On Generalized Contra Continuous Functions and some Relations with other Kinds of Continuity on Intuitionistic Topological Spaces

Yunis J. Yaseen Ali M. Jasim
Department of Mathematics
College of Education- University of Tikrit

Received: 2009/6/10, Accepted: \(\cdot \cdot \cdot / \cdot / \cdot \cdot \)

Abstract

We study in this paper the concept of contra continuous functions and generalized them in intuitionistic topological spaces and we studied the relations of each kind of these function by properties, examples and a diagram to summarize these functions. Also we study some relation between almost contra continuous function and some continuous functions.

Introduction

The notion of contra continuity was introduced by (Dontchev, 1996) contra semi continuous function was introduced and investigated by (Dontchev & Noiri, 1999), so contra pre continuous was introduced by (Jafari, & Noiri, 2002), also we are going to generalized them on intuitionistic topological spaces.

In this paper we define some kinds of contra continuous, contra semi continuous, contra \(\alpha \) continuous, contra pre continuous, contra \(\beta \) continuous, contra \(\theta \) continuous, contra generalized continuous, contra generalized semi continuous, contra semi generalized continuous, contra generalized \(\alpha \) continuous, contra \(\alpha \) generalized continuous, contra generalized pre continuous, contra pre generalized continuous, contra generalized \(\beta \) continuous, and contra \(\theta \) generalized continuous functions and we give propositions to show the relations among them, some counter examples are given for not implications. We give also a diagram to illustrate these relations. So we study some relations among contra continuous functions and some kinds of continuous functions namely (perfectly continuous, slightly continuous, semi regular-continuous, completely-continuous, regular closed-continuous and B-continuous) by some properties, as well as we give some examples for non-true implications.
Preliminaries

Let X be an empty set, an intuitionistic set (IS, for short) A is an object having the form $A = \langle x, A_1, A_2 \rangle$ where A_1 and A_2 are disjoint subset of X. The set A_1 is called a member of A, while A_2 is called non-member of A, an intuitionistic topology (IT, for short) on a non-empty set X, is a family T of IS in X containing \emptyset, X and closed under arbitrary unions and finitely intersections. In this case the pair (X, T) is called an intuitionistic topological space (ITS, for short), any IS in T is known as an intuitionistic open set (IOS, for short) in X. The complement of IOS is called intuitionistic closed set (ICS, for short), so the interior and closure of A are denoted by $\text{int}(A)$ and $\text{cl}(A)$ respectively and defined by $\text{int}(A) = \bigcup \{ G_i: G_i \in T \text{ and } G_i \subseteq A \}$ and $\text{cl}(A) = \bigcap \{ F_i: F_i \text{ is ICS in } X \text{ and } A \subseteq F_i \}$.

So $\text{int}(A)$ is the largest IOS contained in A, and $\text{cl}(A)$ is the smallest ICS contain A, a set A is called intuitionistic regular-closed set (IRCS, for short) if $A = \text{clint} A$, intuitionistic semi-closed set (ISCS, for short) if $\text{clintcl} A \subseteq A$, intuitionistic semi-closed set (ISCS, for short) if $\text{intcl} A \subseteq A$, intuitionistic pre-closed set (IPCS, for short) if $\text{clint} A \subseteq A$, intuitionistic pre-closed set (IPCS, for short) if $\text{intcl} A \subseteq A$, intuitionistic pre-closed set (IPCS, for short) if $\text{intcl} A \subseteq A$, intuitionistic pre-closed set (IPCS, for short) if $\text{intcl} A \subseteq A$, intuitionistic semi-closed set (ISCS, for short) if $\text{intcl} A \subseteq A$, intuitionistic semi-closed set (ISCS, for short) if $\text{intcl} A \subseteq A$, intuitionistic semi-closed set (ISCS, for short) if $\text{intcl} A \subseteq A$. The complement of IRCS (resp. ICS, ISCS, IPCS and ICS) is called intuitionistic regular-open set (resp. intuitionistic open set, intuitionistic semi-open set, intuitionistic pre-open set and intuitionistic β-open set) in X. (IROS, IROOS, IOS, IPOS and IPOS, for short), A is saida to be intuitionistic semi-regular set (ISRS, for short) (Dontchev & Noiri, 1998) if A is ISOS and ISCS in X, so A is called intuitionistic B-set (IBS, for short) (Dontchev & Noiri, 1998) if A is the intersection of an IOS and ISCS and A is said to be an intuitionistic θ-closed set (IθCS, for short) if $A = \text{cl}_{\theta} A$ where $\text{cl}_{\theta} A = \{ x \in X: \text{cl}(U) \cap A \neq \emptyset, U \in T \text{ and } x \in U \}$. A is called intuitionistic θ generalized closed set (Iθg-closed, for short) if $\text{cl}_{\theta} A \subseteq U$, whenever $A \subseteq U$ and U is IOS.

Generalized contra continuous function on ITS's.

The following definitions of several kinds of contra continuous functions which are given in general topology by (Baker, 2001; Dontchev, 1996 and Dontchev & Maki, 1999). We generalized them into ITS's.

Definition: Let (X, T) and (Y, σ) be two ITS's and let $f: X \rightarrow Y$ be a function then f is said to be:

1. An intuitionistic contra continuous (I contra cont., for short) function if the inverse image of each IOS in Y is ICS in X.

132
2. An intuitionistic contra semi-continuous (I contra semi-cont., for short) function if the inverse image of each IOS in Y is ISCS in X.
3. An intuitionistic contra α-continuous (I contra α-cont., for short) function if the inverse image of each IOS in Y is IαCS in X.
4. An intuitionistic contra pre-continuous (I contra pre-cont., for short) function if the inverse image of each IOS in Y is IPCS in X.
5. An intuitionistic contra β-continuous (I contra β-cont., for short) function if the inverse image of each IOS in Y is IβCS in X.
6. An intuitionistic contra θ-continuous (I contra θ-cont., for short) function if the inverse image of IOS in Y is IθCS in X.

Next we are going to introduce the definitions of generalized contra continuous functions on ITS's.

Definition: Let (X,T) and (Y,σ) be two ITS's and let $f:X \rightarrow Y$ be a function then f is said to be an intuitionistic contra g-cont. (resp. contra gs-cont., contra sg-cont., contra gp-cont., contra pg-cont., contra $g\alpha$-cont., contra αg-cont., contra $g\beta$-cont. and contra $g\beta$-cont. functions if the inverse image of each IOS in Y is Ig-closed (resp. Igs-closed, Isg-closed, Igp-closed, Ipg-closed, I$g\alpha$-closed, Iαg-closed, I$g\beta$-closed and I$g\beta$-closed) set in X.

Proposition: Let (X, T) and (Y, σ) be two ITS's and let $f:X \rightarrow Y$ be a function then
1. If f is I contra θ-cont. function then f is I contra θg-cont. function.
2. If f is I contra θ-cont. function then f is I contra g-cont. function.
3. If f is I contra θg-cont. function then f is I contra g-cont. function.
4. If f is I contra g-cont. function then f is I contra g-cont. function.
5. If f is I contra α-cont. function then f is I contra α-cont. function.
6. If f is I contra α-cont. function then f is I contra semi-cont. function.
7. If f is I contra α-cont. function then f is I contra pre-cont. function.
8. If f is I contra semi-cont. function then f is I contra β-cont. function.
9. If f is I contra pre-cont. function then f is I contra β-cont. function.
10. If f is I contra α-cont. function then f is I contra $g\alpha$-cont. function.
11. If f is I contra semi-cont. function then f is I contra sg-cont. function.
12. If f is I contra β-cont. function then f is I contra $g\beta$-cont. function.
13. If f is I contra g-cont. function then f is I contra αg-cont. function.
14. If f is I contra g-cont. function then f is I contra gs-cont. function.
15. If f is I contra $g\alpha$-cont. function then f is I contra αg-cont. function.
16. If f is I contra sg-cont. function then f is I contra gs-cont. function.
17. If f is I contra pg-cont. function then f is I contra gp-cont. function.
18. If f is I contra αg-cont. function then f is I contra gs-cont. function.
19- If f is I contra αg-cont. function then f is I contra gp-cont. function.

Proof:

1- Let V be IOS in Y then $f^{-1}(V)$ is IθCS in X (since f is I contra θ-cont. function). Now for each IOS A in X and $f^{-1}(V) \subseteq A$ then $cl_{\theta}(f^{-1}(V)) \subseteq A$ since $cl_{\theta}(f^{-1}(V)) = f^{-1}(V)$. Therefore, $f^{-1}(V)$ is Iθg-closed set in X. Hence f is I contra θg-cont. function.

2- Suppose that V be IOS in Y then $f^{-1}(V)$ is IθCS in X (since f is I contra θ-cont. function). So $f^{-1}(V) = cl_{\theta}(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is ICS in X since every IθCS is ICS by [6]. Hence f is I contra cont. function.

3- Let V be IOS in Y then $f^{-1}(V)$ is Iθg-closed set in X (since f is I contra θg-cont. function). So for each IOS A in X and $f^{-1} \subseteq A$ then $cl_{\theta}(f^{-1}(V)) \subseteq A$. Therefore, $f^{-1}(V)$ is Ig-closed set in X since every Iθg-closed set is Ig-closed set by (Dontchev, J. and Maki, H. (1999)). Hence f is I contra g-cont. function.

4- Let V be IOS in Y then $f^{-1}(V)$ is ICS in X (since f is I contra cont. function). So for each IOS A in X and $f^{-1}(V) \subseteq A$ then $cl(f^{-1}(V)) \subseteq A$ since $f^{-1}(V) = cl(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is Ig-closed set in X and hence f is I contra g-cont. function.

5- Suppose that V is IOS in Y then $f^{-1}(V)$ is ICS in X (since f is I contra cont. function) then $cl(f^{-1}(V)) = f^{-1}(V)$ imply intcl$(f^{-1}(V)) \subseteq f^{-1}$ implies intcl$(f^{-1}(V)) \subseteq cl(f^{-1}(V)) = f^{-1}(A)$. Therefore, $f^{-1}(V)$ is IαCS in X and hence f is I contra α-cont. function.

6- Let V be IOS in Y then $f^{-1}(V)$ is IαCS in X (since f is I contra α-cont. function) then $\text{intcl}(f^{-1}(V)) \subseteq f^{-1}(V)$ imply intcl$(f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is ISCS in X and hence f is I contra semi-cont. function.

7- Let V be IOS in Y then $f^{-1}(V)$ is IαCS in X (since f is I contra α-cont. function) then $\text{intcl}(f^{-1}(V)) \subseteq f^{-1}(V)$ imply intcl$(f^{-1}(V)) \subseteq f^{-1}(V)$, therefore, $f^{-1}(V)$ is IPCS in X and hence f is I contra pre-cont. function.

8- suppose that be IOS in Y then $f^{-1}(V)$ is ISCS in X (since f is I contra semi-cont. function) then $\text{intcl}(f^{-1}(V)) \subseteq f^{-1}(V)$ imply intcl$(f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is IβCS in X and hence f is I contra β-cont. function.

9- Let V be IOS in Y then $f^{-1}(V)$ is IPCS in X (since f is I contra pre-cont. function) then $\text{intcl}(f^{-1}(V)) \subseteq f^{-1}(V)$ imply intcl$(f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is IβCS in X and hence f is I contra β-cont. function.
10- Suppose that V be IOS in Y then $f^{-1}(V)$ is $I\alpha$CS in X (since f is I contra α-cont. function). Now for each $I\alpha$OS A in X and $f^{-1}(V) \subseteq A$ then $acl(f^{-1}(V)) \subseteq A$ since $f^{-1}(V) = acl(f^{-1}(V))$ by $acl(f^{-1}(V)) = f^{-1}(V) \cup clintcl(f^{-1}(V))$ and $clintcl(f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is $Ig\alpha$-closed set in X. Hence f is I contra $g\alpha$-cont. function.

11- Let V be IOS in Y then $f^{-1}(V)$ is ISCS in X (since f is I contra semi-cont. function). Now for each ISOS A in X and $f^{-1}(V) \subseteq A$ then $scl(f^{-1}(V)) \subseteq A$ since $f^{-1}(V) = scl(f^{-1}(V))$ by $scl(f^{-1}(V)) = f^{-1}(V) \cup intcl(f^{-1}(V))$ and $intcl(f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is $Ig\beta$-closed set in X. Hence f is I contra $s\beta$-cont. function.

12- Suppose that V be IOS in Y then $f^{-1}(V)$ is $I\beta$CS in X (since f is I contra β-cont. function). Now for each IOS A in X and $f^{-1}(V) \subseteq A$ then $Betacl(f^{-1}(V)) \subseteq A$ since $f^{-1}(V) = Betacl(f^{-1}(V))$ by $Betacl(f^{-1}(V)) = f^{-1}(V) \cup interclintcl(f^{-1}(V))$ and $interclintcl(f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is $Ig\beta$-closed set in X and hence f is I contra $g\beta$-cont. function.

13- Suppose that V be IOS in Y then $f^{-1}(V)$ is Ig-closed set in X (since f is I contra g-cont. function). So for each IOS A in X and $f^{-1}(V) \subseteq A$ then $cl(f^{-1}(V)) \subseteq A$. Now since every ICS is $I\alpha$CS then $cl(f^{-1}(V)) = \cap \{ F_i : F_i$ is $I\alpha$CS and $f^{-1}(V) \subseteq F_i \} \subseteq cl(f^{-1}(V))$. So we have that for each IOS A in X and $f^{-1}(V) \subseteq A$ then $acl(f^{-1}(V)) \subseteq A$. Therefore, $f^{-1}(V)$ is $I\alpha g$-closed set in X and hence f is I contra αg-cont. function.

14- Let V be IOS in Y then $f^{-1}(V)$ is Ig-closed set in X (since f is I contra g-cont. function). So for each IOS A in X and $f^{-1}(V) \subseteq A$ then $cl(f^{-1}(V)) \subseteq A$. Now since every ICS is ISCS then $scl(f^{-1}(V)) = \cap \{ F_i : F_i$ is ISCS and $f^{-1}(V) \subseteq F_i \} \subseteq cl(f^{-1}(V))$. so we have that for each IOS A in X and $f^{-1}(V) \subseteq A$ then $scl(f^{-1}(V)) \subseteq A$. therefore, $f^{-1}(V)$ is Igs-closed set in X. Hence f is I contra gs-cont. function.

15- Let V be IOS in Y then $f^{-1}(V)$ is $Ig\alpha$-closed set in X (since f is I contra $g\alpha$-cont. function). So for each $I\alpha$OS A in X and $f^{-1}(V) \subseteq A$ then $acl(f^{-1}(V)) \subseteq A$. Now since every IOS is $I\alpha$OS then there exists an IOS U in X such that $f^{-1}(V) \subseteq U$ so $acl(f^{-1}(V)) \subseteq U$. Therefore, $f^{-1}(V)$ is $I\alpha g$-closed set in X. Hence f is I contra αg-cont. function.
16- Suppose that V be IOS in Y then $f^{-1}(V)$ is Isg-closed set in X (since f is I contra sg-cont. function). So for each ISOS A in X and $f^{-1}(V) \subseteq A$ then $scI(f^{-1}(V)) \subseteq A$. Now since every IOS is ISOS then there exists an IOS U in X such that $f^{-1}(V) \subseteq U$ then $scI(f^{-1}(V)) \subseteq U$. Therefore, $f^{-1}(V)$ is Isg-closed set in X and hence f is I contra gs-cont. function.♦

17- Let V be IOS in Y then $f^{-1}(V)$ is Ipg-closed set in X (since f is I contra pg-cont. function). So for each IPOS A in X and $f^{-1}(V) \subseteq A$ then $pcl(f^{-1}(V)) \subseteq A$. Now since every IOS is IPOS then there exists an IOS U in X such that $f^{-1}(V) \subseteq U$ then $pcl(f^{-1}(V)) \subseteq U$. Therefore, $f^{-1}(V)$ is Ipg-closed set in X and hence f is I contra gp-cont. function.♦

18- Let V be IOS in Y then $f^{-1}(V)$ is Iαg-closed set in X (since f is I contra αg-cont. function). So for each IOS A in X and $f^{-1}(V) \subseteq A$ then $acl(f^{-1}(V)) \subseteq A$. Now since every IαCS is ISCS then $scI(f^{-1}(V)) = \cap \{ F_i : F_i \text{ is ISCS and } f^{-1}(V) \subseteq F_i \} \subseteq acl(f^{-1}(V))$. So we have that for each IOS A in X and $f^{-1}(V) \subseteq A$ then $scI(f^{-1}(V)) \subseteq A$. Therefore, $f^{-1}(V)$ is Igs-closed set in X and hence f is I contra gs-cont. function.♦

19- Suppose that V be IOS in Y then $f^{-1}(V)$ is Iαg-closed set in X (since f is I contra αg-cont. function). So for each IOS A in X and $f^{-1}(V) \subseteq A$ then $acl(f^{-1}(V)) \subseteq A$. Now since every IαCS is ISCS then $pcl(f^{-1}(V)) = \cap \{ F_i : F_i \text{ is ISCS and } f^{-1}(V) \subseteq F_i \} \subseteq acl(f^{-1}(V))$. So we have that for each IOS A in X and $f^{-1}(V) \subseteq A$ then $pcl(f^{-1}(V)) \subseteq A$. Therefore, $f^{-1}(V)$ is Igp-closed set in X and hence f is I contra gp-cont. function.♦

Example: Let $X = \{a, b, c\}$ and $T = \{\emptyset, X, A\}$ where $A = \{x, \{a, b\}, \{c\}\}$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, Y, C\}$ where $C = \{y, \{1, 2\}, \{3\}\}$. Define a function $f : X \rightarrow Y$ by $f(a) = 1$, $f(b) = 3$ and $f(c) = 2$. Now let $B = f^{-1}(C) = \{x, \{a, c\}, \{b\}\}$ then B is Iθg-closed set in X since the only IOS containing B is X and $cl_\theta B = X \subseteq X$. But B is not IθCS since $B \neq cl_\theta B = X$. So since the inverse image of each IOS in Y is Iθg-closed set in X then f is I contra θg-cont. function. But f is not I contra θ-cont. function.

The next example shows that:

1- I contra cont. does not imply I contra θ-cont.

2- I contra cont. does not imply I contra θg-cont.

3- I contra g-cont. does not imply I contra θg-cont.

4- I contra g-cont. does not imply I contra θ-cont.
Example: Let $X = \{a, b, c\}$ and $T = \{\emptyset, \overline{X}, A, B, C\}$ where $A = \langle x, \{a, b\}, \emptyset \rangle$, $B = \langle x, \{b\}, \{a\} \rangle$ and $C = \langle x, \emptyset, \{a, c\} \rangle$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \{a\}, D\}$ where $D = \langle y, \{3\}, \{1, 2\} \rangle$. Define a function $f: X \rightarrow Y$ by $f(a) = 1$, $f(b) = 2$, and $f(c) = 3$. Now let
$G = f^{-1}(D) = \langle x, \{a\}, \emptyset \rangle$, then G is ICS and Ig-closed set in X but G is not I_{\emptyset}-CS in X since $Cl_{\emptyset}G = X \not\subseteq G$ so G is not $I_{\emptyset}g$-closed set since the only IOS containing G in X is C and $Cl_{\emptyset}G = X \not\subseteq C$.

The following example shows that I contra g-cont. does not imply I contra cont.

Example: Let $X = \{a, b, c\}$ and $T = \{\emptyset, \overline{X}, A, B, C\}$ where $A = \langle x, \{a, b, c\} \rangle$, $B = \langle x, \{b\}, \{a\} \rangle$ and $C = \langle x, \{a, b\}, \emptyset \rangle$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \{a\}, D\}$ where $D = \langle y, \{1, 2\}, \emptyset \rangle$. Define a function $f: X \rightarrow Y$ by $f(a) = 3$, $f(b) = 1$, and $f(c) = 2$. Now let $G = f^{-1}(D) = \langle x, \{b, c\}, \emptyset \rangle$ then G is Ig-closed set in X since the only IOS containing G is X and $ClG = X \subseteq X$ but G is not ICS in X since $G \not\subseteq Cl \emptyset G = X$. So the inverse image of each IOS in Y is Ig-closed set in X.

In this example we are going to show I contra α-cont. function does not imply I contra cont. function

Example: Let $X = \{a, b, c, d\}$ and let $T = \{\emptyset, \overline{X}, A, B, C, D\}$ where $A = \langle x, \{a, b, c\} \rangle$, $B = \langle x, \{b, d\}, \{a\} \rangle$, $C = \langle x, \{b\}, \{a, c\} \rangle$ and $D = \langle x, \{a, b, c\}, \emptyset \rangle$ and let $Y = \{1, 2, 3, 4\}$ and $\sigma = \{\emptyset, \{a\}, E\}$ where $E = \langle y, \{1\}, \{2, 3\} \rangle$. Define a function $f: X \rightarrow Y$ by $f(a) = 1$, $f(b) = 2$, $f(c) = 3$, and $f(d) = 4$. So let $G = f^{-1}(E) = \langle x, \{a\}, \{b, c\} \rangle$ then G is IaCS set in X since $Cl intclG = \emptyset \subseteq G$ but G is not ICS in X since $ClG = \overline{C} \not\subseteq G$. Then the inverse image of each IOS in Y is IaCS in X.

We are going to show that I contra semi-cont. does not imply I contra α-cont.

Example: Let $X = \{a, b, c, d\}$ and let $T = \{\emptyset, \overline{X}, A, B\}$ where $A = \langle x, \{a\}, \{b\} \rangle$ and $B = \langle x, \emptyset, \{b, c\} \rangle$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \{a\}, C\}$ where $C = \langle y, \emptyset, \{2\} \rangle$. Define a function $f: X \rightarrow Y$ by $f(a) = 1$, $f(b) = 2$, $f(c) = 3$, and $f(d) = 2$. Now a set $G = f^{-1}(C) = \langle x, \emptyset, \{c\} \rangle$ is ISCS in X since $intclG = B \subseteq G$ but G is not IaCS in X since $Cl intclG = \overline{B} \not\subseteq G$. So the inverse image of each IOS in Y is ISCS in X.

The following example shows that:

1. I contra β-cont. does not imply I contra pre-cont.
2. I contra β-cont. does not imply I contra semi-cont.
Example: Let \(X = \{a, b, c, d\} \) and \(T = \{\emptyset, \hat{X}, A, B, C, D\} \) where \(A = \langle x, \{a\}, \{b, c\} \rangle, B = \langle x, \{c, d\}, \{a\} \rangle, C = \langle x, \{a, c, d\}, \emptyset \rangle \) and \(D = \langle x, \emptyset, \{a, b, c\} \rangle \) and let \(Y = \{1, 2, 3, 4\} \) and \(\sigma = \{\emptyset, \hat{Y}, E\} \) where \(E = \langle y, \{1, 3\}, \{2\} \rangle \). Define a function \(f : X \to Y \) by \(f(a) = 1, f(b) = 2, f(c) = 4 \) and \(f(d) = 3 \). Then a set \(G = f^{-1}(E) = \langle x, \{a, d\}, \{b\} \rangle \) is I\(\beta \)CS in \(X \) since \(int clnt G = A \subseteq G \) but \(G \) is not IPCS and ISCS in \(X \) since \(int cl G = X \varsubsetneq G \) so \(cl nt G = D \varsubsetneq G \). Then \(f \) is I contra \(\beta \)-cont. function but \(f \) is not I contra semi-cont. and not I contra pre-cont function. We are going in the following example to show that:

1. I contra \(gs \)-cont. does not imply I contra \(\alpha g \)-cont.
2. I contra \(gs \)-cont. does not imply I contra \(g \)-cont.
3. I contra \(sg \)-cont. does not imply I contra \(g \)-cont.

Example: Let \(X = \{a, b, c\} \) and \(T = \{\emptyset, \hat{X}, A, B, C\} \) where \(A = \langle x, \{c\}, \{a, b\} \rangle, B = \langle x, \{b\}, \{c\} \rangle \) and \(C = \langle x, \{b, c\}, \emptyset \rangle \) and let \(Y = \{\emptyset, \hat{Y}, D\} \) where \(D = \langle y, \{1\}, \{3\} \rangle \). Define a function \(f : X \to Y \) by \(f(a) = 2, f(b) = 1 \) and \(f(c) = 3 \). So \(\alpha OX = T \). We have \(B = f^{-1}(D) \) is I\(gs \)-closed and I\(g \)-closed in \(X \) since the only IOS and ISOS in \(X \) that containing \(B \) is \(B, C \) and \(F \) so \(sc l B = \hat{F} = B \), but \(B \) is not I\(g \)-closed and it's not I\(\alpha g \)-closed set in \(X \) since the only I\(\alpha OS \) in \(X \) containing \(B \) is \(B \) and \(C \) and \(cl B = ac l B = \hat{A} \varsubsetneq B \) or \(C \). Therefore, \(f \) is I contra \(gs \)-cont. (resp. I contra \(sg \)-cont.) function but not I contra \(\alpha g \)-cont. (resp. I contra \(g \)-cont.) function.

The following example shows that:

1. I contra \(gs \)-cont. does not imply I contra \(g \alpha \)-cont.
2. I contra \(g \)-cont. does not imply I contra \(g \alpha \)-cont.
3. I contra \(\alpha g \)-cont. does not imply I contra \(g \alpha \)-cont.

Example: Let \(X = \{a, b, c\} \) and \(T = \{\emptyset, \hat{X}, A, B, C\} \) where \(A = \langle x, \{a\}, \{b, c\} \rangle, B = \langle x, \{c\}, \{a, b\} \rangle \) and \(C = \langle x, \{a, c\}, \{b\} \rangle \) and let \(Y = \{1, 2, 3\} \) and \(\sigma = \{\emptyset, \hat{Y}, D\} \) where \(D = \langle y, \{1\}, \{3\} \rangle \). Define a function \(f : X \to Y \) by \(f(a) = 1, f(b) = 2 \) and \(f(c) = 3 \). So \(\alpha OX = \{\emptyset, \hat{X}, A, B, C, G\} \). Then we have \(E = f^{-1}(D) \) is I\(g \)-closed (resp. I\(gs \)-closed, I\(\alpha g \)-closed) set in \(X \) since the only IOS containing \(E \) is \(X \) and \(c l E = ac l E = \hat{B} \subseteq X \) but \(E \) is not I\(g \alpha \)-cosed since \(E \subseteq G \) where \(G \) is I\(\alpha OS \).
in X but $\alpha cl E = \overline{B} \notin G$. Then the inverse image of each IOS in Y is I-g-closed (resp. I(gs)-closed and I(\alpha g)-closed) set in X.

The next example shows I contra gs-cont. does not imply I contra sg-cont.

Example: Let $X = \{a, b, c\}$ and $T = \{\emptyset, \bar{X}, A, B, C\}$ where $A = \langle x, \{a\}, \{a, b\}\rangle, B = \langle x, \{a\}, \{b, c\}\rangle$ and $C = \langle x, \{a, c\}, \{b\}\rangle$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \bar{Y}, E\}$ where $E = \langle y, \{2\}, \emptyset\rangle$. Define a function $f: X \to Y$ by $f(a) = 1, f(b) = 3$ and $f(c) = 2$.

Now let $G = f^{-1}(E) = \langle x, \{c\}, \emptyset\rangle$, then G is Igs-closed set in X since the only IOS containing G is X and $scI G = X \subseteq X$ but G is not Igs-closed set in X since $G \subseteq F$ where F is ISOS in X and $scI G = X \not\subseteq F$. Then the inverse image of each IOS in Y is Igs-closed set in X.

We are going to show I contra gs-cont. does not imply I contra α-cont.

Example: Let $X = \{1, 2, 3\}$ and $T = \{\emptyset, \bar{X}, A, B, C\}$ where $A = \langle x, \{b\}, \{a, c\}\rangle$ and $B = \langle x, \{a\}, \{b, c\}\rangle$ and $C = \langle x, \{a, b\}, \{c\}\rangle$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \bar{Y}, D\}$ where $D = \langle y, \{2, 3\}, \emptyset\rangle$. Define a function $f: X \to Y$ by $f(a) = 1, f(b) = 2$ and $f(c) = 3$. $\alpha O X = \{\emptyset, \bar{X}, A, B, C, E\}$ where $E = \langle x, \{a, b\}, \emptyset\rangle$. So a set $G = f^{-1}(D) = \langle x, \{b, c\}, \emptyset\rangle$ is Igs-closed set in X since the only Igs containing G is X and $\alpha cl G = X \subseteq X$ but G is not Igs-closed set in X since $cl \alpha int cl G = X \not\subseteq G$ then f is I contra gs-cont. function but not I contra α-cont. function.

The following example shows that I contra $g\beta$-cont. does not imply I contra gp-cont.

Example: Let $X = \{a, b, c\}$ and let $T = \{\emptyset, \bar{X}, A, B, C\}$ where $A = \langle x, \{a\}, \{b, c\}\rangle, B = \langle x, \{a\}, \{b, c\}\rangle$ and $C = \langle x, \{a, b\}, \{c\}\rangle$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \bar{Y}, D\}$ where $D = \langle y, \{3\}, \{1, 2\}\rangle$. Define a function $f: X \to Y$ by $f(a) = 1, f(b) = 3$ and $f(c) = 2$. $\beta O X = \{\emptyset, \bar{X}, A, B, C, E, H, K, L, I, M, O, N, G, F, J\}$ where $E = \langle x, \{b\}, \{a\}\rangle, H = \langle x, \{b\}, \{c\}\rangle, K = \langle x, \{b\}, \emptyset\rangle, L = \langle x, \{a\}, \{b\}\rangle, I = \langle x, \{a\}, \{c\}\rangle, M = \langle x, \{a\}, \emptyset\rangle, O = \langle x, \{b, c\}, \{a\}\rangle, N = \langle x, \{a, b\}, \emptyset\rangle, G = \langle x, \{b, c\}, \emptyset\rangle, \emptyset F = \langle x, \{a, c\}, \{b\}\rangle$ and $J = \langle x, \{a, c\}, \emptyset\rangle$.

$PO X = \{\emptyset, \bar{X}, A, B, C, H, I, N, G, J\}$. Now a set $B = f^{-1}(D)$ is I$\alpha\beta$-closed set in X since B is IOS and $\beta cl B = B$. But B is not Igs-closed set since
Then f is I contra g_β-cont. since the inverse image of each IOS in Y is I$_g$-β-closed set in X. so f is not I contra g_β-cont. function.

This example shows that:
1. I contra pre-cont. does not imply I contra g_α-cont.
2. I contra β-cont. does not imply I contra g_s-cont.
3. I contra g_β-cont. does not imply I contra sg-cont.
4. I contra g_β-cont. does not imply I contra αg-cont.
5. I contra g_β-cont. does not imply I contra $s g$-cont.
6. I contra g_β-cont. does not imply I contra g_s-cont.

Example: Let $X = \{a, b, c\}$ and let $T = \{\emptyset, \bar{X}, A, B\}$ where $A = \{x, \{a\}, \{b\}\}$ and $B = \{x, \{a\}, \emptyset\}$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \bar{Y}, U\}$ where $U = \{y, \{1\}, \{3\}\}$. Define a function $f: X \rightarrow Y$ by $f(a) = 1, f(b) = 2$ and $f(c) = 3$.

Example: Let $X = \{a, b, c\}$ and let $T = \{\emptyset, \bar{X}, A, B, C\}$ where $A = \{x, \{a\}, \{b\}\}$ and let $B = \{x, \{a\}, \emptyset\}$ and $C = \{x, \{a\}, \emptyset\}$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \bar{Y}, D\}$ where $D = \{y, \{1\}, \emptyset\}$. Define a function $f: X \rightarrow Y$ by $f(a) = 1, f(b) = 2$ and $f(c) = 3$.

In the next example we show that I contra $s g$-cont. does not imply I contra semi-cont.
1- I contra g-cont. does not imply I contra sg-cont.
2- I contra gp-cont. does not imply I contra pre-cont.
3- I contra gp-cont. does not imply I contra sg-cont.
4- I contra gp-cont. does not imply I contra pg-cont.
5- I contra $g\beta$-cont. does not imply I contra pre-cont.
6- I contra $g\beta$-cont. does not imply I contra β-cont.
7- I contra $g\beta$-cont. does not imply I contra sg-cont.
8- I contra $g\beta$-cont. does not imply I contra pg-cont.

Example: Let $X = \{a, b, c\}$ and $T = \{\emptyset, \bar{X}, A, B\}$ where $A = \{x, [a, c], \emptyset\}$ and $B = \{x, [a], \{c\}\}$. and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \bar{Y}, H\}$ where $H = \{y, \{1, 3\}, \emptyset\}$. Define a function $f: X \rightarrow Y$ by $f(a) = 1$, $f(b) = 3$, and $f(c) = 2$.

where

$C = (x, [a], \emptyset) \in X$ and $D = (x, \{a\}, \{b\})$, $L = (x, \{b\}, \{a\})$, $I = (x, [b, c], \emptyset)$, $E = (x, \{a, b\}, \emptyset)$, $G = (x, [a, b], \{c\})$, $O = (x, \emptyset, \{b, c\})$, $F = (x, [a, \emptyset], \{b\})$, $P = (x, \{a\}, \emptyset)$, $J = (x, \{b\}, \{a\})$, $S = (x, \emptyset, \{c\})$, $N = (x, \{b, c\}, \{a\})$, $U = (x, \{c\}, \{b\})$, $Z = (x, \{c\}, \emptyset)$, $M = (x, \{b\}, \{c\})$, and $W = (x, \emptyset, \{b\})$.

$SOX = \{\emptyset, \bar{X}, A, B, C, F, G\}$. Now a set $F = f^{-1}(H)$ is Ig-closed (resp. Igp-closed and $Ig\beta$-closed) set in X since the only IOS containing F is X and $clF = pclF = \beta clF = X \subseteq X$ but F is not IPCS (resp, $I\beta CS$, Is-closed set, Ip-closed set) in X since $clF = intclF = X \not\subseteq F$ so $scF = pclF = X \not\subseteq F$.

In the last example we show that:

1- I contra αg-cont. does not imply I contra g-cont.
2- I contra $g\alpha$-cont. does not imply I contra g-cont.

Example: Let $X = \{a, b, c\}$ and $T = \{\emptyset, \bar{X}, A, B\}$ where $A = \{x, [a, c], \{b\}\}$ and $B = \{x, [c], \{a, b\}\}$ and let $Y = \{1, 2, 3\}$ and $\sigma = \{\emptyset, \bar{Y}, I\}$ where $I = \{x, [2], \{1, 3\}\}$. Define a function $f: X \rightarrow Y$ by $f(a) = 2$, $f(b) = 1$, and $f(c) = 3$.

$\alpha OX = \{\emptyset, \bar{X}, A, B, C, D, E, F, M, H\}$

where $C = (x, \{c\}, \{b\})$, $D = (x, \{c\}, \emptyset)$, $E = (x, \{c\}, \{a\})$, $F = (x, \{b, c\}, \emptyset)$, $M = (x, \{b\}, \{c\})$, $\{a\})$, and $H = (x, \{a, c\}, \emptyset)$. Now let $G = f^{-1}(I) = (x, \{a\}, \{b, c\})$ then G is $Ig\alpha$-closed and $Ig\alpha$-closed set in X since the only IOS containing G in X are A and H so $\alpha clG = M = G \subseteq A$ and H. but G is not Ig-closed set in X since $clG = B \not\subseteq A$. We have the inverse image of each IOS in Y is $Ig\alpha$-closed.
and $\mathcal{I}_{\mathcal{g}}$-closed set in X and hence f is I contra $g\alpha$-cont. function and I contra $\mathcal{g}\alpha$-cont. function but not I contra g-cont. function. We summarized the above result by the following diagram.

Diagram: The following implications are true and not reversed.

![Diagram](image-url)

Definition: (Al-hawez, 2008) Let (X,T) and (Y,σ) be two ITS's then a function $f:X \rightarrow Y$ is said to be an intuitionistic slightly continuous (I slightly cont., for short) if the inverse image of each clopen (closed and open) set in Y is ICS in X.

Proposition: Let (X,T) and (Y,σ) be two ITS's and let $f:X \rightarrow Y$ be an I contra cont. function then f is I slightly cont. function. The proof is trivial. In the following example we show that I slightly cont. does not imply I contra cont.

Example: Let $X = \{a, b, c\}$ and $T = \{\emptyset, \tilde{X}, A, B\}$ where $A = \{x, \{a\}, \{c\}\}$ and $B = \{x, \{a, c\}, \emptyset\}$ and let $Y = \{1,2,3\}$ and $\sigma = \{\emptyset, \tilde{Y}, \overline{H}\}$ where $H = \{y, \{1\}, \{3\}\}$. Define a function $f:X \rightarrow Y$ by $f(a) = 1$, $f(b) = 2$ and $f(c) = 3$. Then f is I slightly cont. function since the inverse image of each clopen set in Y is ICS in X but f is not I contra cont. function since $f^{-1}(H) = A$ is not ICS in X.

Remark: Let (X, T) and (Y,σ) be two ITS's and let $f:X \rightarrow Y$ be a function then I contra cont. function and I slightly cont. function are equivalent if:

1. (X, T) is discrete.
2. (X, T) is indiscrete.
3. (X, T) is disconnected.
The following definitions are given in general topology by (Dontchev & Noiri, 1998), so we generalized them on ITS's.

Definition: Let \((X, T)\) and \((Y, \sigma)\) be two ITS's then a function \(f: X \rightarrow Y\) is said to be:

1- An intuitionistic semi-regular continuous (ISR-cont., for short) if the inverse image of each IOS in \(Y\) is ISRS in \(X\).
2- An intuitionistic completely continuous (I completely cont., for short) if the inverse image of each IOS in \(Y\) is IROS in \(X\).
3- An intuitionistic regular closed continuous (IRC-cont., for short) if the inverse image of each IOS in \(Y\) is IRCS in \(X\).
4- An intuitionistic \(B\)-continuous (IB-cont., for short) if the inverse image of each IOS in \(Y\) is IBS in \(X\).

Proposition: Let \((X, T)\) and \((Y, \sigma)\) be two ITS's and let \(f: X \rightarrow Y\) be a function then the following statements are equivalent:

1- \(f\) is ISR-cont. function.
2- \(f\) is I\(\beta\)-cont. function and I contra semi-cont. function.

**Proof: **

1\(\Rightarrow\)2 Suppose that \(V\) be any IOS in \(Y\) then \(f^{-1}(V)\) is ISRS in \(X\) (by hypothesis) then \(f^{-1}(V)\) is ISOS and ISCS so \(f^{-1}(V) \subseteq \text{cl} f^{-1}(V)\) and \(\text{int cl} f^{-1}(V) \subseteq f^{-1}(V)\). Now since \(f^{-1}(V) \subseteq \text{cl} f^{-1}(V)\) imply \(f^{-1}(V) \subseteq \text{cl} \text{int} f^{-1}(V)\). Therefore, \(f^{-1}(V)\) is I\(\beta\)OS and ISCS in \(X\). Hence \(f\) is I\(\beta\)-cont. and I contra semi-cont. function.

2\(\Rightarrow\)1 Suppose that \(U\) be IOS in \(Y\) then \(f^{-1}(U)\) is I\(\beta\)OS and ISCS in \(X\) (by hypothesis) then \(f^{-1}(U) \subseteq \text{cl} \text{int} f^{-1}(U)\) and \(\text{int cl} f^{-1}(U) \subseteq f^{-1}(U)\). Now we have \(\text{int cl} f^{-1}(U) \subseteq f^{-1}(U) \subseteq \text{cl} \text{int} f^{-1}(U)\). then \(f^{-1}(U)\) is ISOS in \(X\) also \(f^{-1}(U)\) is ISCS in \(X\). Therefore, \(f^{-1}(U)\) is ISRS in \(X\) and hence \(f\) is ISR-cont. function.

Corollary: Every I contra cont. function and I\(\beta\)-cont. function is I semi-cont. function.

Proof: Let \((X, T)\) and \((Y, \sigma)\) be two ITS's and let \(f: X \rightarrow Y\) an I contra cont. function and I\(\beta\)-cont. function, so for any IOS \(V\) in \(Y\) then \(f^{-1}(V)\) is ICS and I\(\beta\)OS in \(X\) imply \(f^{-1}(V) = \text{cl} f^{-1}(V)\) and \(f^{-1}(V) \subseteq \text{cl} \text{int} f^{-1}(V)\) imply \(f^{-1}(V) \subseteq \text{cl} \text{int} f^{-1}(V)\). Therefore, \(f^{-1}(V)\) is ISOS in \(X\) hence \(f\) is I semi-cont. function.

Proposition: Let \((X, T)\) and \((Y, \sigma)\) be two ITS's and let \(f: X \rightarrow Y\) be a function then the following statements are equivalent:

1- \(f\) is I completely cont. function.
2- \(f\) is I pre-cont. function and I contra semi-cont. function.
Proof: 1⇒2 Let V be IOS in Y then \(f^{-1}(V) \) is IROS in X (since f is I completely cont. function) then \(f^{-1}(V) = \text{int} \text{cl} f^{-1}(V) \) imply \(f^{-1}(V) \subseteq \text{int} \text{cl} f^{-1}(V) \) and \(\text{int} \text{cl} f^{-1}(V) \subseteq f^{-1}(V) \). Therefore, \(f^{-1}(V) \) is IPOS and ISCS in X. Hence f is I pre-cont. function and I contra semi-cont. function.

2 ⇒1 Let U be IOS in Y then \(f^{-1}(U) \) is IPOS and ISCS in X (by hypothesis) then \(f^{-1}(U) \subseteq \text{int} \text{cl} f^{-1}(U) \) and \(\text{cl} f^{-1}(U) \subseteq f^{-1}(U) \) imply \(f^{-1}(U) = \text{int} \text{cl} f^{-1}(U) \). Therefore, \(f^{-1}(U) \) is IROS in X. Hence f is I completely cont. function.

Proposition: Let \((X,T)\) and \((Y,\sigma)\) be two ITS's and let \(f: X \rightarrow Y \) be a function then the following statements are equivalent:

1. \(f \) is IRC-cont. function.
2. \(f \) is Iβ-cont. function and I contra cont. function.

Proof: 1⇒2 Let V be IOS in Y then \(f^{-1}(V) \) is IRCS in X (since f is IRC-cont. function) then \(\text{cl} f^{-1}(V) = f^{-1}(V) \) hence \(f^{-1}(V) \) is ICS in X so \(\text{cl} f^{-1}(V) \subseteq f^{-1}(V) \) and \(f^{-1}(V) \subseteq \text{cl} f^{-1}(V) \) imply \(f^{-1}(V) \subseteq \text{cl} \text{cl} f^{-1}(V) \). Therefore, \(f^{-1}(V) \) is ICS and hence f is I contra cont. function and Iβ-cont. function.

2 ⇒1 Let U be IOS in Y then \(f^{-1}(U) \) is IβOS and ICS in X (by hypothesis) then \(f^{-1}(U) \subseteq \text{cl} \text{cl} f^{-1}(U) \) and \(\text{cl} f^{-1}(U) = f^{-1}(U) \) imply \(f^{-1}(U) \subseteq \text{cl} f^{-1}(U) \) and \(\text{cl} f^{-1}(U) \subseteq f^{-1}(U) \) imply \(f^{-1}(U) = \text{cl} f^{-1}(U) \). Therefore, \(f^{-1}(U) \) is IRCS in X. Hence f is IRC-cont. function.

The next proposition was proved in (Dontchev, J. and Noiri, T. (1998)) in general topology so we generalized it into ITS's.

Proposition: Let \((X,T)\) and \((Y,\sigma)\) be two ITS's and let \(f: X \rightarrow Y \) be a function then the following statements are equivalent:

1. \(f \) is I contra semi-cont. function.
2. \(f \) is Iβ-cont. function and I contra gs-cont. function.

Proof: 1⇒2 Suppose that V be any IOS in Y then \(f^{-1}(V) \) is ISCS in X (by hypothesis). Now let A be IOS in X and \(f^{-1}(V) \subseteq A \) then \(f^{-1}(V) = A \cap f^{-1}(V) \) imply \(f^{-1}(V) \) is IBS, so \(f^{-1}(V) = \text{slcl} f^{-1}(V) \) since \(\text{slcl} f^{-1}(V) = f^{-1}(V) \cup \text{int} \text{cl} f^{-1}(V) \) and \(\text{int} \text{cl} f^{-1}(V) \subseteq f^{-1}(V) \). Hence for each IOS A in X and \(f^{-1}(V) \subseteq A \) then \(\text{slcl} f^{-1}(V) \subseteq A \). Therefore, \(f^{-1}(V) \) is Igs-closed set and IBS in X, so f is I contra gs-cont. function and Iβ-cont. function.

2 ⇒1 Suppose that U be any IOS in Y then \(f^{-1}(U) \) is IBS and ISCS in X (by hypothesis). Then \(f^{-1}(U) = A \cap G \) where A is IOS containing \(f^{-1}(U) \)
in X and G is ISCS in X. So $sclf^{-1}(U) \subseteq A$ since $f^{-1}(U)$ is Igs-closed set. Now
\[
intclf^{-1}(U) = intcl(A \cap G) \subseteq \text{int(cl}A \cap \text{cl}G) = \text{intcl}A \cap \text{intcl}G \subseteq \text{intcl}A \cap G
\]
since G is ISCS. So $intclf^{-1}(U) \cap A \subseteq \text{intcl}A \cap A \cap G$ since
\[
\text{intcl}f^{-1}(U) \cup f^{-1}(U) = sclf^{-1}(U) \subseteq A \text{ and } A \subseteq \text{intcl}A.
\]
We have $intclf^{-1}(U) \subseteq A \cap G = f^{-1}(U)$. Therefore, $f^{-1}(U)$ is ISCS in X and hence f is I contra semi-cont. function.♦

Corollary: Let (X,T) and (Y,σ) be two ITS's and let $f:X \to Y$ be a function then the following statements are equivalent:

1. f is I completely cont. function.
2. f is I pre-cont. function, IB-cont. function and I contra gs-cont. function.

Proof: $1 \Rightarrow 2$ Suppose that V is IOS in Y then $f^{-1}(V)$ is IROS in X (by hypothesis). That is $f^{-1}(V) = \text{intcl}f^{-1}(V)$ imply $f^{-1}(V) \subseteq \text{intcl}f^{-1}(V)$ and $\text{intcl}f^{-1}(V) \subseteq f^{-1}(V)$ then $f^{-1}(V)$ is IPOS and ISCS in X. Now let A be IOS in X and $f^{-1}(V) \subseteq A$ then $f^{-1}(V) = A \cap f^{-1}(V)$ imply $f^{-1}(V)$ is IBS. So $f^{-1}(V) = sclf^{-1}(V)$ since $sclf^{-1}(V) = f^{-1}(V) \cup \text{intcl}f^{-1}(V)$ and $\text{intcl}f^{-1}(V) \subseteq f^{-1}(V)$ and hence for each IOS A in X and $f^{-1}(V) \subseteq A$ then $sclf^{-1}(V) \subseteq A$. Therefore, $f^{-1}(V)$ is Igs-closed set, IBS and IPOS in X. hence f is IB-cont. function, I pre-cont. function and I contra gs-cont. function.

$2 \Rightarrow 1$ Suppose that U is IOS in Y then $f^{-1}(U)$ is IPOS, IBS and Igs-closed set in X (by hypothesis) then $f^{-1}(U) \subseteq \text{intcl}f^{-1}(U)$ and $f^{-1}(U) = A \cap G$ where A is IOS containing $f^{-1}(U)$ in X and G is ISCS in X so $scl^{-1}(U) \subseteq A$ since $f^{-1}(U)$ is Igs-closed set. Now $\text{intcl}f^{-1}(U) = \text{intcl}(A \cap G) \subseteq \text{int(cl}A \cap \text{cl}G) = \text{intcl}A \cap \text{intcl}G \subseteq \text{intcl}A \cap G$ since G is ISCS so $\text{intcl}f^{-1}(U) \subseteq A \text{ and } A \subseteq \text{intcl}A$ then $\text{intcl}f^{-1}(U) \subseteq A \cap G = f^{-1}(U)$. Hence $f^{-1}(U)$ is ISCS in X, then we have $\text{intcl}^{-1}(U) \subseteq f^{-1}(U)$ and $f^{-1}(U) \subseteq \text{intcl}^{-1}(U)$ imply $f^{-1}(U) = \text{intcl}^{-1}(U)$. Therefore, $f^{-1}(U)$ is IROS in X and hence f is I completely cont. function.♦
References

حول الدوال المستمرة المعاكسة وعلاقتها مع أنواع أخرى من الدوال المستمرة المعممة بين الفضاءات التبولوجية الحدسية
 يونس جهاد ياسين علي محمد جاسم
قسم الرياضيات
كلية التربية- جامعة تكريت

تاريخ الاستلام: 01/6/2010، تاريخ القبول: 01/5/2010

الخلاصة

سندرس في هذا البحث مفهوم الدوال المستمرة المعاكسة (contra continuous بكل انواعها (contra semi continuous, contra g-continuous,...) وتعييمها بين الفضاءات التوپولوجية الحدسية وكذلك سندرس علاقة هذه الدوال مع بعضها وكذلك سندرس علاقة هذه الدوال مع أنواع أخرى من الدوال المستمرة منها الدوال المستمرة تماماً (perfectly continuous) والدوال المستمرة الواهنة (slightly continuous) الخ...continuous)