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1.Abstract:

The paper is used to compute the primitive variables of supersonic flow based on
finite difference computational tfluid dynamic methods. The problem was considered
15 to deal with a two dimensional external. inviscid, compressible supersonic flow
over a wedge body. In this work Euler equation was solved using time-marching
MacCormack's explicit technique. The tlow conditions are taken at sea level and
Mach number was tested at 2.5, To deal with complex shape of wedue body the so-
catled ~ Body fitted coordinate system™ were considered and the algebraic methods
were used to generate grids over a wedge bodv. The results showed a good agreement
with another published results. The results in our work are taken at a wedge angles
cqual to 13 deg. and 30 deg. respectively.

2.List of Symbols:

Svmbol ! Description . Dimension |
a | Speed of sound. _ | nv's i
CFL - Courant Fridrich Lewvs stabilitv condition. o |
C.,C,  Artilicial viscosity coefficients in & and 77 directions | | .

' - respectively. | 7 ' ,
o © - Speeific internal energy per unit mass. ke
I Total cnergy per unit volume. N J 'm"m |
L Column vecter in Cartesian coordinates. ]

!
F.F Column vector in body fitted coordinates.

L Length of the wedge. | m

J P Jacobian of coordinates transtormation. B
M i Free stream Mach number.
T i -

' - B oy i
P i Free stream pressure, N/m”
4 i
0, s vector.
O Vector of conserved variable in body fitted coordinates. ‘

Re Revnoeld's number, N \
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R ! Universal gas constant. b Jke K
| g
1 PRSI Y f
‘ SOI Artificial viscosity term.
T : Free stream temperature. : K
. ‘
: l | Time. sec
U ! Velocity compoment in x-direction. mssec :
- - . . A . . !
L - Contravariant velocity component in é‘-dlrectzon m/sec
v _ Velocity compoment in v-direction. i nvsec
V - Contravariant velecity component in 77 -direction m/sec
NV Cartesian coordinates m
Greek Syvmbols
7 - Ratio of specific hearts. i
At - Time step. seC i
J2 Density. : Kg/m® ‘
24 Angle of atiack. | Deg !
& - Boundary layer thickness. i m ,
Av, Av - Spatial steps in physical domain. [ W
AZLAY Spatial steps in computational domain.
- I .
2. | Computational coordinates. 1 ‘
Subscript

i1 Node svmbols indicates position in x and v directions.
Zo Lol b LIee strean.

o Stagnation (total) conditions.

Superseript:

1l Time level 1.

n=1  Time level it~ Aty

YIntroduction
Supersonic tlow was a tflow in which a Mach number is greater than 1. and this
flow 1s very important in the design of airerafi and rockets. During the past. the

cxperimental and analyvtical methods were used to simulate the properties of

supersonic flow over a limited number of shapes. but for supersonic two-dimensional
shapes such as @ 2D wedge. the analvtical method was tailed due to non-linearity also
to design an aircralt many thousands of tests were drawn in a supersonic wind tunnel
which reqires a hard and expensive work and require a very long time. In contrast. a
numerical prediction give the same result with a short-time and an accurate
computation and the computer program may be changed casily to deal with any other
complex shape such as wing, airfoil and missile. In the numerical solution. the
complex differential equatiens are overcomed by replacing it with differences.
caleulated from a hinite number ot values asseciated with the computational nodes.
which are distributed on o suttable grid over the solution domain. This work, was
completed the previous work by Favadh {1], which deal with the same problem but it
Is restricted. since the primitive variables 1s not explain in detail. In this study, the
predictor-corrector MacCormack™s explicit finite difference method was used to
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predict the aerodynamic properties of two-dimensional external compressible inviscid
supersonic flow, such the velocity, pressure, density, Mach number and temperature
at each grid. The time- marching method was chosen to treat a wedge as a plane body.
In the next section. the mathematical model was described in detail and the style.
which used to produce meshes or grids are given, It is very important to refer that the
primitive variable covers. velocity. density. temperature, pressure and Mach number.

4.Mathematical Model:
Supersonic flow treats with a non-viscous. non-heat conducting fluid. so it is
deseribed by Euler equation. The latter is obtained from Navier-Stokes equations by
neglecting all shear stresses and heat-conduction terms. so it 1s a vaild approximation
ows at high speed (supersonic flow). i.e.. at high Reynolds number outside the
viscous region developing near solid surface. The mathematical behavior of the Euler
equation is classitfied as hyperbelic in supersonic tlow |2]. The solution is obtained
using time-marching method. in this method three points must be noticed.
1. The grid points are generated in physical plane and transtformed to computational
nlane before solving geverning equations.
The solution is obhtained bv marching from seme inttial flow field through time
until a steady — state 1s obtained.
The governing equation for an inviscid, non-heat conducting,  external.
compressible, two-dimensional supersonic low expressed in conscrvation
form are [3]:
Continuity equation:
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It is suitable to put these cquatmns in a vector form before applving a numerical
scheme to these equations. The 2-dimensinal Euler cquation may be arranged  in
vector torm as -
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where Q.E and T are celumn vectors defined by:
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also the equation of state is given by :-
p = pRT . atambicnt temperature, it becomes -
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P . {6)
RT,
and the free stream Mach number is given by :-
—
“'\[;_ A /R 7—‘:(
The total pressure and temperature (or stangation pressure and temperature) are given
by -

P

o :}7,-} = (,.‘/;l)‘\[:—’,.',l AT
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The Revnolds number and boundary laver thickness are given by -

o, L 3
Re = el and 5 = 19[‘ )
i, Re'l”
Moreover the velocity components are given by :-
u, =1 cosa . (10-A)
v, =l sing ...(10-B)
where 7= 1/ @, noting that-

M=Mach number. and a,. = speed of sound.
P =Fluid veloeity.

J:Boundaz}' laver thickness.

Re=Revnolds number,
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5. Two Dimensional Mesh Generation

Grid or mesh generation is a method which is used to treat the complexity of
the governing equations in supersonic fluid dynamic which is in most cases can not
be solved analvtically. In this work. the algebraic grid generation method is used to
produce grid. This method generates erid points in space by nieans of mterpolations
based on given boundarnv data. Because of the non-uniform shape of wedge. a  bodv
Hited courdinate system * is used for the transformation of governing equations {from

Goeartesian system (5. to a general curvilinear sytem (£, 77) and it used to transform
from p/.r_ysic—al plane 1o the computational plane. The transformation of any partial
ditlerential equations from physical plane {(x.v) to computational plane (£,77) are
defined by the following relations ;-
Sy L (TT-A)
TN Ny L TT-1)
The details of ransformation is complex. for more details. it is
recommended to see [4] and the results are given by
1= [\ Yoo, ]_I (1)
where T s the jacobian of transfiormation. and it is defined as the ratio of the
volumes in the physical space to that of the computational space. Also the metrics of
ranstormation are given by (in two dinension) as follows:-
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L= Xy, L (13-A)
=1y ..{13-B)
n,=Ix-
the physical meaning of the metrics is that. it represents the ratio of arc length in the
computational space to that of the physical space. The terms x- . x, v ... @
computed numerically using forward approximation. as an example :-
- a -
Fea Dt S A S % S S
_‘1'“:'_\'1 _ R Kigpel Sl (14)
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6.Numerical Procedure

Explicit time-dependent solution ol the two-dimensional Euler equations has
been performed using MacCormacks predictor- corrector finite difference technigue.
which is second-order accurate in both space and time. This method is very effective
finite difference technique for viscous and inviscid supersonic tlow, specially for
unsteady flow shock capturing. By using this technique a computer program s
constructed to predict the shock wave which consists from the following steps:
1 2 two-dimensional domain is chosen over a wedge . which consists from {

im=53, jm=063 ).wherc:-
im = maximum number of grids in x-direction.
jm = maximum number of grids in v-direction.
2. a erid generation is performed in two direction and the Jacobian and
ditferent metrics are calculated.

~a flow conditions such as (u .v .T. pand P) are computed at the surface

fad

Ty and han thoere are comnated in the domnin exeept ot the surfaee
where (I=1 to I=im. J=2 to J=jm).

1. atime step caleulation is performed. the time step employed in this work is
desivned so that it is not exceed the maximum step size permitted by
stabilit. In this study the inviscid CFL conditions [5] is uscd which 1s
aiven by the following relation:-
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3 a changing of primitive variables to fluxes Is occurred which causes to ;
compute the vaiues of flux vectors forall grid points at time step (n).
6. a torward predictor version of MacCormack™s which is given by [4] :-
— F N T A [0 =aal
TR [Ty ) ) SR o (16)
Al ' Ay '
s used inside the domain where (I=2 w0 im-1.j=2 to jm-1} where
noisthe time level (hand n+1 is the time Tevel t-dt )

7 in order to make our numerical scheme accurate and stable. sinee we deal .

h
~—

-
—

with high velocities (high Reynolds number) the following expression for
R

explicit artificial viscosity is added w the predictor step. where SQ{ s

a4 tourth-order artiticial viscosity term. defined by [5]:-
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The main advantage of artificial viscosity is to provide some mathematical dissipation

analogous to the real viscous ¢ffects inside the shock wave.

8. adecoding 1s eccurred which is used to produce our parameters from fluxes. also at
this step, the contravarient velocity components which defined by :-

U=JTu+l v

(18)

N=nu-—nu

is computed The contravarient velocity components U and 'V represent velocity

compoenents which are perpendicular w planes of constant 77 and =

9. corrector step 1s computed. where the value of fluxes { E . F ) are computed at
cach grid in the intermediate level (n+1) depending on the values of primitive
variables from previous step. so the computations occurs inside the domain [i=1 to
1I=inL. =1 to j=jm].

10, a backward corrector version of MacCormacks method which is given by [4] is
then applied :-

U‘ﬂ:mng+§5:{Efvgihﬁﬂw”—ﬁﬂﬂ L (19)

b i L=
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which is used inside the domain ¢ 1=2 to 1im-1. j=2 to jm-1 ) and. alse a
tourth-order artificial viscosity term [3] at corrector step is added to Eq. (19).
This expression s given by:
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PLoalter a corrector step is completed. a decoding step began where our purameters
such as (uv P.T and N ) are computed.
[2. our parameters are computed under ditterent boundary conditions which can be
explained as foliows:-
i.oup-stream boundary condition  (i=1. j=2 to jm) and at the edge of
the body (=1a=1 10 i=im)
1. sohid boundary condition (j=la=2toim)
i, down stream boundary condition (=im. )=2 to jm-1}.
v, upper plane ot ssymmetry( 1=2 to im and j=2 to jm).
vooplane of svmmetry (] =jm. =2 to im ).

13, The convergence of the solution is examined, knowmg that the last flow
fleld variable o he convergence is the density. therefore. the following
convergence criterion was established at every point in the flowfield from
one time step to the next. where [6]:

crror = £ T i < ey 8 (21
Pt
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7. Results and Discussion

Figures (1) and ( 2) show a mesh generation over a two-dimensional wedge in
supersonic inviscid flow with wedge angles cquals to (15 degree) and (30 degree)
respectively. The mesh points are produced by using an algebraic grid generation
with (33 x #3) grid points in both cases. The explicit technique has required about
(15300) time -ieps to achieve the converged solution.

Figure :3) and figure (8) show a Mach number contours for supersonic wedge
with wedge angle=15 degree and 30 degree respectively, and the free stream Mach
number = 2.5, In both figures, the shock wave can be noticed clearly. From these
ficures. the flow pattern near the leading edge of wedge where the incoming
supersonic fow undergoing a sudden change in {low direction resulting a continuous
compressior wave, The angle of the shock wave depends on wedge angle and free
stream Mach number. The shock is observed to be detached from wedge angle and
flow behined the shock near the trailing edge of wedge area becomes subsonic. Alse,
in figure (S) the shock strength increase with increase the wedge angle from (15
degree) in figure (3) to (30 degree) in figure(8) until the flow becomes subsonic
behined the shock. This prediction gives a good agreement with the experimental
results deal’1g with the same problem as indicated in |7].

Figures (4) and (9) show a temperature contours for supersonic wedge angles
equal to (13deg.) and (30 deg.) for free stream Mach number = 2.5 . These figures
indicate tha: the temperature distribution occurs at the region between the wedge
surfiace and the shock wave, Also. the temperature increases as wedge angle increase
due to shock wave strength and is decreased gradually toward the free stream value.

Figures (3) and (10) show a density contours over a supersonic wedge with
wedge angles equal to (15 deg.) and (30 deg.) respectively. From these figures. the
density valuss increases with increasing the wedge angle and this is due to increasing
in shock wawe strength.

Figures (6) and (11) explain a pressure contours over a wedge at wedge angles equal .
to (15 deg.) and (30 deg.) respectively. From both figures, the pressure values .
increases a wad of shock and then decreased toward its free stream value away from

the shock. 7his is agree with [8] also. the pressure values is increased dramatically as

wedoe angle increase.

Figures (7) and (12) show the veloeity contours over a two-dimensional wedge
with wedge angle =15 deg. and 30 deg. respectively. Both figures show clearly the
shock wave prediction and again the velocity values increase with increasing wedge
angle: so that values of velocity in figure (7) is less than the corresponding values in
figure (12). This increasing is connected with increasing in the Mach number values,
which as cxplain above increase with increasing wedge angle. Also, {rom these
figures. the eduction in velocity clearly noticed down stream of the shock. This is due
to change in flow behaviour from supersonic flow a head of the shock to subsonic
flow downs ream of the shock.

8. Conclusions
The fe lowing conclusions can be drawn from the results of the present work :-
1. a soluticn of Luler equation for wedge converges at a range of (1000-1500)
iteration. The range of iteration is related to the procedure of mesh producing.
2. for capturing the flow field parameters ; a more grid points are required near the
surface.
. geometr and wedge angle have an important effect on the flow field pattern; where
in the sunersonic {low the change in tlow direction due to geometry induced 2 type
)

tad

&

of drag. This is called wave drag.

ATR AT
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+. since the mesh generation has been separated from explicit solver any mesh type
can be used. The stability of the solution depends on the number of grid points and
CFL condition.

- shock angle increases as the wedge angle increases at the same free stream Mach

number.

6. The rise in the value of temperature at the stagnation point is due 1o flow nature
change from supersonic a head of the shoch to subsonic down strean: of the shock.
This change will reduce the kinetic energy and at the same time. this reduction
gives an increase in internal energy and as a result increase the temperature.,

7. The time-marching solution which is used to deal with a planer bodv as a wedge.
which can be extended to deal with an axis-symmetry body such as a rocket.

8. from  the results obtained. the hyvdrodynamic properties such as pressure.
temperature and density are increased as the wedge angle is increased.

9. The software constructed explains. that the convergence depends on the optimum
values of the grid points. artificial viscosity and CFL.
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2.5 1 | Mesh points (53 x 63 ) '
: artificial viscosity = 0.5 |
I wedge angle 15 degree. |

max.iteration = 1500 |

i

05 b

Fig.1 Mesh generation over a two-dimensional wedge in
supersonic inviscid flow.

2.5 ' Mesh pomts(53x63) ! i

- | artiticial viscosity = 0.5 ! ‘
" wedge angle = 30 degree | }
i max. |teratlon-150 ‘ I

F10 2 Mesh ﬂenelatlon ovu a two dlmensmnal wedﬂc in
supersonic inviscid tlow.
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Fig.3 Mich number contours for supersonic wedge with wedge angle =15 deg
and free stream Mach number = 2.5
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Fig.7 Velocity contours over a two-dimensional wedge with
i wedge angle = 15 deg. and free stream Mach number = 2.5
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tig.8 Mach no. contours over 2 two-dimensional wedge with
awedege angle = 30 deg. and free stream Mach number = 2.5
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Fig.5 Density contours over a two-dimensional wedge with
wedge angle = 15 deg. and free stream Mach no. = 2.5.
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Iig.6 Pressure contours over a two-dimensional wedge with
wedge angle = 15 deg. and free stream Mach no. = 2.5,
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Fig. 11 Pressure contours over a two-dimensional wedge with
wedge angle = 30 deg, and free stream Mach no, = 2.5.
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wedge angle = 30 deg. and free stream Mach no. = 2.5,
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FFig.9 Temperature contours for supersonic wedge with  wedge angle = 30 deg.
and free stream Mach number = 2.5
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Fig.10 Density contours for supersonic wedge with wedge angle = 30 deg. and

frec stream Mach number =2.5




