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Abstract

The aim of this paper is adopted to give an approximate solution for advection
dispersion equation of time fractional order derivative by using the Chebyshev
wavelets-Galerkin Method . The Chebyshev wavelet and Galerkin method properties
are presented. This technique is used to convert the problem into the solution of
linear algebraic equations. The fractional derivatives are described based on the
Caputo sense. Illustrative examples are included to demonstrate the validity and
applicability of the proposed technique.
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1. Introduction

Fractional calculus is a generalization of classical calculus, which provides an excellent tool to
describe memory and hereditary properties of various materials and processes. Fractional calculus has
found diverse applications in different scientific and technological fields[1-5], such as thermal
engineering, acoustics, electromagnetism, control, robotics, viscoelasticity, diffusion, edge detection,
turbulence, signal processing, information sciences, communications, and many other physical
processes and also in medical sciences.

Differential equations of fractional order are generalizations of ordinary differential equations to an
arbitrary (non integer) order. They have attracted considerable interest because of their ability to
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model complex phenomenas. These equations capture nonlocal relations in space and time with
power-law memory kernels. Due to the extensive applications of differential equations of fractional
order in engineering and science, research in this area has grown significantly all around the world [6].
Partial differential equations of fractional order, as generalizations of classical integer order partial
differential equations, are increasingly used to model problems in fluid flow, finance, physical and
biological processes and systems [7-15].

As a special type of partial differential equations of fractional order, fractional order advection-
dispersion equation have been applied to many problem. For example, as mention in [16-18], in
practical physical applications, dispersion or diffusion problems such as mixing in inlandand coastal
waters [19], transport of thermal energy in a plasma, flow of a chemically reacting fluid from a flat
surface, evolution of populations [20], and groundwater hydrology to model the transport of passive
tracers carried by fluid flow are modeled by the advection-dispersion equation of fractional order.
There are several methods to solve the advection—dispersion equation such as variable transformation
[21], the Green function [22], the implicit and explicit difference method [23-26], and the Adomian
decomposition method [27].

In this paper, we consider the following advection dispersion equation of time fractional order of

the form:

%u(xt) _ d%u(xt)  du(xt)
at* 9x2 0x +x1), (1)

0<x<1,0<t<], 0<a<1
subject to the initial condition as following:
u(x,0) = 9(x), 0<x<1 (2)
and boundary conditions
u(0,t) = £o(t) 3
{u(l,t) =£,(), 0<t<1 3)

The organization of the rest of this article is as follows. In section 2 we introduce some necessary
definitions of the fractional calculus theory, in section 3 the Chebyshev wavelet function, as well as,
its properties are introduced. While in section 4 we illustrate how Chebyshev wavelet function with
Galerkin method may be used to replace problem (1)—(3) by an explicit system of linear algebraic
equations. In section 5, we present some numerical examples to demonstrate the effectiveness of the
proposed method, concluding remarks are given in the final section.

2. Fractional Derivative and Integration

In this section, we shall review the basic definitions and properties of fractional integral and

derivatives, which are used further in this paper [28].

Definition (1):- The Riemann-Liouville fractional integral operator of order v > 0, is defined as

IV(x) = %V) Jox—0VH®dt, v>0,x > 0. (4)

1°f(x) = f(x)
Definition (2):-The Riemann-Liouville fractional derivative operator of order v > 0, is defined as
1 d" —v—
oDY(X) =t o Jox =PV H(®)dt, v>0,x > 0. (5)
Wherenisanintegerandn—1<v <n.
Definition (3):- The Caputo fractional derivative operator of order v > 0, is defined as

1 —y—q d”
D) = s Jox—pnv ' SfOdy, v>0,x>0 (6)
Wherenisanintegerandn —1 <v < n.

The relation between Caputo fractional derivative and Riemann-Liouville:
k
IV DYF(x) = f(x) — ZRZg FO(0) 3 (7)
Wherenisanintegerandn—1 <v <n.
Also, for the Caputo fractional derivative we have
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. 0 for B € Ny and B < [v]
CDV — r _ 8
x r(éfi)v)xﬁ v, forB €Ny and B =[v]or B & Nand > [v]. ©

We use the ceiling function [v] to denote the smallest integer greater than or equal to v, and the
floor function [v]| to denote the largest integer less than or equal to v. Also N = {1,2,...} and N, =
{0,1,2,..}.

Recall that for v =0, the Caputo differential operator concides with the usual identity differential
operator of an integer order. Similar to the integer-order differentiation, the Caputo fractional
differentiation is a linear operator; i.e.

DY(AM(x) + pg(x)) = A “DYf(x) + p “DYg(x)
Where A and p are constants.
3. Chebyshev Wavelets[29]:
Wavelets are family of functions constructed from dilation and translation of a single function

called the mother wavelet. When the dilation parameter a and the translation parameter b vary
continuously we have the following family of continuous wavelets as

_1 -b
Yap(® = lal 2y (=2) abeR a#0

If we restrict the parameters a and b to discrete values as a = agX,b = nbyagX, ag > 1, by > 0,
where n and k are positive integers, the family of discrete wavelets are defined as

Wnk(®) = [aol2p(alt — nbo)
where . form a wavelet basis for L*(R). For a, =2 and by =1, then y,,(t) forms an
orthonormal basis.

Chebyshev wavelets ¢, 1, (t) = (s, n, m, t) have four arguments: k can assume any positive
integer, m is the degree of Chebyshev polynomials and t is the normalized time. They are defined on
the interval (0,1) by

M n(2St-(2n-1)) Alci<_ B

dnm (D) = {22 T ©)
0

otherwise

1
— m=0

- vooo

Tn® =1 1 andm = 0,1,-,M—1andn = 0,1,-,25"%, s€N.
f Tp, m>0

where T,,(t) be the Chebyshev polynomials which are orthogonal with respect to the weighted

function w(t) = \/% defined on the interval [ —1,1] , and satisfy the following recursive formula:

To() =1, Ti(t) = t, Tpeq () = 2tT, (1) — Tp—1 (), m=1,2,3,...,

The Chebyshev wavelets ¢, ,,(t) form an orthonormal basis for L?[0,1] with respect to weighted
function wy, (t) = w(2¥t — (2n — 1)), where L? is the space of square integrable function over [0,1].
A function f(t) defined over L2[0,1] can be expanded in the terms of Chebyshev wavelets as

f(v) = Z;0=0 Zao=0 Cpqq)pq(t): (10)
where cpq = (f(t), dpq(D)w,, in which (,) denotes the inner product. If the infinite series in (10) is
truncated, then it can be written as

s—1 _

f(v) = Zf):l g[=01 Cpqq)pq(t) = CT(I)(‘[), (11)
where C and ®(t) are 2571(M) x 1 matrices given by
C= €C1,00C1,15 =+ C1,M-1,€C2,0,C2,15 =-- CoM =1, - C(Zs_l),O' C(Zs_l),l' ey C(25—1)’M_1)T..(12)

D) = (P10, P11 o Dry—1, D200 D210 e Doty oos D251 0 Pa5-1)10 o0s D51y m1)-(13)

Taking the collocation points as follows:

=2md =122 M,

Let we define the Chebyshev wavelet matrix W, as:

Yisem = [@ (5), @ () o 0] (14)

2m
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An arbitrary function of two variables u(x,t) € (R x R) defined over [0,1] x [0,1], can
expanded into Chebyshev wavelets basis as,
S 1 S
ulx,t) =3, 22 NI cirkd e (O Pra (D), (15)
Let
ux ) = T2, I u;di (0 = @TUD() (16)

where U = (u;;) and uyj = (5 (%), (u(x, 1), d;(D)w, , U is unknown (f x fi) matrix where fi =
25171(M) and fi = 25271(N), the elements of the matrix U can be calculated from

wyj =[5 [ id;(Qux dtdx, i =12,..,/, j=12,..,0

3.1 Operational matrix of the fractional integration
The integration of the vector @(t) defined in Eqg.(13) can be approximated by Chebyshev series
with Chebyshev coefficient matrix P, as:

Jy @(@)dr = Pe,, @(x), (17)
where a m X fi squre matrix P, is called the Chebyshev wavelets operational matrix of integration.
Because the Chebyshev wavelets are piecewise constant, it may be expanded into m — term Block
Pulse Function (BPF) as:

D () = Pryxm Bm () (18)

where
B (x) £ [bo(x), by (%) ... b (x) ... D1 (0)]”
i i+1
With b;(x) = {1 mSX< T , wherei=0,1,2,..m—1. (19)
0, otherwise

The function b;(x) are disjoint and orthogonal, that is:

i#1
i=1

bi(x)b;(x) = {l?i(x),

Next, we shall derive the Chebyshev wavelets operational matrix of the fractional order integration by
letting:

(Iaqu)(x) = PCW;anm d)m(x) (20)
where the matrix Pe,;. .. is called the Chebyshev wavelets operational matrix of the fractional
integration
Kilicman and Al-Zhour in [30] have given the Block Pulse operational matrix of the fractional
integration is

[*B,,(x) = F*B,(x), (21)
/1 $1 & fm—1\

0 1 & - $m—2
a _ 1 1
T ma F(a+2)| 0 0 1 - $mes |' (22)
\O O 0 1 /

With &, = (k + 1)*+1 — 2k 4 (k — 1)%+1,

where
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Now using (18) we have

(]“(Dm)(x) = (I“LmemBm)(x) = LIJme(I“Bm)(x)
~ WhxmF* By (%)
Then
PCw;anm P (%) = PCw;anmmexmBm
= lpm><mFaBm(x)

So the Chebyshev wavelet operational matrix of the fractional integration PCanxm is given by

PCWz‘Lxm = LmemFanr?&m (23)

4.Function approximation
Consider advection dispersion equation of time fractional order derivative of the form:

0%u(xt) _ 0%u(xt)  du(xt)
e ox? ox T D), (24)

0<x<1,0<t<], 0< a1
subject to the initial condition as following:

u(x,0) = 9(x), 0<x<1 (25)
and boundary conditions

u(0,t) = £o(t)

{u(l,t) =4,(t), 0<t<1 (26)

By applying the Riemann-Liouville fractional integration of order a with respect to t on both sides of
Eqg. (24) and using the initial condition in Eq. (25), we obtain:
2
u(x ) =960 = (193) () = (1952) (0 + 1“D (.Y @)

. %u(xt
Now, we approximate ;f;)

%u(xt) _

o = PTUR(D) (28)
Where U = [ui]-]ﬁ1><ﬁ is an unknown matrix which should be computed and ®(x) is defined in Eq.(13).
Now integrating two times Eq. (28) with respect to x, we get

by the Chebyshev wavlet as:

uxd  JUED] | pT(x) P, TUD(L) (29)

0x 0x lx=p ,
uCx 0 = u0,0 +x (52| )+ oTeo(Pe") Ve (30)

and by putting x = 1 in Eq. (30), and considering Eq.(26), we obtain
2| = ® —£o(0) ~ T (W)(Pe ") US (D) (31)

Let we expand £, (t) and £, (t) by the Chebyshev wavlets as follows:
Lo(t) = LTD(t) and ¢,(t) =~ LTd(1) (32)

Where G, and G, are the Chebyshev vectors.
By substituting Eq.(32) into Eq.(31), we obtain
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du(x,t)
ox

= (L] — £F - oT(W)(Pe, ") V) D (2) £ T (1) (33)

x=0

Now, by substituting Eq.(33) into Eq.(29) and Eq.(30), we have

RED ~ EOT + Py, U = @7 (x)VD (1) (34)
w(x, t) =~ & (x) [ELS +XOT + (PCWT)ZU] = T (X)QP(t) (35)

Where X and E are the Chebyshev wavelets coefficient vectors for x and the unit function (or
Heaviside function) respectively.
Furthermore, we expand s(x) and f (x, t) by the Chebyshev wavelet as:

I(x) = T (x)0, f(x,t) = @T(x)FPD(t) (36)

Then by substituting Egs.(28), (34)-(36) into Eq.(27), and using operational matrices of fractional
integration of Chebyshev wavelets, we can write the residual function R(x,t) for equation (24) as
follows:

R(x,t) = ®T()[Q—UPqys . +VPey %, —OET —FPg, % 1&(t).

The expansion coefficients u;;,i = 1,2, ...,7Mm,j = 1,2,..., 7 are determined by Galerkin equations:

(R(x,8), $i(x)9j(t))w, = 0 @37)

Where (.) denotes inner product defined as

(R(x, 1), $i()b;O)w, = [ fy RO, OG0 (O)dxdt, i =12,...,M,j = 1,2,.., 7 (38)
Galerkin equations (37) give a system of equations that can be solved for the elements of w;;, i =
1,2,..,M,j =1,2,..,7
4. Numerical Examples:

In this section, we will examine the accuracy and efficiency of the proposed method by the two
following examples.
Example 1[31]: Consider the following advection dispersion equation of time fractional order:

0%u(xt) _ d%u(xt) , du(xt)
e = o7 k——=+f(x1), (39)
0<x<1,0<t<], 0<a<1
subject to the initial condition as following:

ux,0) =0, 0<x<1 (40)
and boundary conditions

u(0,t) = 0

{u(1, =0 0<t<1 (41)

3-a
Where f(x,t) = % (x3—x*) + t3(—6x + 15x2 — 4x3),

The exact solution of this problem is u(x, t) = t3x3(1 — x).
We Apply the present method for solving Eq. (39), the diagram of the comparison between the exact
and approximate solution for m =i =12 (s; =s, =1,M = N = 12), and o = 0.5 is presented in
Figure-1 and the error for different values of alpha is presented in Figure-2 also the absolute errors
when solving this problem are listed in Table- 1 for different values of x and t with various value of a
form=A=24(s;=5,=2,M=N=12).
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the Exact solution
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the numerical solution

Figure 1- The comparison between the exact and approximate solution for m = fi = 24

x 10°

Plot the error for different values of alpha
T T T T

alpha=0.3
8~ alpha=0.5
alpha=0.75
alpha=0.9

Figure 2- Plot the error for different values of alpha

Table 1-The absolute errors for some different values of « and x, t

x,0) a=20.3 a=0.5 a=0.75 a=20.9
(0.1,0.1) 5.2065e-006 7.0789e-006 8.1245e-006 7.3206e-006
(0.2,0.2) 7.4259¢-005 9.6464e-005 1.1836e-004 1.2244e-004
(0.3,0.3) 3.5494e-004 4.4501e-004 5.4504e-004 5.8270e-004
(0.4,0.4) 1.0498e-003 1.2808e-003 1.5450e-003 1.6619e-003
(0.5,0.5 2.3137e-003 2.7605e-003 3.2678e-003 3.5004e-003
(0.6,0.6) 4.0896e-003 4.7865e-003 5.5550e-003 5.9000e-003
(0.7,0.7) 5.9111e-003 6.8004e-003 7.7381e-003 8.1332e-003
(0.8,0.8) 6.7225e-003 7.6181e-003 8.5068e-003 8.8416e-003
(0.9,0.9 5.0516e-003 5.6551e-003 6.2069e-003 6.3780e-003
(1.0,1.0) 4.4541e-004 4.4541e-004 4.4784e-004 4.4834e-004
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Example 2[32]: We consider the following non-homogeneous advection dispersion equation of time
fractional order

9%u(xt) _ 9%u(xt) __du(xb)
e ox ox T, (42)

0<x<1,0<t<l1 0<ax<s1l

_ 10x*(A-0e T 2 _ 6x 2x _ 6x%
Where f(x,t) = =22 10(t+ 1) [r =t (2)] +10(t+1) [F T (3)],
With initial condition
u(x,0) =10x*(1-x), 0<x<1 (43)

and boundary conditions
u(0,t) = 0
{u(l. ) =0, 0<t<1 (44)
The exact solution is u(x,t) = 10(t + 1)x?(1 — x).

We Apply the present method for solving Eq. (42), The diagram of the comparision between the
exact and approximate solution for m=0=12(s; =s,=1,M =N =12), and a=0.7 is
presented in Figure-3. Also in Table- 2 we compares the Numerical result for the present methods that
we have been obtained when a = 0.5 with result given in [32] for different values of x and t = 1 for
M=0=24(s; =5, =2M=N =12).

= n
[ I )

the Exact solution

[N

the numerical solution

o
3

= o

=24and a = 0.7

=

Figure 3- The comparison between the exact and approximate solution for m =

Table 2- The absolute errors for ¢« = 0.5 and different values of x witht = 1

(x.1) Exact solution Present method Method [32]
' Numerical solution Numerical solution
(0.1,1.0) 0.1800000 0.17775401 0.17760929
(0.2,1.0) 0.6400000 0.63545182 0.63439865
(0.3,1.0) 1.2600000 1.25138745 1.25076281
(0.4,1.0) 1.9200000 1.90954789 1.90718308
(0.5,1.0) 2.5000000 2.48700110 2.48418437
(0.6,1.0) 2.8800000 2.87001534 2.86234006
(0.7,1.0) 2.9400000 2.92456444 2.92227732
(0.8,1.0) 2.5600000 2.55014586 2.54468333
(0.9,1.0) 1.6200000 1.61125478 1.61031324
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6. Conclusions

In this work, the Chebyshev wavelets —Galerkin methods was successfully extended to solve the
advection dispersion equation of time fractional order. The obtained results revealed that the proposed
method is accurate and efficient in comparison with the result of [31] and [32]. The solution obtained
by this method is in excellent agreement with the exact one.
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