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Abstract 
The document similarity detection plays an essential role in many applications such as 

plagiarism detection, copyright protection, document management, and document searching.  

However, the current methods do not care to the privacy of the contents of documents outsourced 

on remote servers. Such limitation reduces the utilization of these methods. For example, plagiarism 

detection between two conferences should protect the privacy of the submitted papers. In this paper,  

we consider the problem of privacy-preserving similarity document detection. The proposed scheme 

allows comparing documents without disclosing them to the untrusted servers. For each document, 

the fingerprint set is computed. The inverted index is built based on the entire fingerprint set. The 

index is protected by Paillier cryptosystem before uploading it to the untrusted server. We have 

developed a secure yet efficient method to rank the retrieved documents. Several experiments are 

conducted to investigate the performance of the proposed scheme. 
  

Key words: Document similarity, inverted index, security, document fingerprinting,  Paillier 

encryption.  

 الخلاصة
ٌلعة اكتشاف تشاتَ الولفاخ دّر أساسً فً العذٌذ هني التبثٍاناخ كاكتشناف الاسنتحما ةواٌنح الٌدنرا ادارج الولفناخا ّالث ن  

ج لا تْلً أُوٍح لخصْصٍح الولفاخ الوزاد هباتاتِا. ُذا الاصْر ٌالل هي الاستفادج هني ُنذٍ البنزق. عي  الولفاخ. البزق الوْجْد

على سثٍل الوثاما اكتشاف الاسنتحم تنٍي هنرتوزٌي ٌأنة أى ٌ فنص ةصْصنٍح الث نْم الواذهنح. فنً ُنذا الث ن ا سوٌنا ت ةنذ هدنالح 

ر. الوشزّع الواتزح ٌدوح تواارًح الولفاخ تذّى افشاء أي شً للخادم ال فاظ على ةصْصٍح الولفاخ الوزاد هباتاتِا تٌظز الاعتثا

 Paillierغٍز الوْثْق. سوٌا ت داب الثصوح لكل هلف. تن اًشاء الفِزس هي هأوْعح الثصواخ. تن ةواٌح الفِزس تاستخذام شنفزج 

تزجعح. تنن اجنزاء العذٌنذ هني التأنارب  ظِنار سثل ًال الفِزس الى الخادم. كوا سوٌا تتبٌْز طزٌاح كفر ّآهٌح لتزتٍة الولفاخ الودن

 اًأاسٌح البزٌح الواتزةح

 .Paillierتشاتَ الولفاخا الفِزس الوعكْسا الأهٌٍحا تصوح الولفا شفزج الكلمات المفتاحية:  

1. Introduction 
The document similarity detection (DSD) is ubiquitous in many practical applications. To gain 

an efficient file access, similar files are bring together to form clusters. Such that once providing a 

document, all the similar documents are retrieved efficiently. DSD can also be applied to detect 

whether the newly submitted article to a journal includes plagiarized contents. However, all the 

current solutions of DSD assume that the document collection is public and thus do not care to the 

privacy of documents that need to be matched. Such limitation reduces the utilization of these 

methods in our real life applications.  

 

There are many practical applications where detecting the similar documents to a given query 

document in a privacy-preserving manner is needed. For example, to better understand the spread 

diseases, a number of different health agencies want jointly to check the similarity between their 

reports. For privacy issues, no agency reveals its report to the others. Such that it’s urgent need to 

compare the underlying reports without compromising the privacy.  Furthermore, most journals 

prevent the double submission of the same article. Thus, privacy preserving DSD is needed to check 
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whether the same paper is submitted into more than one journal at the same time without 

comprising the privacy of each journal.  

 

In fact, encryption represents the best method to protect the privacy of the stored documents [15]. 

But encryption makes the work of the traditional DSD methods a challenging task. Thus, it’s 

necessary to find an efficient method that measures the similarity between two documents at the 

encrypted domain.  

 

Basically, the current DSD methods can be classified into two approaches: hashing[1-5] and vector 

space[6, 7]. In hashing approach, a set of fixed length substrings is extracted from the document. 

Then the hash code of each substring is computed. Finally,  a compressed yet descriptive fingerprint 

is generated from the hash codes. Two documents are considered similar if they contain a 

significant number of shared fingerprint terms more than a predefined threshold. Such approach is 

more suitable to catch the local similarities, i.e. finding the overlapped contents between two 

documents.   

 

On the other hand, vector space approach employs the information retrieval’s (IR) concepts to 

identify the global similarity information. Under the vector space model, each document is 

represented as a vector of terms or words, and each entry of the vector indicates certain frequency 

information of the corresponding term. Two documents are considered similar under such a model 

if they have common terms with similar term frequencies. However,  vector space model detects the 

similarity of the whole documents. Consequently, it marks two documents with the same bag of 

words to be similar even if they have different contents.  

 

Our proposed scheme utilizes the hashing approach to generate the fingerprint  for each document. 

Where fingerprint is a representative yet compressed set of numbers. From the fingerprint set of the 

entire document collection, we build the inverted index structure. Inverted index structure is 

extensively used in information retrieval community [8] to provide fast retrieval. To utilize the 

appealing features of the inverted index in the context of secure data, we build a secure inverted 

index and build a secure  DSD scheme on top of this index, where a secret key is used to encrypt the 

index in such a way that allow to measure the similarity without leaking the contents of the 

underlying data. Without learning this key no one can generate a valid fingerprint for the 

documented wanted to be matched. In this paper, we adopt the syntactic similarity notion. Briefly, 

under such notion two documents with different keywords will not consider to be similar even they 

have the same meaning. On the other hand, semantic notion employs sophisticated methods to 

consider the document meaning during its matching process. The latter notion is outside the scope 

of this paper.  

    

Our contribution in this paper can be summarized as follows. First, we utilize the fingerprint 

approach, for the first time, to generate a secure index and build our secure DSD depending on this 

index. Second, we develop a secure solution to compute the common fingerprint terms of the 

provided document and the entire stored collection. Third,  we have conducted several experimental 

results to show the performance of our approach.  

 

The rest of this paper is organized as follows. Section 2 illustrates the related literature. Section 3 

introduces document fingerprinting technique. Section 4 introduces the problem definition. Section 

5 shows the proposed approach. In Section 6 we investigate the performance of our approach. 

Finally, Section 7 concludes the whole paper. 
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2. Related Work 
 

The first practical scheme for detecting the similar documents is due to Manber [1]. Such scheme 

employs the hashing concept to measure the similarity of large document system. Where a set of 

fingerprints is calculated from the substrings of document and compared to detect the similarity. 

Later on, the notion of fingerprint is updated in [2] to be calculated on the sentence level. However, 

such scheme has been proven to be sensitive to the modification in the sentence unit. A system for 

plagiarism detection is proposed in [3], where the number of shared words in the same sentence is 

used to measure the similarity. Schleimer S. et. al [4] have presented the Winnowing algorithm; an 

efficient local fingerprinting algorithm to capture an essential property of any fingerprinting 

technique guaranteed to detect similar documents.  The work of [5] has exploited the Winnowing 

algorithm to design a system for detecting the plagiarism among the text documents. Recently, the 

authors of [9] have proposed a compact document representation that can be used to efficiently 

prune duplicate and near-duplicate documents from result lists.  

 

In the context of secure DSD, a little work is presented. The authors of [7] have used the vector 

space model to represent the documents, and adopt the cosine similarity to measure the global 

similarity between each document pairs. The main disadvantage of this approach is defining the 

global similarity but not the local similarity. Recently, the authors of [10] have used the k-gram 

technique to find the local similarity. They use the random share method to compute the distance 

between the k-gram sets in a privacy reserving manner. However, such method requires an 

extensive computational and storage cost. Moreover, such work lakes to the experimental results. 

 

3. Document Fingerprinting 
Fingerprinting is an efficient technique to detect full and partial document copies using hash 

codes. To get the fingerprint, document is first divided into a large set of k-grams.  The k-gram set is 

hashed, and then compressed by selecting a subset of these codes to be the fingerprint. The main 

problem is which hash will be chosen to be included in the fingerprint. In this paper, we use 

Winnowing algorithm [4] which selects the smallest hash value from w window slides. With such 

hashed fingerprints, there are certain bounds for detecting similarity between copied and original 

documents. In what follow, we give a brief summery about the work of this algorithm.  

 

Given the string S as sequence of n characters. The k-gram is substring of length k. For example, the 

4-grams of the string S=’to be or not to be’ is {‘tobe’, ‘obeo’, ‘beor’, ‘eorn’, ‘orno’, ‘rnot’, ‘nott’, 

‘otto’, ‘ttob’, ‘tobe’ } of length n-k+1. Hashing the k-gram set is achieved by Karp-Rabin’s 

algorithm [11]. This algorithm allows the hash of the i+1
st
 k-gram to be computed efficiently from 

the i
th

 k-gram. Suppose that the first k-gram is set of t1…tk numbers in the base b. Then we can hash 

these  numbers as: 

                         ,mod)****( 1
2

2
1

11 MtbtbtbtF kk
kk  
                      …(1) 

where M is a constant defined by the user. 

The second k-gram of t2…tk+1 numbers is computed efficiently as follows: 

MtbbtFF k
k mod)*)*(( 1112   

Generally, the i
th

 k-gram is computed as:  

                         niMtbbtFF ik
k

ii ...2,mod)*)*(( 111                         …(2) 

Now we describe how the Winnowing  algorithm selects the fingerprint among the F1…Fn-k+1 hash 

codes. Given two documents, this algorithm guarantees to find the substring matches between these 

documents  that satisfies the following: 

1- The length of the matched strings is not less than the guarantee threshold, T. 

2- The length of the matched substrings is not exceeding the noise threshold, k. 
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Note that both kT   and k are user defined values.  Even so choosing a large value of k prevents the 

coincidental matching between two documents, it will limit the sensitivity to reordering of 

document contents, as we cannot detect the relocation of any substring of length less than k. So, it is 

necessary to choose a minimum value of k such that coincidental matches will be a negligible. The 

algorithm defines a window size as: 

 

Each position in the sequence  1)1(1  wkni defines a window of hashes 1wii FF  . In each 

window, we select the minimum hash value. If there is more than one hash with the minimum value 

in the same window, select the rightmost occurrence. The same hash value among successive 

windows will not be inserted in the fingerprint. All selected hashes are considered to be the 

fingerprint of document. 

 

For example, suppose we have the following hash codes: 77 72 42 17 98 50 17 98 8 88 67 39 77 72 

42 17 98, and suppose that window size w=4. The entire windows will be  (77, 72, 42, 17) (72, 42, 

17, 98)(42, 17, 98, 50) (17, 98, 50, 17) (98, 50, 17, 98) (50, 17, 98, 8) (17, 98, 8, 88) (98, 8, 88, 67) 

(8, 88, 67, 39) (88, 67, 39, 77) (67, 39, 77, 72) (39, 77, 72, 42) (77, 72, 42, 17) (72, 42, 17, 98).  

According to the Winnowing algorithm, the fingerprint will be: 17 17 8 39 17, which are illustrated 

by the bold font. 

 

4. Problem Definition 
 

Consider a data owner Bob of a document collection D={d1, d2, …, dm} of size m. Bob 

outsourcers the storage and computing of his collection into a remotely server S to enjoy high 

quality services in an efficient cost. However, the server S is not trusted to see the contents of the 

stored collection. Such that Bob has to encrypt his collection before outsourcing. For efficient 

retrieval, Bob also builds a secure index from the document collection and uploads it together to the 

untrusted server S. The user Alice has a document Q. She wants to detect the similarity between  its 

own document against all the m documents of Bob that are stored in S without either reveling Q to S 

or revealing D to Alice. To do so, Alice first extracts the fingerprint of its document, encrypts it, 

and then sends the result to the server S. Once receiving the secure fingerprint of the document Q 

from Alice, the server S matches securely the provided fingerprint against its secure index and then 

responds to Alice by the scores ,,, 21 m  which represent the matching score for all the stored m 

documents. Finally, Alice downloads the top-h documents. Figure 1 illustrates the basic architecture 

of proposed scheme. 
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4-1 Security Requirements 
 

In this paper, we assume that the S server is a honest-but-curious party, where it is trusted to follow 

the protocol, but at the same time it tries to learn as much information as possible from the stored 

data. The security requirements are illustrated as follows: 

1- Document collection: The server S is not allowed to know the contents of Bob’s collection. 

2- Query document: Alice’s document should not revealed to server S and without learning the 

secret key the server S could not generate a valid fingerprint. 

3-  Index security: The secure index does not leak anything about its contents. 

 

5. Proposed Scheme 
In this section, we describe our proposed scheme. To enable efficient document similarity 

detection, Bob builds a secure index and outsourcers it to the remote server along with the 

encrypted documents. The server performs comparison on the index according to the queries of the 

data users without learning anything about the data other than what Bob allows an adversary to 

learn. In Part 5.1, the index structure is presented. In Part 5.2, the DSD scheme that is built on top of 

the index is described. 

 

5.1 Secure Inverted Index 
Our proposed secure DSD is based on the inverted index structure. Secure inverted index is 

constructed with the following 2 steps. 

1. Fingerprint generation: given the document collection D={d1, d2, …, dm}. The data owner Bob 

generates the fingerprint for each document di. Recall that the fingerprint is a set of integer 

numbers (terms). Define F={f1, f2, …,fl} to be the union set of all the fingerprint terms of the 

document collection.  The inverted index I includes a set of fingerprint items fj and their 

corresponding posting lists Pj i.e I={(fj,Pj), j=1…l}. The posting list refers to the set of 

Figure 1: the proposed scheme 
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document IDs that contains the term fj. The posting list Pj is simply a bit vector of size m where 

m is the total number of Bob’s collection D. Given ID(di) to be the identifier of the document di, 

the element vector Pj[ID(di)]=1 if and only if di includes the fingerprint term fj. Table 1 shows a 

simple index of 5 fingerprint terms that derived from 14 documents. For example, the term 500 

appears in five documents (d1, d2, d4, d6, d14, and d15). 

 
Table 1: inverted index example 

Vector Term 

1 1 0 0 0 0 0 0 1 0 1 0 1 1 500 

0 0 1 0 0 1 0 0 1 0 1 0 0 0 520 

0 0 0 0 0 0 1 0 0 0 0 0 0 1 600 

0 1 0 0 0 0 0 1 0 0 0 1 0 0 680 

1 0 0 0 1 0 0 0 0 0 0 1 0 1 710 

 

2- Inverted index encryption:  in this step, we turn the inverted index into a secure index by 

encrypting the fingerprint terms and their corresponding posting vectors. Fingerprint 

terms(numbers) should be encrypted such that only the authorized users can generate valid queries. 

Otherwise, the adversary server can learn the fingerprint terms of a given document. Similarly, the 

posting vectors should be encrypted to hide the number of documents in a given fingerprint item, 

which may be used to conduct a frequency attack. Our solution to protect the fingerprint terms is to 

consider the parameter b and M of equations 1 and 2 as a secret key k1=(b,M). Such that only the 

authorized users who have the secret key k1 can generate a valid fingerprint. Encrypting the posting 

vectors is more difficult. This is because, such vectors have to be encrypted while preserving their 

ability to rank the retrieved documents. In this paper, we utilize the appealing feature of the Paillier 

cryptosystem [12] to alleviate such challenge. Paillier is a secure semantically and additive 

homomorphic asymmetric encryption scheme. The semantically secure feature ensures that 

encrypting the same number (0 and 1 in our case) multiple times will generate different ciphers. Let 

Enckpub and Deckpriv be Paillier encryption and decryption functions with the public and private keys 

kpub and kpriv, respectively. So if m1=m2 are equal messages, then Enckpub(m1)  Enckpub(m2). But 

Deckpriv(m1)=Deckpriv(m2). The additive homomorphic property means that 

Enckpub(m1+m2)=Enckpub(m1)+ Enckpub(m2). We use Paillier cryptosystem to encrypt each bit of the 

posting vectors. Such that if Pj[ID(di)]=1 then we store Enckpub(1). Otherwise, we store Enckpub(0). 

Note that, each encrypted zeros and ones are distinct due to the fact that Paillier is a semantically 

secure encryption scheme. Once encryption is done, we need to add some fake records into the 

index to hide the number of fingerprint items in the collection.  

 

5.2 Secure Document Similarity Detection  
  The work of our scheme can be summarized as follows:     

1- key generation: Bob generates the secret key k1=(b,M), Kpub, Kpriv, and Kcoll, where b is the 

base parameter and M is a constant.  

2- Index construction: Bob uses the secret keys K1 and kpub to build the inverted index from the 

collection D. 

3- Document encryption: Bob encrypts his collection D with the secret key Kcoll. He then sends 

the encrypted collection to the server S. Once data is outsourced, data user should be able to 

match their documents with the remote server. To do so, Bob shares the following information 

with data users: 

 Kcoll : secret key of data collection encryption 

 K1: secret keys of index construction. 

 Kpriv: the private key of the Paillier decryption function. 

4-  Fingerprint construction: Suppose that Alice wants to compare its document Q with the 

collection D. She first uses the secret key k1 to generate the secure fingerprint items Qf={qf1, 

qf2, …, qfc} as in equations 1 and 2. Once doing that she sends Qf to the remote server S. 
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5- Search: given the fingerprint set Qf, the server S searches its index to find the matched terms. 

For each matching, S retrieves the corresponding posting vector i.e. retrieve Pj=[e1j,….emj] such 

that (fj, Pj)  I and fj=qfj for all j=1..c, where eij is the encrypted bit of the document i 

corresponding to the fingerprint term j. Once doing that S has to calculate the score for each 

document di. To do so, S uses the additive property of Paillier cryptosystem to get the score for 

each document as follows: ihiii eeed  ...)( 21 , where h is the number of matched fingerprint 

items. Finally, the server S sends the scores )(,),(),( 21 mddd   to Alice. 

6- Score decryption: Alice decrypts the received score values )( id for all i=1…m by using the 

secret key Kpriv to know which document is similar to its own document Q. 

7- Document retrieval: Alice asks the server S to retrieve the documents of the top-h scores. After 

retrieving the most similar documents, she decrypts them by Kcoll key to perform the manual 

investigation. 
 

Continuing with our index illustrated in Table 1, suppose that the terms of the query document are:  

400, 500, 600, 710, and 800. Thus the scores of the 14 documents are calculated as in Table 2. We 

see that document 1 is the most similar with 3 scores followed by document 14 with 2 scores and so 

on. 
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Table 2: Score calculation 

 

Vector Term 

1 1 0 0 0 0 0 0 1 0 1 0 1 1 500 

0 0 0 0 0 0 1 0 0 0 0 0 0 1 600 

1 0 0 0 1 0 0 0 0 0 0 1 0 1 710 

2 1 0 0 1 0 1 0 1 0 1 1 1 3 Score 

  

6. System Evaluation 
In this section, we present the experimental evaluation of the proposed scheme. We have download 

1000 text documents from the real dataset Request For Comments (RFC)[13]. During the 

fingerprint generation, we use 5-grams, and set the guarantee threshold T to 10. The results are the 

average of 10 runs.  The document collection is encrypted by AES algorithm with 128-bit key. Our 

experiments were conducted on a 2.5GHz Intel i5-3210m processor, Windows 7 operating system 

of 64-bits, with a RAM of 4GB. We used MATLAB R2008a to implement our experiments. We 

used Java class to implement Paillier cryptosystem. The inverted index is stored in a hash table to 

provide O(1) access time. 

 

6.1 Retrieval Evaluation 
In this experiment, we test the success of our proposed scheme to retrieve the required documents. 

We use the precision evaluation metric to achieve this task.  We have selected 100 random 

documents to be the query set. We compare our scheme with the resemblance measure for 

computing the similarity between two documents. The resemblance measure is defined as [14]: 

 

                                            
Union

Inter
eResemblanc                                                    ...(3) 

Where Inter set represents the intersection set of two fingerprint sets, while the Union represents the 

union set. Recall that our ranking method employs only the intersection set without using the union 

set to measure the resemblance. 

 The precision of the query document q is defined as: 

                                            
A

AR
q)Precision(


                                                   …(4) 

Where R is the retrieved documents under our scheme, while A is set of retrieved documents under 

equation 3. Given the set Q ={q1, q2, …, qx} of x queries, we can compute the average precision as: 

                                                
x

qprecision

pressavg

x

i

i )(

_ 1


                                    …(5) 

Figure 2 shows the average precision as the top-h documents increased. As expected increasing the 

h value will retrieve dissimilar documents. 
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6.2 Effectiveness 
In this experiment, we evaluate the ability of our proposed scheme to recover the inserted noise 

in the provided query. During the test, we have inserted different amounts of noise to the provided 

query ranging from 2% to 7% from the length of the query document. Noise is inserted into the 

query document at random locations. Figure 3 illustrates that the precision decreases as increasing 

the amount of the inserted noise.   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 Index Building 
Building the inverted index by the data owner, Bob, includes the fingerprint generating step and 

encrypting the posting vectors. In this experiment, we show the effect of the collection size, m, and 

the k value for the k-gram on the index building time and the total number of individual fingerprint 

terms. Figure 4a shows that increasing k during computing the k-gram sets leads to increase the 

fingerprint terms. Similarly, increasing k requires more time to compute the fingerprint terms as 

explained in Figure 4b. Similarity,   Figure 5a, and 5b shows the effect of increasing the document 

Figure 2:  Retrieval evaluation 

Figure 3:  Effectiveness of the proposed scheme 
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collection size on the total number of fingerprint terms and indexing time, respectively. Again 

increasing the collection size leads to increase the two latter terms. 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

6.4 Fingerprint Security 
Recall that the fingerprint terms are protected by the secret key K1=(b, M), where b is the base 

number used in equations 1 and 2. Without learning b no party can generate a valid fingerprint 

terms. In this experiment, we compute the resemblance as in (3) between a fingerprint set generated 

by the valid secret key, b=6, and 100 fingerprints generated by 100 different b values. One of these 

values is equal to the original one.  Figure 6 shows that only the valid b value has the maximum 

resemblance.  

 

 

 

 

 

 

Figure 4: k effect on: (a): number of  fingerprint items,  (b):  time of generating the  

fingerprint  items 

(a) (b) 

Figure 5: effect of collection size. (a) :  fingerprint size, (b): indexing time. 

(a) (b) 
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6.5 Ranking time 
During the ranking time, our scheme sums the posting vectors of the matched fingerprint terms. 

Recall that all vectors are of a fixed length equals to the collection size m. Figure 7a shows that 

more matched fingerprint terms requires more ranking time. We have fixed the document collection 

size of this experiment to 1000. Also, Figure 7b illustrates that increasing the posting vector 

requires more ranking time. This is because, long vectors need more time to be added. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusion 
In this paper, we have addressed the problem of secure similarity document detection.  An 

efficient solution is presented for this problem. Our scheme uses the Winnowing algorithm to 

compute the fingerprint for each document. Fingerprints are a compressed version of the k-gram set 

with the ability to detect the full and partial copy. An inverted index is builds based on the 

fingerprint set to provide an efficient matching. Such index is protected by using Paillier 

homomorphic cryptosystem. Such cryptosystem allows summing the posting vectors without 

decryption. We have conducted several experiments to show the practical value of our solution. 

 

Figure 6: Effect of b on security 

(a) (b) 

Figure 7:  Ranking time: (a) increasing the  fingerprint items, (b) increasing the  document  

collection 
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