
The 2
nd

 Scientific Conference of the College of Science 2014

15

A Secure Index for Document Similarity Detection

تشابه الملفات الآمن لاكتشاف الفهرس

Ayad Ibrahim Abdulsada

Department of Computer Science, College of Education, Basrah University, Basrah, 61004, Iraq.

Email: ayad.abdulsada@uobasrah.edu.iq

Abstract
The document similarity detection plays an essential role in many applications such as

plagiarism detection, copyright protection, document management, and document searching.

However, the current methods do not care to the privacy of the contents of documents outsourced

on remote servers. Such limitation reduces the utilization of these methods. For example, plagiarism

detection between two conferences should protect the privacy of the submitted papers. In this paper,

we consider the problem of privacy-preserving similarity document detection. The proposed scheme

allows comparing documents without disclosing them to the untrusted servers. For each document,

the fingerprint set is computed. The inverted index is built based on the entire fingerprint set. The

index is protected by Paillier cryptosystem before uploading it to the untrusted server. We have

developed a secure yet efficient method to rank the retrieved documents. Several experiments are

conducted to investigate the performance of the proposed scheme.

Key words: Document similarity, inverted index, security, document fingerprinting, Paillier

encryption.

 الخلاصة
ٌلعة اكتشاف تشاتَ الولفاخ دّر أساسً فً العذٌذ هني التبثٍاناخ كاكتشناف الاسنتحما ةواٌنح الٌدنرا ادارج الولفناخا ّالث ن

ج لا تْلً أُوٍح لخصْصٍح الولفاخ الوزاد هباتاتِا. ُذا الاصْر ٌالل هي الاستفادج هني ُنذٍ البنزق. عي الولفاخ. البزق الوْجْد

على سثٍل الوثاما اكتشاف الاسنتحم تنٍي هنرتوزٌي ٌأنة أى ٌ فنص ةصْصنٍح الث نْم الواذهنح. فنً ُنذا الث ن ا سوٌنا ت ةنذ هدنالح

ر. الوشزّع الواتزح ٌدوح تواارًح الولفاخ تذّى افشاء أي شً للخادم ال فاظ على ةصْصٍح الولفاخ الوزاد هباتاتِا تٌظز الاعتثا

 Paillierغٍز الوْثْق. سوٌا ت داب الثصوح لكل هلف. تن اًشاء الفِزس هي هأوْعح الثصواخ. تن ةواٌح الفِزس تاستخذام شنفزج

تزجعح. تنن اجنزاء العذٌنذ هني التأنارب ظِنار سثل ًال الفِزس الى الخادم. كوا سوٌا تتبٌْز طزٌاح كفر ّآهٌح لتزتٍة الولفاخ الودن

 اًأاسٌح البزٌح الواتزةح

 .Paillierتشاتَ الولفاخا الفِزس الوعكْسا الأهٌٍحا تصوح الولفا شفزج الكلمات المفتاحية:

1. Introduction
The document similarity detection (DSD) is ubiquitous in many practical applications. To gain

an efficient file access, similar files are bring together to form clusters. Such that once providing a

document, all the similar documents are retrieved efficiently. DSD can also be applied to detect

whether the newly submitted article to a journal includes plagiarized contents. However, all the

current solutions of DSD assume that the document collection is public and thus do not care to the

privacy of documents that need to be matched. Such limitation reduces the utilization of these

methods in our real life applications.

There are many practical applications where detecting the similar documents to a given query

document in a privacy-preserving manner is needed. For example, to better understand the spread

diseases, a number of different health agencies want jointly to check the similarity between their

reports. For privacy issues, no agency reveals its report to the others. Such that it’s urgent need to

compare the underlying reports without compromising the privacy. Furthermore, most journals

prevent the double submission of the same article. Thus, privacy preserving DSD is needed to check

The 2
nd

 Scientific Conference of the College of Science 2014

15

whether the same paper is submitted into more than one journal at the same time without

comprising the privacy of each journal.

In fact, encryption represents the best method to protect the privacy of the stored documents [15].

But encryption makes the work of the traditional DSD methods a challenging task. Thus, it’s

necessary to find an efficient method that measures the similarity between two documents at the

encrypted domain.

Basically, the current DSD methods can be classified into two approaches: hashing[1-5] and vector

space[6, 7]. In hashing approach, a set of fixed length substrings is extracted from the document.

Then the hash code of each substring is computed. Finally, a compressed yet descriptive fingerprint

is generated from the hash codes. Two documents are considered similar if they contain a

significant number of shared fingerprint terms more than a predefined threshold. Such approach is

more suitable to catch the local similarities, i.e. finding the overlapped contents between two

documents.

On the other hand, vector space approach employs the information retrieval’s (IR) concepts to

identify the global similarity information. Under the vector space model, each document is

represented as a vector of terms or words, and each entry of the vector indicates certain frequency

information of the corresponding term. Two documents are considered similar under such a model

if they have common terms with similar term frequencies. However, vector space model detects the

similarity of the whole documents. Consequently, it marks two documents with the same bag of

words to be similar even if they have different contents.

Our proposed scheme utilizes the hashing approach to generate the fingerprint for each document.

Where fingerprint is a representative yet compressed set of numbers. From the fingerprint set of the

entire document collection, we build the inverted index structure. Inverted index structure is

extensively used in information retrieval community [8] to provide fast retrieval. To utilize the

appealing features of the inverted index in the context of secure data, we build a secure inverted

index and build a secure DSD scheme on top of this index, where a secret key is used to encrypt the

index in such a way that allow to measure the similarity without leaking the contents of the

underlying data. Without learning this key no one can generate a valid fingerprint for the

documented wanted to be matched. In this paper, we adopt the syntactic similarity notion. Briefly,

under such notion two documents with different keywords will not consider to be similar even they

have the same meaning. On the other hand, semantic notion employs sophisticated methods to

consider the document meaning during its matching process. The latter notion is outside the scope

of this paper.

Our contribution in this paper can be summarized as follows. First, we utilize the fingerprint

approach, for the first time, to generate a secure index and build our secure DSD depending on this

index. Second, we develop a secure solution to compute the common fingerprint terms of the

provided document and the entire stored collection. Third, we have conducted several experimental

results to show the performance of our approach.

The rest of this paper is organized as follows. Section 2 illustrates the related literature. Section 3

introduces document fingerprinting technique. Section 4 introduces the problem definition. Section

5 shows the proposed approach. In Section 6 we investigate the performance of our approach.

Finally, Section 7 concludes the whole paper.

The 2
nd

 Scientific Conference of the College of Science 2014

15

2. Related Work

The first practical scheme for detecting the similar documents is due to Manber [1]. Such scheme

employs the hashing concept to measure the similarity of large document system. Where a set of

fingerprints is calculated from the substrings of document and compared to detect the similarity.

Later on, the notion of fingerprint is updated in [2] to be calculated on the sentence level. However,

such scheme has been proven to be sensitive to the modification in the sentence unit. A system for

plagiarism detection is proposed in [3], where the number of shared words in the same sentence is

used to measure the similarity. Schleimer S. et. al [4] have presented the Winnowing algorithm; an

efficient local fingerprinting algorithm to capture an essential property of any fingerprinting

technique guaranteed to detect similar documents. The work of [5] has exploited the Winnowing

algorithm to design a system for detecting the plagiarism among the text documents. Recently, the

authors of [9] have proposed a compact document representation that can be used to efficiently

prune duplicate and near-duplicate documents from result lists.

In the context of secure DSD, a little work is presented. The authors of [7] have used the vector

space model to represent the documents, and adopt the cosine similarity to measure the global

similarity between each document pairs. The main disadvantage of this approach is defining the

global similarity but not the local similarity. Recently, the authors of [10] have used the k-gram

technique to find the local similarity. They use the random share method to compute the distance

between the k-gram sets in a privacy reserving manner. However, such method requires an

extensive computational and storage cost. Moreover, such work lakes to the experimental results.

3. Document Fingerprinting
Fingerprinting is an efficient technique to detect full and partial document copies using hash

codes. To get the fingerprint, document is first divided into a large set of k-grams. The k-gram set is

hashed, and then compressed by selecting a subset of these codes to be the fingerprint. The main

problem is which hash will be chosen to be included in the fingerprint. In this paper, we use

Winnowing algorithm [4] which selects the smallest hash value from w window slides. With such

hashed fingerprints, there are certain bounds for detecting similarity between copied and original

documents. In what follow, we give a brief summery about the work of this algorithm.

Given the string S as sequence of n characters. The k-gram is substring of length k. For example, the

4-grams of the string S=’to be or not to be’ is {‘tobe’, ‘obeo’, ‘beor’, ‘eorn’, ‘orno’, ‘rnot’, ‘nott’,

‘otto’, ‘ttob’, ‘tobe’ } of length n-k+1. Hashing the k-gram set is achieved by Karp-Rabin’s

algorithm [11]. This algorithm allows the hash of the i+1
st
 k-gram to be computed efficiently from

the i
th

 k-gram. Suppose that the first k-gram is set of t1…tk numbers in the base b. Then we can hash

these numbers as:

 ,mod)****(1
2

2
1

11 MtbtbtbtF kk
kk  
  …(1)

where M is a constant defined by the user.

The second k-gram of t2…tk+1 numbers is computed efficiently as follows:

MtbbtFF k
k mod)*)*((1112 

Generally, the i
th

 k-gram is computed as:

 niMtbbtFF ik
k

ii ...2,mod)*)*((111   …(2)

Now we describe how the Winnowing algorithm selects the fingerprint among the F1…Fn-k+1 hash

codes. Given two documents, this algorithm guarantees to find the substring matches between these

documents that satisfies the following:

1- The length of the matched strings is not less than the guarantee threshold, T.

2- The length of the matched substrings is not exceeding the noise threshold, k.

The 2
nd

 Scientific Conference of the College of Science 2014

15

Note that both kT  and k are user defined values. Even so choosing a large value of k prevents the

coincidental matching between two documents, it will limit the sensitivity to reordering of

document contents, as we cannot detect the relocation of any substring of length less than k. So, it is

necessary to choose a minimum value of k such that coincidental matches will be a negligible. The

algorithm defines a window size as:

Each position in the sequence 1)1(1  wkni defines a window of hashes 1wii FF  . In each

window, we select the minimum hash value. If there is more than one hash with the minimum value

in the same window, select the rightmost occurrence. The same hash value among successive

windows will not be inserted in the fingerprint. All selected hashes are considered to be the

fingerprint of document.

For example, suppose we have the following hash codes: 77 72 42 17 98 50 17 98 8 88 67 39 77 72

42 17 98, and suppose that window size w=4. The entire windows will be (77, 72, 42, 17) (72, 42,

17, 98)(42, 17, 98, 50) (17, 98, 50, 17) (98, 50, 17, 98) (50, 17, 98, 8) (17, 98, 8, 88) (98, 8, 88, 67)

(8, 88, 67, 39) (88, 67, 39, 77) (67, 39, 77, 72) (39, 77, 72, 42) (77, 72, 42, 17) (72, 42, 17, 98).

According to the Winnowing algorithm, the fingerprint will be: 17 17 8 39 17, which are illustrated

by the bold font.

4. Problem Definition

Consider a data owner Bob of a document collection D={d1, d2, …, dm} of size m. Bob

outsourcers the storage and computing of his collection into a remotely server S to enjoy high

quality services in an efficient cost. However, the server S is not trusted to see the contents of the

stored collection. Such that Bob has to encrypt his collection before outsourcing. For efficient

retrieval, Bob also builds a secure index from the document collection and uploads it together to the

untrusted server S. The user Alice has a document Q. She wants to detect the similarity between its

own document against all the m documents of Bob that are stored in S without either reveling Q to S

or revealing D to Alice. To do so, Alice first extracts the fingerprint of its document, encrypts it,

and then sends the result to the server S. Once receiving the secure fingerprint of the document Q

from Alice, the server S matches securely the provided fingerprint against its secure index and then

responds to Alice by the scores ,,, 21 m  which represent the matching score for all the stored m

documents. Finally, Alice downloads the top-h documents. Figure 1 illustrates the basic architecture

of proposed scheme.

1 kTw

The 2
nd

 Scientific Conference of the College of Science 2014

11

4-1 Security Requirements

In this paper, we assume that the S server is a honest-but-curious party, where it is trusted to follow

the protocol, but at the same time it tries to learn as much information as possible from the stored

data. The security requirements are illustrated as follows:

1- Document collection: The server S is not allowed to know the contents of Bob’s collection.

2- Query document: Alice’s document should not revealed to server S and without learning the

secret key the server S could not generate a valid fingerprint.

3- Index security: The secure index does not leak anything about its contents.

5. Proposed Scheme
In this section, we describe our proposed scheme. To enable efficient document similarity

detection, Bob builds a secure index and outsourcers it to the remote server along with the

encrypted documents. The server performs comparison on the index according to the queries of the

data users without learning anything about the data other than what Bob allows an adversary to

learn. In Part 5.1, the index structure is presented. In Part 5.2, the DSD scheme that is built on top of

the index is described.

5.1 Secure Inverted Index
Our proposed secure DSD is based on the inverted index structure. Secure inverted index is

constructed with the following 2 steps.

1. Fingerprint generation: given the document collection D={d1, d2, …, dm}. The data owner Bob

generates the fingerprint for each document di. Recall that the fingerprint is a set of integer

numbers (terms). Define F={f1, f2, …,fl} to be the union set of all the fingerprint terms of the

document collection. The inverted index I includes a set of fingerprint items fj and their

corresponding posting lists Pj i.e I={(fj,Pj), j=1…l}. The posting list refers to the set of

Figure 1: the proposed scheme

The 2
nd

 Scientific Conference of the College of Science 2014

15

document IDs that contains the term fj. The posting list Pj is simply a bit vector of size m where

m is the total number of Bob’s collection D. Given ID(di) to be the identifier of the document di,

the element vector Pj[ID(di)]=1 if and only if di includes the fingerprint term fj. Table 1 shows a

simple index of 5 fingerprint terms that derived from 14 documents. For example, the term 500

appears in five documents (d1, d2, d4, d6, d14, and d15).

Table 1: inverted index example

Vector Term

1 1 0 0 0 0 0 0 1 0 1 0 1 1 500

0 0 1 0 0 1 0 0 1 0 1 0 0 0 520

0 0 0 0 0 0 1 0 0 0 0 0 0 1 600

0 1 0 0 0 0 0 1 0 0 0 1 0 0 680

1 0 0 0 1 0 0 0 0 0 0 1 0 1 710

2- Inverted index encryption: in this step, we turn the inverted index into a secure index by

encrypting the fingerprint terms and their corresponding posting vectors. Fingerprint

terms(numbers) should be encrypted such that only the authorized users can generate valid queries.

Otherwise, the adversary server can learn the fingerprint terms of a given document. Similarly, the

posting vectors should be encrypted to hide the number of documents in a given fingerprint item,

which may be used to conduct a frequency attack. Our solution to protect the fingerprint terms is to

consider the parameter b and M of equations 1 and 2 as a secret key k1=(b,M). Such that only the

authorized users who have the secret key k1 can generate a valid fingerprint. Encrypting the posting

vectors is more difficult. This is because, such vectors have to be encrypted while preserving their

ability to rank the retrieved documents. In this paper, we utilize the appealing feature of the Paillier

cryptosystem [12] to alleviate such challenge. Paillier is a secure semantically and additive

homomorphic asymmetric encryption scheme. The semantically secure feature ensures that

encrypting the same number (0 and 1 in our case) multiple times will generate different ciphers. Let

Enckpub and Deckpriv be Paillier encryption and decryption functions with the public and private keys

kpub and kpriv, respectively. So if m1=m2 are equal messages, then Enckpub(m1)  Enckpub(m2). But

Deckpriv(m1)=Deckpriv(m2). The additive homomorphic property means that

Enckpub(m1+m2)=Enckpub(m1)+ Enckpub(m2). We use Paillier cryptosystem to encrypt each bit of the

posting vectors. Such that if Pj[ID(di)]=1 then we store Enckpub(1). Otherwise, we store Enckpub(0).

Note that, each encrypted zeros and ones are distinct due to the fact that Paillier is a semantically

secure encryption scheme. Once encryption is done, we need to add some fake records into the

index to hide the number of fingerprint items in the collection.

5.2 Secure Document Similarity Detection
 The work of our scheme can be summarized as follows:

1- key generation: Bob generates the secret key k1=(b,M), Kpub, Kpriv, and Kcoll, where b is the

base parameter and M is a constant.

2- Index construction: Bob uses the secret keys K1 and kpub to build the inverted index from the

collection D.

3- Document encryption: Bob encrypts his collection D with the secret key Kcoll. He then sends

the encrypted collection to the server S. Once data is outsourced, data user should be able to

match their documents with the remote server. To do so, Bob shares the following information

with data users:

 Kcoll : secret key of data collection encryption

 K1: secret keys of index construction.

 Kpriv: the private key of the Paillier decryption function.

4- Fingerprint construction: Suppose that Alice wants to compare its document Q with the

collection D. She first uses the secret key k1 to generate the secure fingerprint items Qf={qf1,

qf2, …, qfc} as in equations 1 and 2. Once doing that she sends Qf to the remote server S.

The 2
nd

 Scientific Conference of the College of Science 2014

15

5- Search: given the fingerprint set Qf, the server S searches its index to find the matched terms.

For each matching, S retrieves the corresponding posting vector i.e. retrieve Pj=[e1j,….emj] such

that (fj, Pj)  I and fj=qfj for all j=1..c, where eij is the encrypted bit of the document i

corresponding to the fingerprint term j. Once doing that S has to calculate the score for each

document di. To do so, S uses the additive property of Paillier cryptosystem to get the score for

each document as follows: ihiii eeed  ...)(21 , where h is the number of matched fingerprint

items. Finally, the server S sends the scores)(,),(),(21 mddd   to Alice.

6- Score decryption: Alice decrypts the received score values)(id for all i=1…m by using the

secret key Kpriv to know which document is similar to its own document Q.

7- Document retrieval: Alice asks the server S to retrieve the documents of the top-h scores. After

retrieving the most similar documents, she decrypts them by Kcoll key to perform the manual

investigation.

Continuing with our index illustrated in Table 1, suppose that the terms of the query document are:

400, 500, 600, 710, and 800. Thus the scores of the 14 documents are calculated as in Table 2. We

see that document 1 is the most similar with 3 scores followed by document 14 with 2 scores and so

on.

The 2
nd

 Scientific Conference of the College of Science 2014

15

Table 2: Score calculation

Vector Term

1 1 0 0 0 0 0 0 1 0 1 0 1 1 500

0 0 0 0 0 0 1 0 0 0 0 0 0 1 600

1 0 0 0 1 0 0 0 0 0 0 1 0 1 710

2 1 0 0 1 0 1 0 1 0 1 1 1 3 Score

6. System Evaluation
In this section, we present the experimental evaluation of the proposed scheme. We have download

1000 text documents from the real dataset Request For Comments (RFC)[13]. During the

fingerprint generation, we use 5-grams, and set the guarantee threshold T to 10. The results are the

average of 10 runs. The document collection is encrypted by AES algorithm with 128-bit key. Our

experiments were conducted on a 2.5GHz Intel i5-3210m processor, Windows 7 operating system

of 64-bits, with a RAM of 4GB. We used MATLAB R2008a to implement our experiments. We

used Java class to implement Paillier cryptosystem. The inverted index is stored in a hash table to

provide O(1) access time.

6.1 Retrieval Evaluation
In this experiment, we test the success of our proposed scheme to retrieve the required documents.

We use the precision evaluation metric to achieve this task. We have selected 100 random

documents to be the query set. We compare our scheme with the resemblance measure for

computing the similarity between two documents. The resemblance measure is defined as [14]:

Union

Inter
eResemblanc  ...(3)

Where Inter set represents the intersection set of two fingerprint sets, while the Union represents the

union set. Recall that our ranking method employs only the intersection set without using the union

set to measure the resemblance.

 The precision of the query document q is defined as:

A

AR
q)Precision(


 …(4)

Where R is the retrieved documents under our scheme, while A is set of retrieved documents under

equation 3. Given the set Q ={q1, q2, …, qx} of x queries, we can compute the average precision as:

x

qprecision

pressavg

x

i

i)(

_ 1


 …(5)

Figure 2 shows the average precision as the top-h documents increased. As expected increasing the

h value will retrieve dissimilar documents.

The 2
nd

 Scientific Conference of the College of Science 2014

15

6.2 Effectiveness
In this experiment, we evaluate the ability of our proposed scheme to recover the inserted noise

in the provided query. During the test, we have inserted different amounts of noise to the provided

query ranging from 2% to 7% from the length of the query document. Noise is inserted into the

query document at random locations. Figure 3 illustrates that the precision decreases as increasing

the amount of the inserted noise.

6.3 Index Building
Building the inverted index by the data owner, Bob, includes the fingerprint generating step and

encrypting the posting vectors. In this experiment, we show the effect of the collection size, m, and

the k value for the k-gram on the index building time and the total number of individual fingerprint

terms. Figure 4a shows that increasing k during computing the k-gram sets leads to increase the

fingerprint terms. Similarly, increasing k requires more time to compute the fingerprint terms as

explained in Figure 4b. Similarity, Figure 5a, and 5b shows the effect of increasing the document

Figure 2: Retrieval evaluation

Figure 3: Effectiveness of the proposed scheme

The 2
nd

 Scientific Conference of the College of Science 2014

56

collection size on the total number of fingerprint terms and indexing time, respectively. Again

increasing the collection size leads to increase the two latter terms.

6.4 Fingerprint Security
Recall that the fingerprint terms are protected by the secret key K1=(b, M), where b is the base

number used in equations 1 and 2. Without learning b no party can generate a valid fingerprint

terms. In this experiment, we compute the resemblance as in (3) between a fingerprint set generated

by the valid secret key, b=6, and 100 fingerprints generated by 100 different b values. One of these

values is equal to the original one. Figure 6 shows that only the valid b value has the maximum

resemblance.

Figure 4: k effect on: (a): number of fingerprint items, (b): time of generating the

fingerprint items

(a) (b)

Figure 5: effect of collection size. (a) : fingerprint size, (b): indexing time.

(a) (b)

The 2
nd

 Scientific Conference of the College of Science 2014

55

6.5 Ranking time
During the ranking time, our scheme sums the posting vectors of the matched fingerprint terms.

Recall that all vectors are of a fixed length equals to the collection size m. Figure 7a shows that

more matched fingerprint terms requires more ranking time. We have fixed the document collection

size of this experiment to 1000. Also, Figure 7b illustrates that increasing the posting vector

requires more ranking time. This is because, long vectors need more time to be added.

7. Conclusion
In this paper, we have addressed the problem of secure similarity document detection. An

efficient solution is presented for this problem. Our scheme uses the Winnowing algorithm to

compute the fingerprint for each document. Fingerprints are a compressed version of the k-gram set

with the ability to detect the full and partial copy. An inverted index is builds based on the

fingerprint set to provide an efficient matching. Such index is protected by using Paillier

homomorphic cryptosystem. Such cryptosystem allows summing the posting vectors without

decryption. We have conducted several experiments to show the practical value of our solution.

Figure 6: Effect of b on security

(a) (b)

Figure 7: Ranking time: (a) increasing the fingerprint items, (b) increasing the document

collection

The 2
nd

 Scientific Conference of the College of Science 2014

55

References

[1] Manber, U.: Finding similar documents in a large document system. Department of Computer

Science, The University of Arizona, Tucson, Arizona, Tech. Rep. TR 93-33.

ftp://ftp.cs.arizona.edu/reports/1993/ TR93-33.pdf, 1993.

[2] Brin, S., Davis, J., Garcia-Molina, H.: Copy detection mechanisms for digital documents. In:

Proceedings of the 1995 ACMSIGMOD Conference on Management of Data, pp. 398–409.

ACM, San Jose, 1995.

[3] Collberg, C., Kobourov, S., Louie, J., Slattery, T.: SPlaT: a system for self-plagiarism detection.

In: Proceedings of IADIS International Conference WWW/INTERNET 2003, Algarve,

Portugal, pp. 508–514, Nov 5–8, 2003.

[4] Schleimer, S.,Wilkerson, D.S., Aiken, A.:Winnowing: Local algorithms for document

fingerprinting. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp.

76–85, June 9–12, 2003. ACM, San Diego, 2003.

[5] Sorokin, D., Gehrke, J.,Warner, S., Ginsparg, P.: Plagiarism detection in arXiv. In: Proceedings

of the Sixth IEEE International Conference on Data Mining (ICDM06), Hong Kong, China, pp.

1070–1075, Dec 18– 12, 2006.

[6] Shivakumar, N., Garcia-Molina, H.: Building a scalable and accurate copy detection

mechanism. In: Proceedings of the First ACM International Conference on Digital libraries,

Bethesda, MD,USA, pp. 160–168, Mar 20–23, 1996.

[7] Murugesan, M., Jiang, W., Clifton, C., Si, L., Vaidya, J.: Efficient privacy preserving similar

document detection. The VLDB Journal, January 16, 2010.

[8] Manning, C. D., Raghavan, P., and Schütze, H.: Introduction to Information Retrieval, Reading,

MA: Cambridge UP, 2008.

[9] Bernstein, Y., Shokouhi, M., Zobel, J.: Compact features for detection of near-duplicates in

distributed retrieval. In: SPIRE,Glasgow, UK, pp. 110–121, Oct 11–13, 2006.

[10] Jiang, W., Samanthula , B. K.: N-Gram Based Secure Similar Document Detection, In:

Proceedings of the 25th Annual WG 11.3 Conference on Data and Applications Security,

Richmond, Virginia, July 11-13, 2011.

[11] Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithm, In IBM J. Res.

Dev. 31(2):249-260, 1987.

[12] Paillier, P: Public-key cryptosystems based on composite degree residuosity classes. In

Proceedings of the 17th international conference on Theory and application of cryptographic

techniques, ser. EUROCRYPT’ 99. Berlin, Heidelberg: Springer-Verlag, pp. 223–238, 1999.

[13] RFC, Request For Comments Database, http://www.ietf.org/rfc.html.

[14] Broder, A.Z.: On the resemblance and containment of documents. In: Compression and

Complexity of Sequences, pp. 21–29, 1997.

[15] Stallings, W.: Cryptography and Network Security: Principles and Practice, fifth ed., Pearson

Education, 2002.

ftp://ftp.cs.arizona.edu/reports/1993/

