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ABSTRACT 

 
A novel design of miniaturized microstrip bandpass filter is presented for use in modern wireless 
communication systems. The proposed filter structure is composed of dual fractal-based microstrip 
resonators. The structure of each resonator is in the form of the Hilbert fractal curve geometry. Two 
single-mode resonators with structures based on the 2nd Hilbert fractal-shaped geometries have 
been modeled at a design frequency of 2.4 GHz (ISM Band). The resulting filter structures based on 
these resonators, show considerable size reduction compared with the other microstrip bandpass 
filters based on other space-filling geometries designed at the same frequency. Another set of 
bandpass filter designs based on the same resonators but with a tuning stub has been also 
presented, in an attempt to provide practically useful means to tune the filter to the specified 
performance with a considerable tuning range. The performance of the resulting filter structures has 
been evaluated using a method of moments (MoM) based software package, Microwave Office 
2007, from Advanced Wave Research Inc. Results show that the proposed filter structures possess 
fine return loss and transmission responses besides the size reduction gained, making them 
suitable for use in a wide variety of wireless communication applications. Furthermore, performance 
responses show that the second set of filters, based on Hilbert shaped resonators support the 2nd 
harmonic suppression. 
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INTRODUCTION  

 
Fractal geometry has found extensive applications in almost all the fields of science and art, since 
the pioneer work of Mandelbrot about three decades ago [Mandelbrot, 1983]. Among these fields 
are the physical and engineering applications. In electromagnetics, fractal geometries have been 
applied widely in the fields of antenna and passive microwave circuit design, due the fantastic 
results gained in the miniaturization and the performance as well. Bandpass filter (BPF) is one of the 
most important components in microwave circuits. To meet the size requirement of modern 
microwave communications systems, compact microwave BPFs with narrowband is in high demand. 
Recently, there has been an increasing interest in planar BPFs due to their ease of fabrication. 
Filters using various planar resonators such as the open loop, miniaturized hairpin, stepped-
impedance, quarter-wave, and quasi-quarter-wave resonators have been proposed for either 
performance improvement or size reduction. 
Dramatic developments in wireless communication systems have imposed new challenges to 
design and produce high selectivity miniaturized components. These challenges stimulate 
microwave circuits and antennas designers to seek out for solutions by investigating different fractal 
geometries [Chen, et.al, 2007, Xiao, et.al, 2007, Wu, et.al, 2008 ]. 
Different from Euclidean geometries, fractal geometries have two common properties, space-filling 
and self-similarity. It has been shown that the space-filling property of fractals can be utilized to 
reduce filter size. Research results showed that, due to the increase of the overall length of the 
microstrip line on a given substrate area as well as to the specific line geometry, using fractal curves 
reduces resonant frequency of microstrip resonators, and gives narrow resonant peaks[Crnojevic, 
et.al, 2006, Kim, et.al, 2006, Xiao, et.al, 2007, Wu, et.al, 2008].  
Hilbert fractal curve has been used as a defected ground structure in the design of a microstrip 
lowpass filter operating at the L-band microwave frequency [Chen, et.al, 2007]. Sierpinski fractal 
geometry has been used in the implementation of a complementary split ring resonator [Crnojevic-
Bengin, et.al, 2006]. Split ring geometry using square Sierpinski fractal curves has been proposed to 
reduce resonant frequency of the structure and achieve improved frequency selectivity in the 
resonator performance.  Koch fractal shape is applied to mm-wave microstrip bandpass filters 
integrated on a high-resistivity substrate. Results showed that the 2nd harmonic of fractal shape 
filters can be suppressed as the fractal iteration level increases, while maintaining the physical size 
of the resulting filter design [Kim, et.al, 2006]. Minkowski-like and Koch pre-fractal geometries have 
been successfully used in producing high performance miniaturized dual-mode microstrip bandpass 
filters [Ali, 2008, Ali, et.al, 2009].  
In this paper, new microstrip bandpass filters, based on Hilbert fractal geometry, have been 
presented as a candidate for use in compact communication systems. The proposed single-mode 
bandpass filters have been found to possess compact sizes with accepted return loss and 
transmission responses.   
 
 
 
 
 
 
 
 
 
 
 
 
 



 

THE HILBERT FRACTAL CURVE 

 
The Hilbert fractal curve, as outlined in Figure (1), consists in a continuous line which connects the 
centers of a uniform background grid. The fractal curve is fit in a square section of S as external 
side. By increasing the iteration level k of the curve, one reduces the elemental grid size as

)12( kS ; the space between lines diminishes in the same proportion. For a Hilbert resonator, 

made of a thin conducting strip in the form of the Hilbert curve with side dimension S and order k, 
the length of each line segment d and the sum of all the line segments L(k) are given by [Barra, 
et.al, 2004] : 
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The main idea here is to increase the iteration of the Hilbert curve as much as possible in order to fit 
the resonator in the smallest area. However, it has been found that, when dealing with space-filling 
fractal shaped microstrip resonators, there is a tradeoff between miniaturization (curves with high k) 
and quality factor of the resonator. For a microstrip resonator, the width of the strip w and the 
spacing between the strips g are the parameters which actually define this tradeoff [Barra, et.al, 
2004]. Both dimensions (w and g) are connected with the external side S and iteration level k (k≥2) 
by 
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From this equation, it is clear that trying to obtain higher levels of fractal iterations; this will lead to 
lower values of the microstrip width, thus increasing the dissipative losses with a corresponding 
degradation of the resonator quality factor. Hence, for these structures, the compromise between 
miniaturization and quality factor is simply defined by an adequate fractal iteration level.  However, it 
has been concluded, in practice, that the number of generating iterations required to reap the 
benefits of miniaturization is only few before the additional complexities become indistinguishable 
[Gianvittorio, 2003].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

         

FILTER DESIGN AND PERFORMANCE EVALUATION 

 
At the begining, a single resonator based on the 2nd  iteration Hilbert fractal geometry, has been 
designed at a frequency of 2.4 GHz. It has been supposed that the modeled filter structures have 
been etched using a substrate with a relative dielectric constant of 10.8 and a substrate thickness of 
1.27 mm. The resulting resonator dimensions have been found to be 6.125 mm × 6.125 mm, and a 
trace width of about 0.35 mm. The guided wavelength λg at the design frequency and the stated 
substrate parameters is calculated by [Hong, et.al, 2001, Chang, et.al, 2004]: 
 

effg fc                                                                      (3) 

 

where 2)1(  reff   .  

The same resonator with depicted dimensions and substrate specifications has been used to build a 
two-resonator microstrip bandpass filter. The input/output feed tab positions and spacing between 
the resonators are the most important parameters affecting the filter performance [Hong, et.al, 2001, 
Swanson, 2007]. The topology of this filter is shown in Figure (2). The overall dimensions of this 
filter are of about 6.125 mm × 12.45 mm. The corresponding return loss and transmission responses 
are shown in Figure (3). 
It is clear, from Figures (3), that the resulting bandpass filters based on the 2nd  iterations Hilbert 
fractal geometries offer good quasi-elliptic transmission responses with transmission zeros that are 
symmetrically located around the design frequency with return losses are of about 13.2 and 
insertion losses of about 0.235.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FILTER DESIGN WITH TUNING STUB 

 
The bandpass filters, with the layout shown in Figures (2), have been remodeled but with an 
additional stub connected to one end of each resonator, keeping the resonator side length S, the 
inter-resonator spacing and the tap positions constant . Figures (4) shows the layout of the new 
filters based on the 2nd  iteration Hilbert fractal geometry with stubs. The stub length has been varied 
from zero (no stub exists) to a maximum value of S (the resonator side length) in steps of one-
quarter S. Four projects, corresponding to the new filter with four different values of the added stub 
length, have been implemented in the EM solver. Figures (5) and Figures (6) demonstrates the 
transmission(S21)  and return loss(S11) responses of the four cases. It is clear that the additional 
stub provides a useful tuning feature, where a stub of a length S provides a tuning frequency range 
of about 300MHz for 2nd  iteration respectively which are considered important in practice. 
Furthermore, it has been found that, besides the frequency tuning the additional stub presents, it 
also affects the overall filter performance. Figures (7) shows the out-of-band transmission 
responses of the two filters; with and without stubs for 2nd  iteration resonator filters. It is clear that, 
the filter with stub offers better 2nd harmonic suppression than the other filter does. Inspection of 
Figures (7) reveals that, the presented filter in both iteration levels offer lower a resonant frequency 
when provided with a tuning stubs. This is attributed to the fact that the additional stub will make the 
overall length of the resonator larger, and hence resonates at a lower frequency. Appropriate 
dimension scaling might be carried out to bring the resonance to be at the design frequency.   
The proposed filter designs can be applied to many other wireless communication systems; the filter 
dimensions can easily be scaled up or down depending on the required operating frequencies. 
Figure(8) demonstrates the surface current  distribution on the conducting surface of both 
resonators at the design frequency.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

CONCLUSIONS 

 
 A new quasi two-pole microstrip bandpass filter design for use in modern wireless communication 
systems has been introduced in this paper. The proposed filter structures have been composed of 
dual coupled resonators which are based on 2nd  iteration Hilbert fractal curves. The space-filling 
property the proposed filter structure possesses, results in a high degree of miniaturization with 
reasonable passband performance. Consequently, the proposed technique can be generalized as a 
flexible design tool for compact microstrip bandpass filters for a wide variety of wireless 
communication systems. Also, it has been found that adding a tuning stub to each resonator 
provides the designer with a practically useful means to tune the resulting filter response to the 
specified design frequency. Furthermore, performance responses show that the new filter has less 
tendency to support 2nd harmonic.  
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Figure. (1) Hilbert curve steps of growth:  (a) 1st iteration (b) 2nd  iteration (c) 3rd 
iteration, and (d) 4th iteration 

 

                    

                    

               

 

 

              

           
   

Figure.(2) The layout of the two-pole microstrip bandpass filter based on the 
2nd iteration Hilbert curve geometry 
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Figure.(3) The return loss (S11), and transmission (S21) responses of the filter 
structure based on the 3rd iteration Hilbert curve geometry depicted in Fig.(2)   
 

 

Figure.(4) The layout of the modeled two-pole microstrip bandpass filter based 
on 2nd  iteration   Hilbert resonators with tuning stubs 
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Figure.(5)  The transmission responses (S21)  of the filter structure based on the 3rd iteration Hilbert 
curve geometry with stub depicted in Fig.(4)  
 

 

 
 

Figure.(6)  The return loss responses (S11)  of the filter structure based on the 3rd iteration Hilbert 
curve geometry with stub depicted in Fig.(4)  

 

 

 



 
          

 

Figure.(7) The out-of-band transmission responses of the proposed filters based on the 3rd iteration 
Hilbert curve geometry; with and without stubs. 

 
 

 

   Figure(8) Current 
density distribution at the conducting surface of the 2nd   iteration stubbed Hilbert bandpass filter 

simulated at a resonant  frequency of 2.4 GHz 
 

 

 


