δ-Fuzzy Ideal Of A Smarandache Near Ring

مثالية سكما الضبابية في الحلقة السمرندش القريبة

Showq Mohammed .E Dhuha Abdulameer Kadhim Showqm.ibriheem@uokufa.edu.iq Dhuhaa.ebada@uokufa.edu.iq AL-Kufa university College Of Education For Girls Department of Mathematics

Abstract

In this paper ,we introduce the notions of δ -Fuzzy ideal of a Smarandache near ring related to the near filed M denoted by (S- δ FI) of a Smarandache near ring and discuss the problem concerning the intersection of a family of (S- δ FI) and we give some properties about it.

الخلاصة

قدمنا في هذا البحث مفهوم جديد وهو المثالية الضبابية δ في حلقة السمرندش القريبة بالنسبة للحقل القريب M والتي يرمزلها بالرمز (S- δ FI) وتم عرض بعض النتائج والبراهين الخاصة بها .

Key word

near ring, near field, Smarandache near ring, Smarandache ideal , fuzzy sub near field, Smarandache fuzzy ideal.

Introduction

Throughout this paper N will be a left Samarandache near ring . In 1977 the notion near ring denoted by G.Pilz [1],in 2002 The concept Samarandache near ring denoted by W.B.vasantha [2], In 2003 the notion Samarandache fuzzy ideal denoted by W.B.vasantha andasamy [3], in 2005 the concept $\overline{\lambda}^*$ introduced by S.Bharanri [4].

Definition (1.1) [1]

A left near ring is a set N together with two binary operations "+" and "." such that

- (1) (N,+) is a group (not necessarily abelian),
- (2) (N, .) is a semigroup,
- $(3)(n_1 + n_2) \cdot n_3 = n_1 \cdot n_3 + n_2 \cdot n_3$, for all $n_1, n_2, n_3 \in N$;

Definition (1.2) [2]

Anon- empty set N is said to be a near field if on N is defined by two binary operations "+","." such that

- (1)(N,+) is a group,
- (2) $(N\setminus\{0\}, .)$ is a group,
- (3) a.(b+c)=a.b+a.c for all a,b,c belong to N.

Definition (1. 3) [2]

The near ring (N,+,.) is said to be a smarandache near ring denoted by (S-near ring) if it has a proper subset M such that (M,+,.) is a near field .

Definition(1.4) [2]

Let N be S-near ring, a normal subgroup I of N is called a smarandache ideal (S-ideal) of N related to M if ,

- (1) $\forall y, z \in M$ and $\forall i \in I, y.(z+i) y.z \in I$, where M is the near field containd in N.
- (2) $I.M \subset I$.

Definition (1.5)[1]

Let($N_1,+,.$) and (N_2 ,+',.') be two S-near-rings , a function $f:N_1\to N_2$ is called a Smarandache near-ring homomorphism (S-near-ring homomorphism) if for all $m,n\in M_1$ (M_1 is a proper subset of N_1 which is a near-field) we have

- (1) f(m+n) = f(m) + f(n).
- (2) f(m. n) = f(m) 'f(n).

where f (m) and f (n) \in M ₂ (M ₂ is a proper subset of N₂ which is a near-field)

Definition(1.6) [4]

Let μ be a fuzzy ideal of a near ring N and

 μ^* be a fuzzy set in N defined by $\mu^*(y) = \mu(y) + 1 - \mu(0)$, $y \in \mathbb{N}$.

Definition (1.7) [3]

Let μ is a fuzzy sub near ring of N and μ is a fuzzy ideal of N such that

- (1) μ (y-z) \geq min{ μ (y), μ (z)}
- (2) $\mu(y.z^{-1}) \ge \min\{\mu(y), \mu(z)\}\$, $\forall y,z \in \mathbb{N}$. Then μ is a fuzzy sub near field of \mathbb{N} .

Definition (1.8) [2]

Let N be a S-near ring. A non empty fuzzy subset μ of N is called a Smarandache fuzzy ideal (S-fuzzy ideal) related to the near field M of N if the following conditions are true

- (i) N has a proper subset X such that
 - (1) $\mu(z y) \ge \min \{\mu(z), \mu(y)\}$
 - (2) $\mu(z,y) \ge \min\{\mu(z), \mu(y)\}\$ for all $z,y\in X$. i.e. μ on X is a fuzzy ideal.
 - (3) $\mu(z + y z) \ge \mu(y)$
 - (4) $\mu(z.y) \ge \mu(y)$
- (ii) X contains a proper subset M such that M is a near field under the operations of N and $M \to [0, 1]$ is a fuzzy sub near field of M.

Definition (1.9) [3]

Let μ is a fuzzy subring of N such that μ^* is a field contains the identity of N and $\mu(y) = \mu(y^{-1})$ for all units y in N, then μ is called the fuzzy subfield of N.

Definition (1.10) [3]

Let $f:(N_1,+,.) \to (N_2,+',.')$ be a function .For a fuzzy set μ in N_2 we define

 $(f^{-1}(\mu))(x) = \mu(f(x))$ for every $x \in N_1$. For a fuzzy set λ in X, $f(\lambda)$ is defined by

$$(f(\lambda))(y) = \begin{cases} \sup \lambda(x) & \text{if } f(x) = y, y \in \mathbb{N}_2 \\ 0 & \text{otherwisey} \end{cases}$$

2. The main Results

In this section we study δ -fuzzy ideal of a Smarandache near ring.

Definition (2.1)

Let $\overline{\lambda}$ be a S-fuzzy ideal of S-near ring N related to the near filed M is called δ -Fuzzy ideal of N denoted by (S- δ FI) if

$$(1)\overline{\lambda}(x-y) \le \overline{\lambda}(x)$$

$$(2)\overline{\lambda}(xy) \ge \max\{\overline{\lambda}(x), \overline{\lambda}(y)\}, \forall x, y \in M.$$

Example (2.2)

Consider the S- near ring $N=Z_{\rm 6}$ with addition and multiplication as defined by the following tables .

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

.6	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Let $\overline{\lambda}$ be a S-fuzzy ideal of S-near ring N related to the near filed M={0,2,4} defined by

$$\overline{\lambda}(y) = \begin{cases} 1 & \text{if } y \in \{0,2,4\} \\ 0 & \text{if } y \in \{1,3,5\} \end{cases}$$

Then $\overline{\lambda}$ is (S- δ FI) related to the near filed M={0,2,4} of N.

Theorem (2.3)

Let $\overline{\lambda}$ be a fuzzy subset of an S-near ring N , then $\overline{\lambda}^*$ is a (S- δ FI) related to the near filed M of N if $\overline{\lambda}$ is a (S- δ FI) related to the near filed M of N

Proof

Let $\overline{\lambda}$ be (S- δ FI) related to the near filed M of N then $\overline{\lambda}$ is S-fuzzy ideal of N there exist X is a proper subset of N contain M as a near field and $\overline{\lambda}$ is fuzzy sub near filed of M, let $x, y \in N$,

$$(1) \overline{\lambda}^*(x-y) = \overline{\lambda} (x-y) - \overline{\lambda} (0) + 1$$

since $\overline{\lambda}$ is fuzzy ideal of N

$$\geq \min \{ \overline{\lambda} (x), \overline{\lambda} (y) \} - \overline{\lambda} (0) + 1$$

$$\geq \min \{ \overline{\lambda} (x) - \overline{\lambda} (0) + 1, \overline{\lambda} (y) - \overline{\lambda} (0) + 1 \}$$

$$= \min \{ \overline{\lambda}^*(x), \overline{\lambda}^*(y) \}.$$

$$(2) \overline{\lambda}^* (xy^{-1}) = \overline{\lambda} (xy^{-1}) - \overline{\lambda} (0) + 1$$

$$\geq \min\{\overline{\lambda}(x), \overline{\lambda}(y^{-1})\} - \overline{\lambda}(0) + 1$$

$$= \min\{\overline{\lambda}(x), \overline{\lambda}(y)\} - \overline{\lambda}(0) + 1$$

$$= \min\{\overline{\lambda} (x) - \overline{\lambda} (0) + 1, \overline{\lambda} (y) - \overline{\lambda} (0) + 1\}$$

$$\geq \min\{\overline{\lambda}^*(x), \overline{\lambda}^*(y)\}$$

From (1) and (2) $\Rightarrow \overline{\lambda}^*$ is a fuzzy sub near field of M that mean $\overline{\lambda}^*$ is S-fuzzy ideal related to the near filed M of N, to prove that $\overline{\lambda}^*$ is (S- δ FI) related to the near filed M of N, let $x, y \in M$,

$$(1) \overline{\lambda}^*(x-y) = \overline{\lambda} (x-y) - \overline{\lambda} (0) + 1$$

$$\leq \overline{\lambda}(x) - \overline{\lambda}(0) + 1 = \overline{\lambda}^*(x)$$

$$(2) \overline{\lambda}^*(xy) = \overline{\lambda}(xy) - \overline{\lambda}(0) + 1$$

$$\geq \max\{\overline{\lambda}(x), \overline{\lambda}(y)\} - \overline{\lambda}(0) + 1$$

$$= \max\{\overline{\lambda}(x) - \overline{\lambda}(0) + 1, \overline{\lambda}(y) - \overline{\lambda}(0) + 1\}$$

$$= \max\{\overline{\lambda}^*(x), \overline{\lambda}^*(y)\}.$$

From (1) and (2) $\Rightarrow \overline{\lambda}^*$ Is (S- δ FI) related to the near filed M of N.

Theorem (2.4)

Let $\{\overline{\lambda}_j\}_{j\in J}$ be a family of (S- δ FI) related to the near filed M of S-near ring N, then $\bigcap_{j\in J} \overline{\lambda}_j$ is (S- δ

FI) related to the near filed M of N.

Proof

Since each $\overline{\lambda}_j$ is (S- δ FI) related to the near filed M of N when $j \in J$, then there exists a proper subset X_j of N such that $\overline{\lambda}_j$ is a fuzzy ideal on X_j , M is a proper subset of X_j and $\overline{\lambda}_j$ is a fuzzy sub near field on M for all $j \in J$ $X = \bigcap X_j$ is a proper subset of N contain M.

To prove that $\bigcap \overline{\lambda}_j$ is S-fuzzy ideal

, let
$$x, y \in N$$
,

$$(1)\bigcap_{j\in J} \ \overline{\lambda}_i \ (x-y) = \inf_{j\in J} \ \overline{\lambda}_i \ (x-y)$$

since $\overline{\lambda}_{j}$ is fuzzy ideal of N

$$\geq \inf_{j \in J} \{ \min \{ \overline{\lambda}_j (x), \overline{\lambda}_j (y) \} \}$$

$$\geq \min\{\inf_{j\in J} \overline{\lambda}_j(x), \inf_{j\in J} \overline{\lambda}_j(y)\}.$$

$$\geq \min\{\bigcap_{i\in I} \overline{\lambda}_{j}(x), \bigcap_{i\in I} \overline{\lambda}_{j}(y)\}.$$

$$(2)\bigcap_{i\in J}\overline{\lambda}_{j}(xy^{-1})=\inf_{j\in J}\overline{\lambda}_{j}(xy^{-1})$$

$$\geq \inf_{i \in I} \left\{ \min \left\{ \overline{\lambda}_{j}(x), \overline{\lambda}_{j}(y^{-1}) \right\} \right\}$$

$$\geq \inf_{j \in J} \left\{ \min \left\{ \overline{\lambda}_{j}(x), \overline{\lambda}_{j}(y) \right\} \right\}$$

$$\geq \min\{\inf_{i\in I} \overline{\lambda}_{j}(x), \inf_{i\in I} \overline{\lambda}_{j}(y)\}$$

$$\geq \min\{\bigcap_{i\in J}\overline{\lambda}_j(x),\bigcap_{i\in J}\overline{\lambda}_j(y)\}$$

From (1) and (2) $\Longrightarrow \bigcap_{j \in J} \overline{\lambda}_j$ is a fuzzy sub near field of M that mean $\bigcap_{j \in J} \overline{\lambda}_j$ is S-fuzzy ideal related

to the near filed M of N. To prove that $\bigcap_{j\in J} \overline{\lambda}_j$ is (S- δ FI) related to the near filed M of N let

$$x, y \in M$$
,

$$(1)\bigcap_{i\in J} \overline{\lambda}_i (x-y) = \inf_{j\in J} \overline{\lambda}_i (x-y)$$

$$\leq \inf_{j \in J} \overline{\lambda}_i(x) = \bigcap_{i \in J} \overline{\lambda}_i(x)$$

$$(2)\bigcap_{i\in J}\overline{\lambda}_i(xy) = \inf_{j\in J}\overline{\lambda}_i(xy)$$

$$\geq \inf_{i \in I} \{ \max{\{\overline{\lambda}_i(x), \overline{\lambda}_i(y)\}} \}$$

$$= \max \{ \inf_{i \in J} \overline{\lambda}_i(x), \inf_{i \in J} \overline{\lambda}_i(y) \}$$

$$= \max\{\bigcap_{i \in J} \overline{\lambda}_i(x), \bigcap_{i \in J} \overline{\lambda}_i(y)\}.$$

From (1) and (2) $\Longrightarrow \bigcap_{i \in J} \overline{\lambda_i}$ Is (S- δ FI) related to the near filed M of N.

Theorem (2.5)

let $f:(N_1,+,.)\to (N_2,+',.')$ be epimomorphism and let $\overline{\lambda}$ is $(S-\delta FI)$ related to the near filed M_2 of a S-near ring N_2 if and only if $f^{-1}(\overline{\lambda})$ is $(S-\delta FI)$ related to the near filed M_1 of a S-near ring N_1 , when $f^{-1}(M_2)=M_1$.

Proof

Let $\overline{\lambda}$ is a is (S- δ FI) related to the near filed M₂ of N₂, let $x, y \in N$,

$$(1) f^{-1}(\overline{\lambda})(x-y) = \overline{\lambda}(f(x-y))$$

$$\overline{\lambda}(f(x) - f(y)) = \min{\{\overline{\lambda}(f(x), \overline{\lambda}(f(y))\}\}}$$

$$= \min\{f^{-1}(\overline{\lambda})(x), f^{-1}(\overline{\lambda})(y)\}.$$

$$(2)f^{-1}(\overline{\lambda})(xy^{-1}) = \overline{\lambda}(f(xy^{-1}))$$

$$\overline{\lambda}(f(x).f(y^{-1})) \ge \min{\{\overline{\lambda}(f(x),\overline{\lambda}(f(y))\}\}}$$

$$= \min\{f^{-1}(\overline{\lambda}(x)), f^{-1}(\overline{\lambda}(y))\}.$$

Frome (1),(2) we have $f^{-1}(\overline{\lambda})$ is S-near field related to the near filed M_1 of a S-near ring N_1 , $f^{-1}(\overline{\lambda})$ is S-fuzzy ideal of N_1 .

To proof that $f^{-1}(\overline{\lambda})$ is (S- δ FI) related to the near field M₁ of N₁ $x, y \in M_2$,

$$(1)f^{-1}(\overline{\lambda})(x-y) = \overline{\lambda}(f(x-y))$$

$$\leq \overline{\lambda}(f(x)) = f^{-1}(\overline{\lambda})(x)$$

$$(2)f^{-1}(\overline{\lambda})(xy) = \overline{\lambda}(f(xy))$$

$$\overline{\lambda}(f(x).f(y)) \ge \max{\{\overline{\lambda}(f(x),\overline{\lambda}(f(y))\}\}}$$

$$\geq \max\{f^{-1}(\overline{\lambda}(x)), f^{-1}(\overline{\lambda}(y))\}.$$

From (1) and (2) $f^{-1}(\overline{\lambda})$ is (S- δ FI) related to the near field M₁ of N₁

 \leftarrow suppose $f^{-1}(\overline{\lambda})$ is (S- δ FI) related to the near field M₁ of N₁, let $f(x), f(y) \in N_2$,

(1)
$$\overline{\lambda}(f(x)-f(y)) = \overline{\lambda}(f(x-y)) = f^{-1}(\overline{\lambda}(x-y))$$

Since $f^{-1}(\overline{\lambda})$ is (S- δ FI) related to the near field M₁ of N₁

$$\geq f^{-1}\{\min\{\overline{\lambda}(x),\overline{\lambda}(y)\}\$$

$$= \min\{f^{-1}(\overline{\lambda})(x), f^{-1}(\overline{\lambda})(y)\} = \min\{\overline{\lambda}(f(x)), \overline{\lambda}(f(y))\}.$$

$$(2)\overline{\lambda}(f(xy^{-1})) = f^{-1}(\overline{\lambda})(xy^{-1}) = f^{-1}\{\min\{\overline{\lambda}(x),\overline{\lambda}(y)\}\}$$

$$= \min\{f^{-1}(\overline{\lambda}(x)), f^{-1}(\overline{\lambda}(y))\} = \min\{\overline{\lambda}(f(x)), \overline{\lambda}(f(y))\}.$$

Frome (1),(2) we have $f(\overline{\lambda})$ is S-near field related to the near filed M_2 of a S-near ring N_2 , $f(\overline{\lambda})$ is S-fuzzy ideal of N_2 .

To proof that $f(\overline{\lambda})$ is (S- δ FI) related to the near field M_2 of $N_2 x$, $y \in M_2$,

$$(1) f(\overline{\lambda}(x-y)) \le f(\overline{\lambda}(x))$$

$$(2) f(\overline{\lambda}(xy)) \ge f\{\max\{\overline{\lambda}(x), \overline{\lambda}(y)\}\$$

$$= \max\{f(\overline{\lambda}(x)), f(\overline{\lambda}(y))\}\$$

From (1) and (2) $f(\overline{\lambda})$ is (S- δ FI) related to the near field M₂ of N₂.

Proposition (2.6)

If $\overline{\lambda}$ is a (S- δ FI) related to the near filed M of N then $\overline{\lambda}^c$ is a (S- δ FI) related to the near filed M of N.

Proof

To prove that $\overline{\lambda}^c$ is S-fuzzy ideal

, let
$$x, y \in N$$
,

(1)
$$\overline{\lambda}^c(x-y) = 1 - \overline{\lambda}(x-y)$$

$$\geq 1 - \min\{\overline{\lambda}(x), \overline{\lambda}(y)\}$$

$$\geq \min\{1-\overline{\lambda}(x),1-\overline{\lambda}(y)\}$$

$$\geq \min\{\overline{\lambda}^c(x), \overline{\lambda}^c(y)\}$$

$$(2) \ \overline{\lambda}^{c}(xy^{-1}) = 1 - \overline{\lambda}(xy^{-1})$$

$$\geq 1 - \min{\{\overline{\lambda}(x), \overline{\lambda}(y^{-1})\}}$$

$$\geq 1 - \min\{\overline{\lambda}(x), \overline{\lambda}(y)\}$$

$$\geq \min\{1-\overline{\lambda}(x),1-\overline{\lambda}(y)\}$$

$$\geq \min\{\overline{\lambda}^c(x), \overline{\lambda}^c(y)\}$$

From (1) and (2) $\Rightarrow \overline{\lambda}^c$ is a fuzzy sub near field of M that mean $\overline{\lambda}^c$ is S-fuzzy ideal related to the near filed M of N. to prove that $\overline{\lambda}^c$ is (S- δ FI) related to the near filed M of N $x, y \in M$,

(1)
$$\overline{\lambda}^c(x-y) = 1 - \overline{\lambda}(x-y)$$

$$\leq 1 - \overline{\lambda}(x) = \overline{\lambda}^{c}(x).$$

(2)
$$\overline{\lambda}^{c}(xy) = 1 - \overline{\lambda}(xy)$$

$$\geq 1 - \max\{\overline{\lambda}(x), \overline{\lambda}(y)\}$$

$$\geq \max\{1-\overline{\lambda}(x),1-\overline{\lambda}(y)\}$$

$$\geq \max\{\overline{\lambda}^c(x), \overline{\lambda}^c(y)\}.$$

From (1) and (2) $\overline{\lambda}^c$ is a (S- δ FI) related to the near filed M of N.

Proposition (2.7)

Let A,B be any two (S- δ FI) related to the near filed M of N, if $A \subset B \vee B \subset A$ then $A \cup B$ is (S- δ FI) related to the near filed M of N is a (S- δ FI) related to the near filed M of N.

Proof

Let A,B be any two (S- δ FI) related to the near filed M of N, then A^c , B^c are two (S- δ FI) related to the near filed M of N, by using (2.6) $A^c \cap B^c$ is (S- δ FI) related to the near filed M of N.

, $A^{C} \cap B^{C} = (A \cup B)^{C}$ by using (2.4) $((A \cup B)^{C})^{C} = (A \cup B)$ is (S- δ FI) related to the near filed M of N

Reference

- [1] G.Pilz,"Near ring", North Hollanda Publ.and co.,1977.
- [2] W.B.vasantha andasamy,"Samarandache near ring "United States of America" ,pp.20-30,pp.69-71,158,2002.
- [3] W.B.vasantha andasamy,"Samarandache fuzzy a lgebra "United States of America", pp.9-10,pp.47-58,292,2003.
- [4] S.Bharanri," On Fuzzy Costs Of Gamma Near ring ",Turk.J.math ,pp.11-22,2005.