Composition Series of the Modules $\mathbf{S}_{2}^{\mathbf{3}}(\mathbf{m}, \mathbf{n})$ for the Weyl Groups of Type B_{n}

Yasmin Hamed Abd Al-katib
Dept. of Material Engineering, College of Engineering, Al- Mustansiriyah University
Received 15/9/2008 - Accepted 14/5/2009

$$
\begin{aligned}
& \text { الخلاصة }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \subset \operatorname{Im} \gamma_{1}^{2} \subset \operatorname{Im} \beta_{1}^{3} \subset \operatorname{Ker} \gamma_{2}^{3} \subset \mathrm{~S}_{2}^{3}(\mathrm{~m}, \mathrm{n}) \\
& 0 \subset \operatorname{Im} \gamma_{1}^{2} \subset \operatorname{Im} \alpha_{2}^{2} \subset \operatorname{Ker} \gamma_{2}^{3} \subset \mathrm{~S}_{2}^{3}(\mathrm{~m}, \mathrm{n})
\end{aligned}
$$

Abstract

The purpose of this paper is to study the Weyl groups and structure of the specht modules $S_{2}^{3}(\mathrm{~m}, \mathrm{n})$. Also, in this study, we were able to prove the following composition series of the modules $S_{2}^{3}(m, n)$: $$
\begin{aligned} & 0 \subset \operatorname{Im} \gamma_{1}^{2} \subset \operatorname{Im} \beta_{1}^{3} \subset \operatorname{Ker} \gamma_{2}^{3} \subset \mathrm{~S}_{2}^{3}(\mathrm{~m}, \mathrm{n}) \\ & 0 \subset \operatorname{Im} \gamma_{1}^{2} \subset \operatorname{Im} \alpha_{2}^{2} \subset \operatorname{Ker} \gamma_{2}^{3} \subset \mathrm{~S}_{2}^{3}(\mathrm{~m}, \mathrm{n}) \end{aligned}
$$

1. INTRODUCTION

Many outstanding problems in representation theory can be solved with a proper understanding of the specht modules for the Weyl groups W_{n} of type $\mathrm{B}_{\mathrm{n}}[1,2]$.

Peel [3] gives the analysis of the specht modules corresponding to the partitions of the form ($n-r, 1^{r}$), $0 \leq r \leq n-1$. The diagram of such a partition is a hook and accordingly, these specht modules are referred to as hook representation modules. Halicioglu [4] show how to construct submodules of Specht modules for Weyl groups. Geck and Jacon [5] present the irreducible representations of H_{n} and consider the canonical basic sets for certain values of the parameters in type B_{n}. Brandt [6] present the analogues of more results in the symmetric groups for the Weyl groups of type B_{n}. The intention of this research is to study the structure of the modules $S_{2}^{3}(m, n)$.

Now we give an indication of the layout of this paper. In section 2 , we present definition and some properties of the Weyl group. In section 3, we introduce a classification of the group algebra KW_{n}. In section 4 , we introduce the fundamental definitions and examples of
compositions, partitions and diagram. In section 5, we introduce λ tableaux and (λ, μ) - tableaux and related definitions. In section 6 , we give basic definitions and analysis of specht modules $S_{2}^{3}(\mathrm{~m}, \mathrm{n})$. Finally in section 7, we review the background theory that we shall need; we also combine our results to complete the proof of the main theorem.

2. THE WEYL GROUP W_{n}

We begin by defining a family of integral representation modules of the Weyl groups W_{n}. Let x_{1}, \ldots, x_{n} be independent indeterminate over the field K characteristic P , which may be zero or a prime number and P not equal to 2 , let W_{n} be the set of all one to one mapping w from the set $\left\{ \pm \mathrm{x}_{1}, \ldots, \pm \mathrm{x}_{\mathrm{n}}\right\}$ onto $\left\{ \pm \mathrm{x}_{1}, \ldots, \pm \mathrm{x}_{\mathrm{n}}\right\}$ such that $\mathrm{w}(-\mathrm{xi})=$ $-w(x i), i=1, \ldots, n$.

The pair (W_{n}, composition) forms a group known as the Weyl groups [1].

Properties of $\mathbf{W}_{\mathbf{n}}$:

1) Each element w belongs to W_{n} is called a permutation.
2) w can be represented as

$$
\mathrm{W}=\left(\begin{array}{cccccc}
\mathrm{x}_{1} & \ldots & \mathrm{x}_{\mathrm{n}} & -\mathrm{x}_{1} & \ldots & -\mathrm{x}_{\mathrm{n}} \\
\mathrm{w}\left(\mathrm{x}_{1}\right) & \ldots & \mathrm{w}\left(\mathrm{x}_{\mathrm{n}}\right) & -\mathrm{w}\left(\mathrm{x}_{1}\right) & \ldots & -\mathrm{w}\left(\mathrm{x}_{\mathrm{n}}\right)
\end{array}\right)
$$

3) The order of the Weyl groups W_{n} is denoted by $\left|W_{n}\right|$ which is equal to 2 n! .

Example(2.1):-

Notice that $\left|W_{2}\right|=2^{2} .2!=8$.

3. THE GROUP ALGEBRA KW \mathbf{n}

Definition(3.1) :

Let $\mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be the set of all polynomials in $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ with coefficients in the field K.

Then any permutation $\mathrm{w} \in \mathrm{W}_{\mathrm{n}}$ can be regarded as a one mapping from $\mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ onto $\mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ by defining $\mathrm{wf}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$ $f\left(\mathrm{wx}_{1}, \ldots, \mathrm{wx} \mathrm{x}_{\mathrm{n}}\right)$ for each Polynomial $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$.

That is w changes each variable x_{i} by the variable $w\left(x_{i}\right)$ in each polynomial $f\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$.

Now since $\operatorname{kf}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ for each polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]$ and for each $k \in K$, Then the multiplication of a permutation $w \in W_{n}$ by a scalar $k \in K$ is a function $\operatorname{kwf}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{kf}\left(\mathrm{wx}_{1}, \ldots, \mathrm{wx}_{\mathrm{n}}\right)$ for each $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{K}\left[\mathrm{x}_{1}, \ldots\right.$, x_{n}].

Let KW_{n} be the set of all k -linear combination of the permutations $W_{i} \in W_{n}$, i.e. $\operatorname{KW}_{n}=\left\{\Sigma \mathrm{k}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}} / \mathrm{k}_{\mathrm{i}} \in \mathrm{K}\right\}$

4. COMPOSITIONS, PARTITIONS AND DIAGRAM

In this section we introduce the fundamental definitions of compositions, partitions and diagram. Thereby we follow [1, 2 and 6].

Definition (4.1):

1) $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a composition of n, if $\lambda_{1}, \lambda_{2}, \ldots$ are nonnegative integers with $|\lambda|=\sum_{i=1}^{\infty} \lambda_{i}=n$. The non-zero λ_{i} are called the parts of λ.
2) A partition of n is a composition λ of n for which

$$
\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots
$$

Definition (4.2):

A pair of partitions (λ, μ) of a positive integer n , is a pair of sequences of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{t}\right)$ such that

1) $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\mathrm{s}}>0, \mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{\mathrm{t}}>0$.
2) $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{\mathrm{s}}+\mu_{1}+\mu_{2}+\ldots+\mu_{\mathrm{t}}=\mathrm{n}$.

Definition (4.3):

If λ is a composition of n, then the diagram $[\lambda]$ is the set
$\left\{(\mathrm{i}, \mathrm{j}) \mid \mathrm{i}, \mathrm{j} \in \mathrm{Z}, 1 \leq \mathrm{i}, 1 \leq \mathrm{j} \leq \lambda_{\mathrm{i}}\right\}$. If $(\mathrm{i}, \mathrm{j}) \in[\lambda]$, then (i, j) is called a node of $[\lambda]$. The $k^{\text {th }}$ row (respectively, column) of a diagram consists of those nodes whose first (respectively, second) coordinate is k.

We shall draw diagrams as in the following example.

Example (4.1):

For $\lambda=(4,2,3,1)$ we have $[\lambda]=$

Definition (4.4):

$\left.\mu_{t}\right)$) be a pair of partitions of a positive integer n . Then the set
$D_{(\lambda, \mu)}=\left\{(i, j, k) \mid 1 \leq i \leq s, 1 \leq j \leq \lambda_{i}\right.$ if $k=1$ and $1 \leq i \leq t, 1 \leq j \leq \mu_{i}$ if $\mathrm{k}=2\}$ is called the (λ, μ) - diagram.

Example (4.2):

Let $(\lambda, \mu)=((3,2,2),(3,3))$ which is a pair of partitions of 13 , then the (λ, μ) - diagram is the set
$\mathrm{D}_{(\lambda, \mu)}=\{(1,1,1),(1,2,1),(1,3,1),(2,1,1),(2,2,1),(3,1,1),(3,2,1)$, $(1,1,2),(1,2,2),(1,3,2),(2,1,2),(2,2,2),(2,3,2)\}$.
The following pair of nodes is also a (λ, μ) - diagram.

5. λ - TABLEAUX AND (λ, μ) - TABLEAUX

We continue with the introduction of λ - tableaux and $(\lambda, \mu)-$ tableaux and related definitions. Our main references are [1, 6].

Definition (5.1):

Let λ be a composition of n. A λ - tableau is one of the n ! Arrays of integers obtained by replacing each node in $[\lambda]$ by one of the integers $1,2, \ldots, \mathrm{n}$, allowing no repeats.

Example (5.1):

Let $\lambda=(1,2,4,1)$. Then are λ - tableaux.

Definition (5.2):

Let $(\lambda, \mu)=\left(\left(\lambda_{1}, \ldots, \lambda_{s}\right),\left(\mu_{1}, \ldots, \mu_{t}\right)\right)$ be a pair partitions of a positive integer n. Then any one to one mapping Z from $D_{(\lambda, \mu)}$ into the set $\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ such that $Z\left(i_{1}, j_{1}, k_{1}\right) \neq \pm Z\left(i_{2}, j_{2}, k_{2}\right)$ if ($\left.i_{1}, j_{1}, k_{1}\right) \neq\left(i_{2}, j_{2}, k_{2}\right)$ is called a $(\lambda, \mu)-$ tableau.

Example (5.2):

Let $(\lambda, \mu)=((3,2),(1,1))$ be a pair of partitions of 7 , then a $((3,2),(1,1))-$ tableaux is the mapping
$\mathrm{Z}: \mathrm{D}_{((3,2),(1,1)} \longrightarrow\left\{ \pm \mathrm{x}_{1}, \ldots, \pm \mathrm{x}_{7}\right\}$ defined by $\mathrm{Z}(1,1,1)=\mathrm{x}_{1}$, $Z(1,2,1)=x_{3}, Z(1,3,1)=-x_{5}, Z(2,1,1)=x_{2}, Z(2,2,1)=-x_{4}, Z(1,1,2)$ $=x_{6}, Z(2,1,2)=x_{7}$.

Z can also be considered as the following pair of arrays

x_{1}	x_{3}	$-\mathrm{x}_{5}$		
x_{2}	$-\mathrm{x}_{4}$,\quad, \quad	x_{6}
:---				
x_{7}				

6. SPECHT MODULE $S_{2}^{\mathbf{3}}(\mathrm{m}, \mathrm{n})$

Definition (6.1):

Let $(\lambda, \mu)=\left(\left(\lambda_{1}, \ldots, \lambda_{\mathrm{s}}\right),\left(\mu_{1}, \ldots, \mu_{\mathrm{t}}\right)\right)$ be a pair of partitions of a positive integer n, and let Z be any (λ, μ) - tableau, then the cyclic KW_{n} - module $\mathrm{S}_{\mathrm{K}}(\lambda, \mu)$ generated over KW_{n} by $\mathrm{f}(\mathrm{Z})$ (i.e. $\mathrm{S}_{\mathrm{K}}(\lambda, \mu)=$ $\left.\mathrm{KW}_{\mathrm{n}} \mathrm{f}(\mathrm{Z})\right)$ is called the Specht module over K corresponding to the pair of partitions (λ, μ) of n.

The Specht modules $\mathrm{S}_{\mathrm{K}}\left(\left(\mathrm{m}-2,1^{\mathrm{t}-1}\right)\right.$, $\left.\left(\mathrm{n}-\mathrm{m}-1,1^{\mathrm{r}-1}\right)\right)$ will be denoted by $S_{r}^{t}(m, n)$, where t, r, m and n are positive integers such that $t \leq$ $\mathrm{m} \leq \mathrm{n}$ and $\mathrm{r} \leq \mathrm{n}-\mathrm{m}$.

Definition (6.2):

Let $\alpha_{\mathrm{r}}^{\mathrm{t}}: \mathrm{S}_{\mathrm{r}}^{\mathrm{t}}(\mathrm{m}, \mathrm{n}) \longrightarrow \mathrm{S}_{\mathrm{r}}^{\mathrm{t}+1}(\mathrm{~m}, \mathrm{n}), \beta_{\mathrm{r}}^{\mathrm{t}}: \mathrm{S}_{\mathrm{r}}^{\mathrm{t}}(\mathrm{m}, \mathrm{n}) \longrightarrow \mathrm{S}_{\mathrm{r}+1}^{\mathrm{t}}$ (m, n) and $\quad \gamma_{\mathrm{r}}^{\mathrm{t}}: \mathrm{S}_{\mathrm{r}}^{\mathrm{t}}(\mathrm{m}, \mathrm{n}) \longrightarrow \mathrm{S}_{\mathrm{r}+1}^{\mathrm{t}+1}(\mathrm{~m}, \mathrm{n})$ are the linear transformation. Then $\alpha_{\mathrm{r}}^{\mathrm{t}}, \beta_{\mathrm{r}}^{\mathrm{t}}, \gamma_{\mathrm{r}}^{\mathrm{t}}$ are KW_{n} - homomorphism if P divides $\mathrm{m}, \mathrm{n}-\mathrm{m}$ and both m and
$\mathrm{n}-\mathrm{m}$ respectively .

ANALYSIS OF $\mathbf{S}_{\mathbf{2}}^{\mathbf{3}(m, n)}$

Let K be a field of characteristic P not equal to 2 and P divides both m and $\mathrm{n}-\mathrm{m}$. Depending on the results founds by $\mathrm{AL}-$ Aamily [2], the analysis of the module $S_{2}^{3}(m, n)$ will be done.

7. THE MAIN RESULT

In this section, we give our main theorem. First we review the background concerning of the irreducible $\mathrm{KW}_{\mathrm{n}}{ }^{-}$module required to enable us to state our results.

7.1 USEFUL BACKGROUND RESULTS

Here, we summarize some theorems without prove (see proof in [7]) which we shall need in order to prove our Theorem 7.1.
Theorem 7.1.1: $\operatorname{Im} \gamma_{1}^{2}$ is an irreducible KW_{n} - module.
Theorem 7.1.2: $\frac{\operatorname{Im} \beta_{1}^{3}}{\operatorname{Im} \gamma_{1}^{2}}$ is an irreducible $\mathrm{KW}_{\mathrm{n}}-$ module.
Theorem 7.1.3: $\frac{\operatorname{Im} \alpha_{2}^{2}}{\operatorname{Im} \gamma_{1}^{2}}$ is an irreducible $\mathrm{KW}_{\mathrm{n}}-$ module.
Theorem 7.1.4: $\frac{\operatorname{ker} \gamma_{2}^{3}}{\operatorname{Im} \alpha_{2}^{2}}$ is an irreducible KW_{n} - module.
Theorem 7.1.5: $\frac{\operatorname{ker} \gamma_{2}^{3}}{\operatorname{Im} \beta_{1}^{3}}$ is an irreducible $\mathrm{KW}_{\mathrm{n}}-$ module.
To conclude, we can formulate and prove the main theorem motivating of this paper.
Theorem 7.1:
If K is a field of characteristic P not equal to 2 and P divides both m and $n-m$ then $S_{2}^{3}(m, n)$ has the following composition series:

1. $0 \subset \operatorname{Im} \gamma_{1}^{2} \subset \operatorname{Im} \beta_{1}^{3} \subset \operatorname{Ker} \gamma_{2}^{3} \subset \mathrm{~S}_{2}^{3}(\mathrm{~m}, \mathrm{n})$
2. $0 \subset \operatorname{Im} \gamma_{1}^{2} \subset \operatorname{Im} \alpha_{2}^{2} \subset \operatorname{Ker} \gamma_{2}^{3} \subset \mathrm{~S}_{2}^{3}(\mathrm{~m}, \mathrm{n})$

Proof:

From the above theorems, we have $\operatorname{Im} \gamma_{1}^{2}, \frac{\operatorname{Im} \beta_{1}^{3}}{\operatorname{Im} \gamma_{1}^{2}}, \frac{\operatorname{Im} \alpha_{2}^{2}}{\operatorname{Im} \gamma_{1}^{2}}$, $\frac{\operatorname{ker} \gamma_{2}^{3}}{\operatorname{Im} \alpha_{2}^{2}}, \frac{\operatorname{ker} \gamma_{2}^{3}}{\operatorname{Im} \beta_{1}^{3}}$ are irreducible, and from [2] we have $\operatorname{Im} \gamma_{2}^{3}$ is irreducible.
Hence $\frac{\mathrm{S}_{2}^{3}(\mathrm{~m}, \mathrm{n})}{\operatorname{ker} \gamma_{2}^{3}}$ is irreducible. Therefore, $\mathrm{S}_{2}^{3}(\mathrm{~m}, \mathrm{n})$ has (1) and (2) as composition series.

To prove that $\mathrm{S}_{2}^{3}(\mathrm{~m}, \mathrm{n})$ has no non-zero proper submodule other than $\operatorname{Im} \gamma_{1}^{2}, \operatorname{Im} \beta_{1}^{3}, \operatorname{Im} \alpha_{2}^{2}$ and $\operatorname{Ker} \gamma_{2}^{3}$, let M be any non-zero proper $\mathrm{KW}_{\mathrm{n}}-$ submodule, then either M is not a submodule of $\operatorname{Ker} \gamma_{2}^{3}$ or M is a submodule of $\operatorname{Ker} \gamma_{2}^{3}$.

If M is not a submodule of $\operatorname{Ker} \gamma_{2}^{3}$, then $\mathrm{S}_{2}^{3}(\mathrm{~m}, \mathrm{n})=M+\operatorname{Ker} \gamma_{2}^{3}$, because $\operatorname{Ker} \gamma_{2}^{3}$ is maximal in $\mathrm{S}_{2}^{3}(\mathrm{~m}, \mathrm{n})$.

But $\mathrm{S}_{2}^{3}(\mathrm{~m}, \mathrm{n})$ is indecomposable. Therefore, M is a submodule of $\operatorname{Ker} \gamma_{2}^{3}$ and hence $M=\operatorname{Ker} \gamma_{2}^{3}$ or M is a proper submodule of $\operatorname{Ker} \boldsymbol{\gamma}_{2}^{3}$.

If M is a proper submodule of $\operatorname{Ker} \gamma_{2}^{3}$ then $M=\operatorname{Im} \beta_{1}^{3}$ or $M \cap$ $\operatorname{Im} \beta_{1}^{3}=0$

1) If $M \cap \operatorname{Im} \beta_{1}^{3}=\operatorname{Im} \gamma_{1}^{2}$, then either $M \subseteq \operatorname{Im} \alpha_{2}^{2}$ or $M+\operatorname{Im} \alpha_{2}^{2}=$ $\operatorname{Ker} \gamma_{2}^{3}$
If $M+\operatorname{Im} \alpha_{2}^{2}=\operatorname{Ker} \gamma_{2}^{3}$, then
$\operatorname{Im} \beta_{1}^{3} \cap \operatorname{Ker} \gamma_{2}^{3}=\operatorname{Im} \beta_{1}^{3} \cap\left(M+\operatorname{Im} \alpha_{2}^{1}\right)=\operatorname{Im} \gamma_{1}^{2}$
This is not true. Therefore, $M \leq \operatorname{Im} \alpha_{2}^{2}$ and hence either $M=$ $\operatorname{Im} \alpha_{2}^{2}$ or $M=\operatorname{Im} \gamma_{1}^{2}$.
2) If $M \cap \operatorname{Im} \beta_{1}^{3}=0$, let $M \cap \operatorname{Im} \alpha_{2}^{2} \neq 0$, then $\operatorname{Im} \gamma_{1}^{2} \leq M \cap \operatorname{Im} \alpha_{2}^{2}$, which contradicts the assumption since $\operatorname{Im} \gamma_{1}^{2} \leq \operatorname{Im} \beta_{1}^{3}$. Therefore,
$M \cap \operatorname{Im} \alpha_{2}^{2}=0$. But it is clear that $\operatorname{Ker} \gamma_{2}^{3}=\operatorname{Im} \alpha_{2}^{2}+\operatorname{Im} \beta_{1}^{3}$ therefore, $\quad M=0$.

REFERENCES

1. M. H. Peel, "Specht Modules and Symmetric Groups", J. Algebra, vol. 36, p. 88-97 (1975).
2. E. M. AL-Aamily, "Representation Theory of Weyl Groups of Type $\mathrm{B}_{\mathrm{n}}{ }^{\prime \prime}$, Ph. D. Thesis, University of Wales, (1977).
3. M. H. Peel, "Hook Representation of the Symmetric Groups", Glasgow Math. J., vol. 12 p. 136, (1971).
4. S. Halicioglu, "Submodules of Specht Modules for Weyl Groups" Edinburgh Math. Soc. 39, 43-50, (1996).
5. M.Geck and N.Jacon, "Canonical Basic Sets in Type Bn ", J. Algebra 306, 104-127, (2006).
6. M.Brandt, "On Unipotent Specht Modules of Finite General Linear Groups", Ph. D. Thesis, University Stuttgart, (2004).
7. Y. H. Al-Katib, "On the Specht Modules $\mathrm{S}_{\mathrm{K}}((\mathrm{m}-2,1,1)$, (n-m-1, 1))", M. Sc. Thesis, Al-Mustansiriyah University (1999).
