain amplitude. The 
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oscillation amplitude has an upper bound 
decided early by the choice of the 
permissible error.   
 The positively invariant set formed by 
the sliding mode controller, as given by 
(32), enables the same controller to regulate 
the state when it is started within this set. 
This situation is verified in figure (5) for 
two starting points where the state reaches 
the 휔limit set corresponding to each point. 

 

(a) 

 

(b) 

Figure (2)a) Position and the desired 
position vs. time (equation (29)). b) The 
position error for 5 second 

 

(a) 

 

(b) 
Figure (3) a) Velocity and the desired 
velocity vs. time (equation (29)). b) The 
velocity error for 5 second. 

 

Figure (4) The phase plane plot when the 
error started at the origin. 

 
(a) 

(b) 
Figure (5) The phase plane plot a) when 
the error started at 푒, = , 0  b)                                                                     
when the error started at 푒, =

− , 2 . 
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 For the second case the sliding mode 
controller, as calculated in appendix (B), 
is 

푢 = −45 ∗ sgn(s)
푠 = (푥̇ − 푥̇ ) + 25 ∗ (푥 − 푥 )            (33) 

The controller will be able to regulate the 
error to the origin if it initiated in the     
following positively invariant set: 

Ω = {푥 ∈ ℛ : |푠(푡)| < 0.875 , |푥 − 푥 | ≤
                                                    0.035}    (34) 

The simulation results for the position and 
the velocity when the state starting at 
(푥, 푥̇) = (0.035,0) are shown in figure 
(6). In this figure the position and the 
velocity track the desired response after a 
period of time not exceeding 0.12 second.  

 

(a) 

 
(b) 

Figure (6) Servo actuator response for the 
initial condition 푒, = (0.035,0) a) The 
position vs. time b) velocity vs. time. 

As for the sliding mode controller in (31), 
the sliding mode controller in (33) will 
create a positively invariant region (34) 
such that if the state initiated inside this 

set, it will be regulated to the origin. This 
situation is confirmed in figure (7) for 
three different starting points including 
the case of figure (6). 

 

(a) 

 

(b) 

 
(c) 

Figure (7) Error phase plot for different 
initial conditions a) 푒, = (0.035,0) b) 
푒, = (−0.035,1.75) c) 푒, =

(0,−0.875). 

 If it is required to remove the 
chattering that exists in the system 
response for the second case, we again 
replace the segnum function by the arc tan 
function. In this case we replace the gain 
푘 = 45 by the following quantity: 

푘 = 45 ∗ 1.25 = 57,    훽 = 1.25 
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Then, we obtain  

푢 = − 푡푎푛 (141 ∗ 푠)               (35) 

The sliding mode controller in (35) creates 
a positively invariant set equal to the set 
given in (34), but in this case the 
controller will not regulate the error to the 
origin. Indeed, the controller will regulate 
the error to enter the 2nd positively 
invariant set that was given in (32). 
Mathematically, the 1st and the 2nd sets in 
(34) and (32) are two positively invariant 
sets created by the sliding mode controller 
in equation (35) but with a different set 
level (see reference [1] for the definition 
of set level), namely 

Δ ⊂ Ω 

As in figure (7), the phase plane plot 
for the initial condition 푒, =
(0.035,0)is plotted in figure (8) but 
without chattering around the switching 
manifold due to replacing the segnum 
function in equation (33) by the 
approximate form in (35). Accordingly, 
the state will enter a smaller positively 
invariant set and then reach the 휔 limit set 
as in case one.  

 

 

(a) 

 

(b) 

Figure (8) the phase plane plot when using 
the controller in (35) a) full phase plot b) 
small plot around the origin showing the 
oscillation behavior. 

Finally, the chattering behavior is 
removed due to a continuous control 
action, where the continuity is revealed in 
figure (9) with a magnitude that lies 
between ±25 푁.푚 after a period of time 
not exceeding 0.05 second.  

 

(a) 

 

                                  
(b) 

 
Figure (9) The control action vs. time a) 
plot for 1 second b) plot for 0.05 second. 

7-Conclusions 

The positively invariant set for a second 
order affine system that uses a sliding 
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mode controller has been derived. The 
size of the invariant sets are found 
functions to the initial condition and 
consequently to the controller gain and 
design parameters. The derived sets have 
been used to calculate the sliding mode 
controller gain for the servo actuator. The 
simulation results prove the invariant 
property of the derived set and the 
effectiveness of using them in the 
calculation of the sliding mode controller. 
The ability of the approximate sliding 
mode controller, a continuously and 
differentiable controller, has been verified 
when used to attenuate the effect of a 
nonsmooth disturbances (the friction) that 
acts on the servo actuator system. The 
controller maintains the maximum error 
(the difference between the actual and the 
desired state) very close to zero and 
according to the permissible error value 
specified previously. 
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Appendix (A) 

 To design the approximate sliding 
mode controller we need, first, to calculate 
ℎ as it is given in (6): 

ℎ = max
푓(푒) + 휆푒

푔(푒)        

=
max − 푥̈ + 휆푒

min
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= max|퐹| + max|푇 | + (max 퐽)
∗ max|푥̈ | 

+ 휆 (max 퐽) ∗ max|푒 |                       (A-1) 

From the set Δ , the following bounds are 
estimated: 

max|푒 | = 2훿    and, 
max|푥̇| = max|푒 | +  max|푥̇ | = 2훿 + 1 

The term max|푥̇| enables the calculation 
of max|퐹| as follows: 

max|퐹| = 1.2 퐹 푒 ̇  

+퐹 1 − 푒 ̇ + 휎 (2훿 + 1)

≤ 1.2 퐹 + 휎 (2훿 + 1)  

where 퐹 ,퐹 , and 휎  are the nominal 
friction parameter values also, we 
multiply their values by 1.2 to take into 
account the uncertainty  in system 
parameters as assumed previously. In 
addition, we have 

max|퐽| = 1.2 ∗ 퐽 and min|퐽| = 0.8 ∗ 퐽  

again 퐽  is the nominal moment of inertia 
value and finally the load torque is 
bounded by 

|푇 | ≤ 푇 = 1.2푇  

Therefore, ℎ becomes a function to the 
slope of the switching manifold 휆 and the 
boundary layer 훿. 
 In sliding mode controller design, we 
are mainly concerned in calculating 
suitable value for the gain 푘 after a proper 
selection to the switching function 푠(푥) 
(by proper we mean that the origin is an 
asymptotically stable after the state 
reaches the switching manifold 푠(푥) = 0). 
Now, if we set the permissible error and 휆 
as in the following 

푒 . = 0.05 deg. =
휋

3600  푟푎푑,
휆 = 25 

then from (24), we have 

훿 = 휆 ∗ 푒 . =
휋

144 ⇒
|푒  | ≤ 푒 . 

Accordingly, to find the gain 푘, we first 
compute ℎas follows: 

max|퐹| ≤ 1.2 퐹 + 휎 (2훿 + 1)
= 20.84 

⇒ ℎ = 20.84 + 2.4 + 0.24 ∗ 12휋 + 0.24
∗ 25 ∗ 2

휋
144 = 32.55 

and then for 훽 = 1.25 , we get 

푘 = 훼 ∗ 1.25 ∗ 32.55 = 42 ,   훼 > 1 

Also, from equation (20),  훾 equal to 

훾 =
144
휋 푡푎푛

휋
2.5 = 141 

Finally, the sliding mode controller to the 
servo actuator is  

푢 . = −
84
휋 푡푎푛 (141 ∗ 푠) 

푠 = (푥̇ − 푥̇ ) + 25 ∗ (푥 − 푥 )          (A-2) 

The sliding mode controller will be able to 
prevent the state leaving the positively 
invariant set Δ . That means the error 
(푥 − 푥 ) is less than the permissible limit 
specified earlier. 

Appendix (B) 

In this case we consider the same desired 
position and velocity as in equation (29) 
with the following initial condition  

푥 = 0.035 푟푎푑, 푥̇ = 0 푟푎푑 푠푒푐.⁄  
⇒ 푒(0) = (푒 , 푒 ) = (0.035,0) 

Also, consider the same switching 
function as in case one (푠 = 푒 + 25푒 ). 
Then, accordingly, the invariant set is 
given by 
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Θ =
{푥 ∈ ℛ : 0 ≤ 푠(푡) < 0.875 , |푒 (푡)| ≤
0.035}                                                (B-1) 

In addition we have 

|푒 (푡)| ≤ 1.75 ⇒ max|푥̇| = max|푒 | 
+ max|푥̇ | = 2.75푟푎푑 푠푒푐.⁄  

And then we can calculate max|퐹| as in 
the following: 

max|퐹| ≤ 1.2(퐹 + 2.75 ∗ 휎 ) = 22.2 

Thus, as in the first case, ℎ is equal to 

ℎ = 22.2 + 2.4 + 0.24 ∗ 12휋 
+0.24 ∗ 25 ∗ 1.75 = 44.15 

The sliding mode controller gain from 
equation (6) is taken equal to 

푘 = 45 > ℎ 

Finally, the sliding mode controller for the 
second case is given by 

푢 = −45 ∗ sgn(푠) 
푠 = (푥̇ − 푥̇ ) + 25 ∗ (푥 − 푥 )          (B-2) 

If the state initiated inside the positively 
invariant set as given in (B-1), the sliding 
mode controller will regulate the error 
state to the origin irrespective to the 
uncertainty and the non-smooth 
components in the servo actuator model. 

 


