Composition Series of the Modules $S_2^3(m,n)$ for the Weyl Groups of Type B_n

Yasmin Hamed Abd Al-katib

Dept. of Material Engineering, College of Engineering, Al-Mustansiriyah University

Received 15/9/2008 - Accepted 14/5/2009

الغرض من هذا البحث هو دراسة زمرة فايل وبنية موديولات سبخت (m,n) الغرض من هذا البحث هو دراسة زمرة فايل وبنية موديولات سبخت (S³₂ (m,n) : S³₂ (m,n)
هذه الدراسة ، تمكنا من اثبات المتسلسلات التركيبة التالية للموديول (m,n)
$$0 \subset \operatorname{Im} \gamma_1^2 \subset \operatorname{Im} \beta_1^3 \subset \operatorname{Ker} \gamma_2^3 \subset \operatorname{S}_2^3 (m,n)$$

 $0 \subset \operatorname{Im} \gamma_1^2 \subset \operatorname{Im} \alpha_2^2 \subset \operatorname{Ker} \gamma_2^3 \subset \operatorname{S}_2^3 (m,n)$

ABSTRACT

The purpose of this paper is to study the Weyl groups and structure of the specht modules S_2^3 (m,n). Also, in this study, we were able to prove the following composition series of the modules S_2^3 (m,n)

$$0 \subset \operatorname{Im} \gamma_{1}^{2} \subset \operatorname{Im} \beta_{1}^{3} \subset \operatorname{Ker} \gamma_{2}^{3} \subset \operatorname{S}_{2}^{3}(m,n)$$
$$0 \subset \operatorname{Im} \gamma_{1}^{2} \subset \operatorname{Im} \alpha_{2}^{2} \subset \operatorname{Ker} \gamma_{2}^{3} \subset \operatorname{S}_{2}^{3}(m,n)$$

1. INTRODUCTION

Many outstanding problems in representation theory can be solved with a proper understanding of the specht modules for the Weyl groups W_n of type B_n [1, 2].

Peel [3] gives the analysis of the specht modules corresponding to the partitions of the form (n-r, 1^r), $0 \le r \le n-1$. The diagram of such a partition is a hook and accordingly, these specht modules are referred to as hook representation modules. Halicioglu [4] show how to construct submodules of Specht modules for Weyl groups. Geck and Jacon [5] present the irreducible representations of H_n and consider the canonical basic sets for certain values of the parameters in type B_n. Brandt [6] present the analogues of more results in the symmetric groups for the Weyl groups of type B_n. The intention of this research is to study the structure of the modules S_2^3 (m,n).

Now we give an indication of the layout of this paper. In section 2, we present definition and some properties of the Weyl group. In section 3, we introduce a classification of the group algebra KW_n . In section 4, we introduce the fundamental definitions and examples of

compositions, partitions and diagram. In section 5, we introduce λ – tableaux and (λ, μ) – tableaux and related definitions. In section 6, we give basic definitions and analysis of specht modules $S_2^3(m,n)$. Finally in section 7, we review the background theory that we shall need; we also combine our results to complete the proof of the main theorem.

2. THE WEYL GROUP W_n

We begin by defining a family of integral representation modules of the Weyl groups W_n . Let x_1, \ldots, x_n be independent indeterminate over the field K characteristic P, which may be zero or a prime number and P not equal to 2, let W_n be the set of all one to one mapping w from the set $\{\pm x_1, \ldots, \pm x_n\}$ onto $\{\pm x_1, \ldots, \pm x_n\}$ such that w(-xi) = -w(xi), i = 1, ..., n.

The pair (W_n , composition) forms a group known as the Weyl groups [1].

Properties of W_n:

- 1) Each element w belongs to W_n is called a permutation.
- 2) w can be represented as

$$W = \begin{pmatrix} x_{1} & \dots & x_{n} & -x_{1} & \dots & -x_{n} \\ w(x_{1}) & \dots & w(x_{n}) & -w(x_{1}) & \dots & -w(x_{n}) \end{pmatrix}$$

3) The order of the Weyl groups W_n is denoted by $|W_n|$ which is equal to 2 .n!.

Example(2.1):-

$$\begin{aligned} & = \\ & \begin{bmatrix} x_1 & x_2 & -x_1 & -x_2 \\ x_1 & x_2 & -x_1 & -x_2 \end{bmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_1 & x_2 & x_1 & -x_2 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ x_1 & -x_2 & -x_1 & x_2 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_1 & -x_2 & x_1 & x_2 \end{pmatrix}, \\ & & \begin{bmatrix} x_1 & x_2 & -x_1 & -x_2 \\ x_2 & x_1 & -x_2 & -x_1 \end{bmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & x_1 & x_2 & -x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & x_1 & x_2 & -x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & x_1 & x_2 & -x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & x_1 & x_2 & -x_1 & -x_2 \\ x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 \\ -x_2 & -x_1 & -x_2 & x_1 \end{pmatrix}, \begin{pmatrix} x_1 & x_2 & -x_1 & -x_2 & -x_1 \\ -x_2 & -x_1 & -x_2 & -$$

Notice that $|W_2| = 2^2$. 2! = 8.

3. THE GROUP ALGEBRA KW_n

Definition(3.1) :

Let $K[x_1,\,\ldots\,,\,x_n]$ be the set of all polynomials in $x_1,\,\ldots\,,\,x_n$ with coefficients in the field K .

Then any permutation $w \in W_n$ can be regarded as a one mapping from $K[x_1, ..., x_n]$ onto $K[x_1, ..., x_n]$ by defining $wf(x_1, ..., x_n) = f(wx_1, ..., wx_n)$ for each Polynomial $f(x_1, ..., x_n) \in K[x_1, ..., x_n]$.

That is w changes each variable x_i by the variable $w(x_i)$ in each polynomial $f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$.

Now since $kf(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ for each polynomial $f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ and for each $k \in K$, Then the multiplication of a permutation $w \in W_n$ by a scalar $k \in K$ is a function $kwf(x_1, \ldots, x_n) = kf(wx_1, \ldots, wx_n)$ for each $f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$.

Let KW_n be the set of all k-linear combination of the permutations $w_i \in W_n$, i.e. $KW_n = \{\Sigma \ k_i \ w_i \ / \ k_i \in K\}$

4. COMPOSITIONS, PARTITIONS AND DIAGRAM

In this section we introduce the fundamental definitions of compositions, partitions and diagram. Thereby we follow [1, 2 and 6].

Definition (4.1):

1) $\lambda = (\lambda_1, \lambda_2, ...)$ is a composition of n, if $\lambda_1, \lambda_2, ...$ are nonnegative integers with $|\lambda| = \sum_{i=1}^{\infty} \lambda_i = n$. The non-zero λ_i are called the

parts of λ .

2) A partition of n is a composition λ of n for which $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \dots$

Definition (4.2):

A pair of partitions (λ, μ) of a positive integer n, is a pair of sequences of positive integers $\lambda = (\lambda_1, \dots, \lambda_s)$ and $\mu = (\mu_1, \dots, \mu_t)$ such that

1) $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_s > 0$, $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_t > 0$.

2) $\lambda_1 + \lambda_2 + \ldots + \lambda_s + \mu_1 + \mu_2 + \ldots + \mu_t = n.$

Definition (4.3):

If λ is a composition of n, then the diagram $[\lambda]$ is the set $\{(i, j) | i, j \in \mathbb{Z}, 1 \le i, 1 \le j \le \lambda_i\}$. If $(i, j) \in [\lambda]$, then (i, j) is called a node of $[\lambda]$. The k^{th} row (respectively, column) of a diagram consists of those nodes whose first (respectively, second) coordinate is k.

Yasmin

We shall draw diagrams as in the following example.

Example (4.1):

For $\lambda = (4,2,3,1)$ we have $[\lambda] =$

Definition (4.4):

Let $(\lambda, \mu) = ((\lambda_1, \dots, \lambda_s), (\mu_1, \dots, \mu_t))$ be a pair of partitions of a positive integer n. Then the set

 $D_{(\lambda,\mu)} = \{(i,j,k) \mid 1 \le i \le s, 1 \le j \le \lambda_i \text{ if } k=1 \text{ and } 1 \le i \le t, 1 \le j \le \mu_i\}$ if k=2} is called the (λ, μ) – diagram.

<u>Example (4.2)</u>:

Let $(\lambda, \mu) = ((3,2,2), (3,3))$ which is a pair of partitions of 13, then the (λ, μ) – diagram is the set

 $D_{(\lambda,\mu)} = \{ (1,1,1), (1,2,1), (1,3,1), (2,1,1), (2,2,1), (3,1,1), (3,2,1) \}$ $(1,1,2), (1,2,2), (1,3,2), (2,1,2), (2,2,2), (2,3,2) \}.$

The following pair of nodes is also a (λ, μ) – diagram.

5. λ – TABLEAUX AND (λ , μ) – TABLEAUX

We continue with the introduction of λ – tableaux and (λ , μ) – tableaux and related definitions. Our main references are [1, 6].

Definition (5.1):

Let λ be a composition of n. A λ – tableau is one of the n! Arrays of integers obtained by replacing each node in $[\lambda]$ by one of the integers 1, 2, ..., n, allowing no repeats.

Definition (5.2):

Let $(\lambda, \mu) = ((\lambda_1, \dots, \lambda_s), (\mu_1, \dots, \mu_t))$ be a pair partitions of a positive integer n. Then any one to one mapping Z from $D_{(\lambda, \mu)}$ into the set $\{\pm x_1, \ldots, \pm x_n\}$ such that $Z(i_1, j_1, k_1) \neq \pm Z(i_2, j_2, k_2)$ if ($i_1, j_1, k_1 \neq (i_2, j_2, k_2)$ is called a (λ, μ) – tableau.

Example (5.2):

Let $(\lambda, \mu) = ((3,2), (1,1))$ be a pair of partitions of 7, then a ((3,2), (1,1)) - tableaux is the mapping $Z : D_{((3,2), (1,1))} \rightarrow \{\pm x_1, \ldots, \pm x_7\}$ defined by $Z(1,1,1) = x_1$, $Z(1,2,1) = x_3$, $Z(1,3,1) = -x_5$, $Z(2,1,1) = x_2$, $Z(2,2,1) = -x_4$, Z(1,1,2) $= x_6$, $Z(2,1,2) = x_7$.

Z can also be considered as the following pair of arrays

6. SPECHT MODULE $S_2^3(m, n)$

Definition (6.1):

Let $(\lambda, \mu) = ((\lambda_1, \dots, \lambda_s), (\mu_1, \dots, \mu_t))$ be a pair of partitions of a positive integer n, and let Z be any (λ, μ) – tableau, then the cyclic KW_n – module S_K (λ, μ) generated over KW_n by f(Z) (i.e. S_K $(\lambda, \mu) = KW_n f(Z)$) is called the Specht module over K corresponding to the pair of partitions (λ, μ) of n.

The Specht modules $S_K((m-2,1^{t-1}), (n-m-1,1^{r-1}))$ will be denoted by $S_r^t(m,n)$, where t, r, m and n are positive integers such that $t \le m \le n$ and $r \le n-m$.

Definition (6.2):

Let $\alpha_r^t : S_r^t(m,n) \longrightarrow S_r^{t+1}(m,n)$, $\beta_r^t : S_r^t(m,n) \longrightarrow S_{r+1}^t$ (m,n) and $\gamma_r^t : S_r^t(m,n) \longrightarrow S_{r+1}^{t+1}(m,n)$ are the linear transformation. Then α_r^t , β_r^t , γ_r^t are KW_n – homomorphism if P divides m, n – m and both m and n – m respectively.

<u>ANALYSIS OF $S_2^3(m, n)$ </u>

Let K be a field of characteristic P not equal to 2 and P divides both m and n-m. Depending on the results founds by AL-Aamily [2], the analysis of the module $S_2^3(m,n)$ will be done.

Yasmin

7. THE MAIN RESULT

In this section, we give our main theorem. First we review the background concerning of the irreducible KW_n - module required to enable us to state our results.

7.1 USEFUL BACKGROUND RESULTS

Here, we summarize some theorems without prove (see proof in [7]) which we shall need in order to prove our Theorem 7.1.

Theorem 7.1.1:
$$\mathrm{Im} \gamma_1^2$$
 is an irreducible KW_n - module.**Theorem 7.1.2:** $\frac{\mathrm{Im} \beta_1^3}{\mathrm{Im} \gamma_1^2}$ is an irreducible KW_n - module.**Theorem 7.1.3:** $\frac{\mathrm{Im} \alpha_2^2}{\mathrm{Im} \gamma_1^2}$ is an irreducible KW_n - module.**Theorem 7.1.4:** $\frac{\mathrm{ker} \gamma_2^3}{\mathrm{Im} \alpha_2^2}$ is an irreducible KW_n - module.**Theorem 7.1.5:** $\frac{\mathrm{ker} \gamma_2^3}{\mathrm{Im} \beta_1^3}$ is an irreducible KW_n - module.

To conclude, we can formulate and prove the main theorem motivating of this paper.

Theorem 7.1:

If K is a field of characteristic P not equal to 2 and P divides both m and n – m then $S_2^3(m,n)$ has the following composition series: 1. $0 \subset \operatorname{Im} \gamma_1^2 \subset \operatorname{Im} \beta_1^3 \subset \operatorname{Ker} \gamma_2^3 \subset \operatorname{S}_2^3(\mathfrak{m},\mathfrak{n})$ 2. $0 \subset \operatorname{Im} \gamma_1^2 \subset \operatorname{Im} \alpha_2^2 \subset \operatorname{Ker} \gamma_2^3 \subset \operatorname{S}_2^3(\mathfrak{m},\mathfrak{n})$

<u>Proof</u>:

From the above theorems, we have $\operatorname{Im} \gamma_1^2$, $\frac{\operatorname{Im} \beta_1^3}{\operatorname{Im} \gamma_1^2}$, $\frac{\operatorname{Im} \alpha_2^2}{\operatorname{Im} \gamma_1^2}$, $\frac{\frac{\operatorname{ker} \gamma_2^2}{\operatorname{Im} \gamma_1^2}}{\operatorname{Im} \alpha_2^2}$, $\frac{\operatorname{ker} \gamma_2^3}{\operatorname{Im} \beta_1^3}$ are irreducible, and from [2] we have $\operatorname{Im} \gamma_2^3$ is irreducible.

Hence $\frac{S_2^3(m,n)}{\ker \gamma_2^3}$ is irreducible. Therefore, $S_2^3(m,n)$ has (1) and (2) as composition series.

To prove that $S_2^3(m,n)$ has no non-zero proper submodule other than $\operatorname{Im} \gamma_1^2$, $\operatorname{Im} \beta_1^3$, $\operatorname{Im} \alpha_2^2$ and $\operatorname{Ker} \gamma_2^3$, let *M* be any non-zero proper KW_n- submodule, then either *M* is not a submodule of $\operatorname{Ker} \gamma_2^3$ or *M* is a submodule of $\operatorname{Ker} \gamma_2^3$.

If *M* is not a submodule of Ker γ_2^3 , then $S_2^3(m,n) = M + \text{Ker}\gamma_2^3$, because Ker γ_2^3 is maximal in $S_2^3(m,n)$.

But S_2^3 (m,n) is indecomposable. Therefore, M is a submodule of Ker γ_2^3 and hence $M = \text{Ker}\gamma_2^3$ or M is a proper submodule of Ker γ_2^3 .

If *M* is a proper submodule of $\operatorname{Ker} \gamma_2^3$ then $M = \operatorname{Im} \beta_1^3$ or $M \cap$ $\operatorname{Im} \beta_1^3 = 0$

1) If $M \cap \operatorname{Im} \beta_1^3 = \operatorname{Im} \gamma_1^2$, then either $M \subseteq \operatorname{Im} \alpha_2^2$ or $M + \operatorname{Im} \alpha_2^2 = \operatorname{Ker} \gamma_2^3$ If $M + \operatorname{Im} \alpha_2^2 = \operatorname{Ker} \gamma_2^3$, then $\operatorname{Im} \beta_1^3 \cap \operatorname{Ker} \gamma_2^3 = \operatorname{Im} \beta_1^3 \cap (M + \operatorname{Im} \alpha_2^1) = \operatorname{Im} \gamma_1^2$

This is not true. Therefore, $M \leq \text{Im}\alpha_2^2$ and hence either $M = \text{Im}\alpha_2^2$ or $M = \text{Im}\gamma_1^2$.

2) If $M \cap \operatorname{Im} \beta_1^3 = 0$, let $M \cap \operatorname{Im} \alpha_2^2 \neq 0$, then $\operatorname{Im} \gamma_1^2 \leq M \cap \operatorname{Im} \alpha_2^2$, which contradicts the assumption since $\operatorname{Im} \gamma_1^2 \leq \operatorname{Im} \beta_1^3$. Therefore,

Composition Series of the Modules $S_2^3(m,n)$ for the Weyl Groups of Type B_n

Yasmin

 $M \cap \text{Im}\alpha_2^2 = 0$. But it is clear that $\text{Ker}\gamma_2^3 = \text{Im}\alpha_2^2 + \text{Im}\beta_1^3$ therefore, M = 0.

REFERENCES

- 1. M. H. Peel, "*Specht Modules and Symmetric Groups*", J. Algebra, vol. 36, p. 88-97 (1975).
- 2. E. M. AL-Aamily, "Representation Theory of Weyl Groups of Type B_n", Ph. D. Thesis, University of Wales, (1977).
- 3. M. H. Peel, "Hook Representation of the Symmetric Groups", Glasgow Math. J., vol.12 p. 136, (1971).
- 4. S. Halicioglu, "Submodules of Specht Modules for Weyl Groups" Edinburgh Math. Soc. 39, 43-50, (1996).
- 5. M.Geck and N.Jacon, "Canonical Basic Sets in Type B_n", J. Algebra 306, 104-127, (2006).
- 6. M.Brandt, "On Unipotent Specht Modules of Finite General Linear Groups", Ph. D. Thesis, University Stuttgart, (2004).
- 7. Y. H. Al-Katib, "On the Specht Modules S_K ((m-2, 1, 1), (n-m-1, 1))", M. Sc. Thesis, Al-Mustansiriyah University (1999).