Preliminary Cytotoxic Study of Some Novel Furo-2-quinolone Compounds

Nohad A.AlOmari*1, Adnan O. Omar** and Iklas M. Taher**

*College of pharmacy , university of Mosul , Mosul , Iraq

Abstract

In this research, new series of Furo-2-quinolone [FQ] compounds have been synthesized. These novel [FQ] compounds were prepared from coumarin derivatives (Furocoumarins: psoralen and isopsoralen). Identifications of these FQ compounds were performed by using infrared spectrum (I.R), Ultraviolet spectrum (U.V) and Nuclear Magnetic Resonance spectrum (H¹-NMR) besides some physical data. The cytotoxic screening involves ;using HEP-2 cell line which gave differential responses against tested compounds: 4,6 Dimethyl furo[2, 3-g] coumarin ($\mathbf{C_1}$), 1-($\mathbf{2}$ ', 4', Dimethoxy benzylideneimino)-2,6-dimethyl Furo [2, 3-g] quinoline-2-one ($\mathbf{C_3}$) and the angular psoralen of the same derivative with the chemical name; 1-($\mathbf{2}$ ',4'-Dimethoxybenzylidenimine)-4,8,9-trimethyl furo[3,2-h] quinoline-2-one ($\mathbf{C_{3A}}$). These preliminary studies using different cell lines in addition to full cytotoxic screening may facilitate generation of better structural activity relationship and then shed the light for new lead promising anticancer compounds.

Keyword: Coumarin, Angelicin, HEP-2 Cell line, cytotoxicity,

الخلاصة

تم في هذا البحث، تحضير سلسلة جديدة من مركبات فيورو -2-كينولون [FQ] هذه المركبات الحديثة حضرت من مشتقات الكومارين (فيورو كومارين: بسورالين وايز وبسورالين). تشخيص هذه المركبات تم باستخدام طيف الاشعة تحت الحمراء (IR) وطيف الاشعة فوق البنفسجية (UV) والرنين النووي المغناطيسي بالإضافة إلى بعض الصفات الفيزياوية. تضمنت دراسة السمية للخلايا باستخدام خط خلايا 2-4 (EP) والتي أعطت استجابات مختلفة ضد المركبات قيد الاختبار وهي: 4, 6 داي مثايل فيورو [2,3- اللخلايا باستخدام خط خلايا 2-(2', 4' داي ميثوكسي بنز ايلدين- ايمينو) - 6,2- داي ميثايل فيورو [2,3- g) كينولون -2- اون (C3A). هذه بالإضافة إلى 1 -(2',4'- داي ميثوكسي بنز ابلدين- ايمنيو) - 9,8,4 وثلاثي ميثايل فيورو [4-2,3] كينولون -2- اون (C3A). هذه الدراسة الأولية وباستخدام خطوط لخلايا سرطانية ممتنوعة بالإضافة إلى مسح ضد سمي شامل لها قد يسرع و لادة لعلاقة وظيفية بالتركيب الكيماوي لها و من ثم إزاحة الضوء لمركبات قيادية ذات فعالية ضد سرطانية متوقعة و واعدة.

Introduction

Furoquinoline-2-one(I) compounds are considered as a main derivatives of furocoumarines(II)(1). Coumarin(III) is being the main nucleus of these compounds which classified into linear furocoumarin; psoralen(II) and angular furocoumarin; angelicin(IV) [Fig.1]. The investigation of coumarin compounds revealed that a wide spectrum of medicinal plant extracts that were in use as early as 1000 A. D. contain a high content of coumarins. Subsequent analysis of scientific literature revealed numerous reports

on the antiproliferalive and antitumor activities of a variety of coumarin compounds (2-5), and have demonstrated activity against several types of animal tumors (6-10). These compounds have also been reported in clinical trials to demonstrate activity against prostate cancer, malignant melanoma and metastic renal cell carcinoma (11, 12). Recently, series of Furo-2-quinolone compounds [Fig. 2] were synthesized (13) and identified by using infrared (FT/IR), Ultraviolet (U.V.) and Nuclear Magnetic Resonance Spectroscopy (1HNMR) besides some physical data.

¹Corresponding author E-mail: Nohad_alomari@yahoo.com

Received : 28/12/2008 Accepted : 26/5/2009

^{**}College of science, university of Mosul, Mosul, Iraq

This previous literature survey urged us to direct this paper towards preliminary cytotoxic study of the "building block" (4,6 Dimethyl furo[2, 3-g] coumarin (C1), one of linear psoralen; 1-(2`, 4`, Dimethoxy benzylideneimino)-2-6-dimethyl Furo [2, 3-g] quinoline-2-one (C3) and the angular psoralen of the same derivative with the chemical name;

1-(2`,4`-Dimethoxybenzylidenimine)-4,8,9-trimethyl furo[3,2-h] quinoline-2-one (C3A)These three selected lead compounds were screened against human larynx epidermoid carcinoma (HEP-2) cell line. The preliminary results indicate that HEP-2 cell differs in its sensitivity towards these compounds.

Figure (1)

$$CH_3$$

Experimental

Chemistry

General Method

Melting points were uncorrected & determined by using electrothermal 9300. The identification of the prepared compounds were done by using FT/IR spectrophotometer tensor 27 as KBr disc. Ultraviolet by schimadzu-UV visible UV. 1650 PC. Nuclear Magnetic Resonance spectrum were carried out by using Bruker-Avance 400 MHz / France.

Synthesis

1-A mino-4,6-dimethyl furo [2, 3-g] quino line -2-o ne $^{(14)}$ (C₂). 1-A mino-4,8,9-trime thylfuro [3,2-h]

1-A mmo-4,8,9-trime thylfuro[3,2-1 quinoline -2-one $^{(13)}$ (C_{2A}).

Dissolve (0.02 M) of Furocoumarin in (30 ml) of dry pyridine with continuous stirring and gentile heating, then cool the mixture and add to it (0.025M, 1-3 ml) of aqueous hydrazine drop wise, reflux for 6 hours. Cool the mixture until formation of precipitate, filter and wash many times with cold water and recrystallized from ethanol. Yield 42%, the melting point is (C_{2} = 240 - 241 °C) & (C_{2A} 166-169°C).

		C=O	C-N	N-N	N-H	U.V. EtOH nm.
IR cm ⁻¹	C ₂	1654	1252	1184	3107	300
KBr	C _{2A}	1672	1244	1173	3188	304

		CH ₃ (s)	СН=	NH ₂	Phenyl
land a	C ₂	2.2, 2.4	6.3 , 6.5	5.3	7.2 , 7.4
¹HNMR ppm/CDCl ₃	C _{2A}	2.2, 2.4, 2.5	6.5	5.8	7.0 - 7.4 complex

Dissolve an equimolar (0.003 M) of C2 or C2_A with 2, 4-dimethoxy benzaldehyde in 50ml of

absolute ethanol, reflux the reaction mixture for 1 hr. cool and filter. The precipitate is washed with cold ethanol and recrystallized by methanol. M.Pt. (202-204°C, pale brown) and (90-93°C, yellow) for C₃and C₃A respectively

		С=О	C=N	N-N	U.V/ EtOH nm.
I.R. /cm ⁻¹	C ₃	1675	1575	1180	296 nm
KBr	C _{3A}	1673	1562	1182	304 nm

		CH ₃ (S)	CH= (S)	OCH ₃ (S)	CH=N (S)	Phenyl
	C	2.22, 2.42	6.3,6.5	3.74,	8.1	7.2 ,7.4
¹H NMR	C ₃			3.81		(S) (S)
ppm/CDCl ₃	C	2.22, 2.42	6.3,	3.78,	8.21	7.0 -7.4
	C _{3A}	,2.5	6.5	3.82		complex

II.Cytotoxic screening II.Material

Bovine serum (BS), Phosphate buffered saline (PBS) PH 7.2, HEP-2 cell line and all other solutions and media for cytotoxicity study were kindly provided by the Iraqi Center

to the cell sheet and the flask was rocked gently. After approximately 30 seconds most of the trypsin was poured off and the cells incubated at 30°C until they had detached from the flask. Afterwards, 200 1 of cells in growth medium were added to each well of a sterile 96-well microtitration plate. The plates were incubated at 37°C in 5% CO2 humidified atmosphere incubator, the medium was removed and serial dilutions of the compound (500, 250, 125, 62.5) g/m) under assay in SFM were added to the well. The cell line was exposed to cisplatin (EBEWE, Austria Europe) as a reference (positive control); where the negative control were the cells treated with SFM only. The cells in each well were washed with PBS exposed to diluted formalin exposed to crystal violet dye then washed and left to dry(18). Reading the result was accomplished using a multi-well plate reader at 492 nm.

Results and Discussion

Preparation of C2 & C2A from reaction of Furocoumarin with hydrazine hydrate is a nucleophilic substitution lead to cyclic cleavage followed by recyclization with removal of one molecule of water. This reaction product shows three singlet bands at (2.2, 2.4, 2.5 ppm), due to trimethyl substituent at C4, 8, 9 respectively of C2A, and the singlet proton of C3 appears at 6.5 ppm. The two methyl groups in C2 appears at (2.2 and 2.4 ppm) and the two singlet protons of this compound at C3 and C7 are interfere with the aromatic region at (6.3 and 6.5 ppm) respectively, due to the aromatic properties of this compound. The FT/IR spectra of the

for Cancer and Medical Genetics Research / Baghdad.

Cell line synthesis for cytotoxicity study (17)

The growth medium was decanted off and the cell sheet was washed twice with PBS. Two to three ml of trypsin-versene was added compounds C3 and C3A (Schiff bases derivatives) shows a significant C = N band between (1575 and 1562 cm-1) respectively. The 1HNMR of these compounds appears approximately not far from the values of compounds C2 and C2A..The U.V. spectra showed max between 296nm and 304 nm respectively The other spectral data of these compounds U.V., I.R. and 1HNMR are appear in the previous Tables.

Cytotoxicity screening

Compounds C1, C3 & C3A were screened for their cytotoxicity testing. Morphological changes of HEP-2 cell upon exposure to selected compounds [Fig. 3] accompanied with reduction in size i.e. loss of contact with neighboring cells as the apoptotic cells shrank and become detached from the adjacent cells. The dose-response curve of C1, shows a dramatic positive downward curve [Fig. 4, Table 1] and highly HEP-2 sensitivity comparing with resistance cisplatin (positive control), indicate delivering of good prominent lead compound, this significant difference from cisplatin shown at lower concentrations 62.5& 125 g/10ml.A different response [Fig. 5, Table 2] could be exploited from C3 although a cross-resistance at lower doses, but a decrease in % survival appeared with higher dose which may be clearer with time-course interval higher then 48 hours. HEP-2 cell shows a gradual sensitivity with cisplatin C3A [Fig.6, Table3] and significant difference from cisplatin at P < 0.001 at 5 different dilution doses. From the collective dose response curves [Fig.7] C1, C3 & C3A we can

conclude that insertion of

(
$$R = \bigcirc$$
 OCH₃ to C₃ may

obt: OCH₃ n SAR yield from cytotoxic screening or all synthesized compounds may accumulate informations & shed light to new promising anti-proliferative agents.

considered as non essential modification to linear psoralen while angular psoralen "Angelicin" may considered as a good *lead* compound, and collective informations

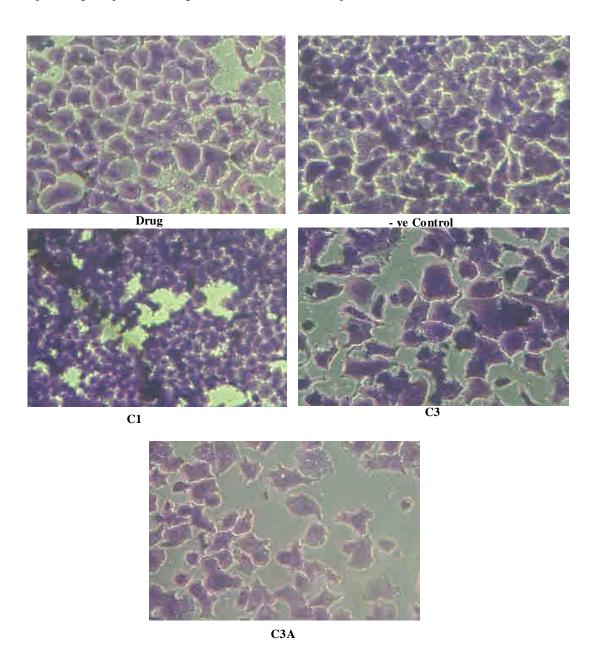


Fig 3: The morphological effects exerted by C1,C3, and C3A on HEP-2, photographs were taken using a Nikon inverted light microscope (20x objective)

1

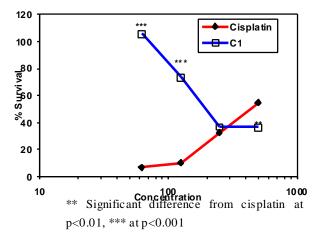
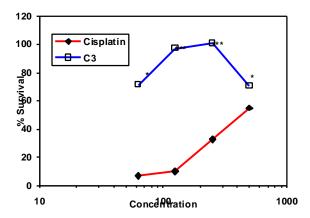
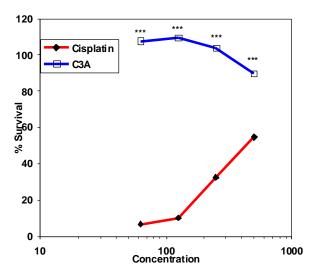



Fig 4: Graphical representation of concentration dependent effect of C1 on HEP-2 cells.

Table 1: The cell survival as percentage of the control for the HEP-2 cell when the cells were treated with C1.

Conce nt ra tio	% of Survival		
$n~(\mug/10~ml)$	(Mean ± SD)		
	Cisplatin		C1
62.5	6.77 ± 1.27	106.01 ± 9.33	
125	10.15 ± 1.88	73.79 ± 6.74	
250	32.42 ± 4.29	36.83 ± 6.59	
500	54.88 ± 4.60	36.96 ± 3.64	



* Significant difference from cisplatin at p<0.05, *** at p<0.001

Fig 5: Graphical representation of concentration dependent effect of C3 on HEP-2 cells.

Table 2: the cell survival as percentage of the control for the HEP-2 cell when the cell were treated with C3.

Concentration	% of Survival (Mean ± SD)		
(μ g/10 ml)	Cisplatin	C3	
62.5	6.77 ± 1.27	71.34 ± 46.35	
125	10.15 ± 1.88	97.09 ± 12.01	
250	32.42 ± 4.29	100.77 ± 8.97	
500	54.88 ± 4.60	70.68 ± 5.82	

*** Significant difference from cisplatin at p < 0.001

Fig 6: Graphical representation of concentration dependent effect of C3A on HEP-2 cells.

Table 3: The cell survival as percentage of the control for the HEP-2 cell when the cell were treated with C3A.

Conce ntra ti	% of Survival (Mean ± SD)			
on (μ g/10 ml)	Cisplatin	C3A		
(μg/10 nn)				
62.5	6.77 ± 1.27	107.66 ± 10.88		
125	10.15 ± 1.88	109.46 ± 5.21		
250	32.42 ± 4.29	103.76 ± 4.69		
500	54.88 ± 4.60	89.92 ± 6.10		

i

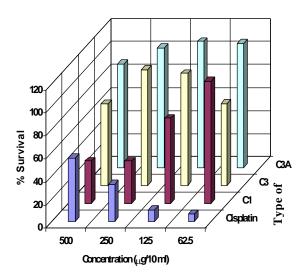


Fig 7: Three dimensional histograph of over all tested compounds (C1,C3,C3A) on HEP-2 cells.

References

- 1. S. M. Sentha, Chem. Rev., 1945. 36, 1-62.
- M. E. Marshall, J. L. Mohler, K. Edmonds, B. Williams, K. Butler, M. Ryles, L. Weiss, D. Urban, A. Beuschen, and M. Markiewicz., J. cancer Res. Clin. Oncol., 1994, 120, 39.
- I. Kostova, synthetic & natural coumarins as cytotoxic agent, Curr. Med. Chem. Anticancer Agent, 2005, 5, 29-46.
- **4.** C. P. Siegers and H. C. Bostelmann, J. Irish Coll. Phys. Surg. 1993.
- 5. D. Esiyok ,S. Otles and E. Akcicek , Herbs as a Food Source in Turkey , Asian Pacific Journal of Cancer Prevention, Vol 5, 2004,pp334-339.
- **6.** G. Feuer; J. A. Kellen; K. Koracs. Oncology, 1976, 33, 35.
- D. Thornes; L. Dally; G. Lynch, H. Browne; A. Tanner; F. Keene; S.

- O'Loughlin; T. Corrigan, P. Daly; G. Edwards. B. Breslin; H. Y. Brown; M. Shine; F. Lennon; J. Hanley N. McMurray; and E. Gaffiney; Eur. J. Surg. Oncol., 1989, 15, 431.
- 8. B. Omarbasha; W. R. Fair; and W. D. Heston; Cancer Res. 1989, 49, 3045.
- L. D. Raev, E. Voineva; I. C. and Ivanor;
 D. Popov; pharrmazie. 1990, 45, 696.
- **10.** A. maucher; and E. Von Angerer; J. Cancer Res. Clin. Oncol., 1994, 120, 502.
- **11.** M. E. Marshall; K. Butler; and A. Fried, mol. Biother, 1991, 3, 170.
- J. L. Mohler; L. G. Gomella; E. D. Crawford; L. M. Glode; C. D. Zippe; W. R. Fair, and M. E. Marshall; Prostate. 1992, 20, 123.
- **13.** I. M. Taher Aziz Baker, Ms. C. Thesis, Mosul University, (2006).
- **14.** V. K. Pandey; S. Tusl; Z-Tusl; M. Joshi and S. Bajpal; Acta Pharm. 2004, 54, 1-12.
- 15. M. A. Bayoumi; M. El-Aasser and F. Abdel Halim, J. Am. Chem. Soc. (1971), 93,586.
- **16.** Y. Huisen and X. Xinfu; J. Jan. 1,2003; Vol. 5, No.2, 17.
- 17. R. I. Freshney; cultures of animal cells, 3rd ed. Wiley-Liss, 1994, PP. 267-308.
 18. W. L. Meckeechan, K. A. Mckeehan and R. G. Ham; Improved medium for clonal growth of human diploid cells at low concentration of serum protein. In vitro, 1977, 13: 399-416. (Cited by

Freshney, 1994).