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ABSTRACT
We consider a single machine scheduling problem to minimize a multiple objective function; sum

of earliness, tardiness and completion time. As this problem is complete NP-hard we propose a branch and
bound algorithm to obtain an optimal solution. The implementation of optimizing algorithms dose seen to be
promising but it need longer time. Thus we tackle the problem with local search methods: descent method,
simulated annealing and threshold acceptance. The performance of these heuristic methods is evaluated on a
large set of test   problems, and the results are also compared with these obtained by genetic algorithm and
hybrid method which is combining the simulated annealing with the genetic algorithm. The best results are
obtained with the hybrid method. We solved the problem optimality with up to 35 jobs and approximately with
up to 150000 jobs.

Keywords: Scheduling, single machine, local search, decent, simulated annealing, threshold accepting,
genetic, hybrid

1. Introduction
In this paper, we consider the problem of scheduling jobs on a single machine to

minimize sum of earliness, tardiness and completion time with constraint that the penalty
rates are equals for each job, which is in contrast with most works on E/T/C   models.

The E/T problem with no idle time, however, has been considered by several
authors, and both exact and heuristic approaches have been proposed. Among the exact
approaches, branch and bound algorithms were presented by Abdul-Razaq and Potts (1988)
[1], the lower bounding procedure of Abdul-Razaq and Potts was based on the sub gradient
optimization approach and the dynamic programming state-space relaxation technique.

For problem ∑ += )(//1 jjj TEdd with a restricted common due date,
Hall, et al. (1991) [10] and Hoogeveen & Van de Velde (1991) [11] establish NP-hardness.
Kanet (1981) [13] derives properties of an optimal solution for the unrestricted common due
date version of this problem. Abdul-Razaq & Mahmood (2001) [2] found optimal and near
optimal solution where jobs divided into F families each family f, (f=1,…., F) contains nf
jobs.

Among  the  heuristics,  Enumerative Algorithms and  local search,  Ow  and
Morten (1989) [18],  developed  several dispatch rules and  a filtered  beam  search
procedure a neighborhood search  algorithm was also  presented  by George Li (1996) [9].
Celso, et al. (2005) [6], proposed a tabu search-based heuristic and a genetic algorithm which
exploit specific properties of the optimal solution for problem ∑ += )(//1 jjj TEdd .
Chichang (2005) [8], proposed a genetic algorithm with sub-indexed partitioning genes
(GASP) to allow more flexible job assignments to machines for a problem TEP /// . Jan &
Frank (2000) [13], derived some structural properties useful in connection with the search for
an approximate solution for a problem TErddPm jj //,/ = , Martin & Dirk (2003) [14],

considered a problem TEdd j ///1 = ; they applied meta-heuristics, namely evolutionary
strategies, simulated annealing and threshold accepting. Hall, et al. (1991) [10], show that a
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problem TEdd j ///1 = is NP-hard in the ordinary sense, and they proposed an O

(n∑ j jP ) pseudo polynomial dynamic programming algorithm. In this paper we present a

branch and bound algorithm based on the lower bounds obtained from dynamic programming
state space relaxation and relaxation of the objective function for the general problem, we
find an optimal solution for special cases. Further, we use a local search, genetic algorithm
and we propose hybrid   method to find near optimal solutions.

2. Formulation of the Problem:
The general problem of scheduling jobs on a single machine to minimize the total

cost that can be state as follows. A set of n independent jobs N= {1, 2,…, n} are available
for processing at time zero, has to be scheduled without preemptions  on a single machine
that can handle at most one job at a time. The machine is assumed to be continuously
available from time zero onwards and unforced machine idle time is not allowed. Each job j,
j∈ N requires a processing time pj and should ideally be completed on it is due date dj. For
any given schedule (1, 2,.., n), the completion time, the earliness and the tardiness of job j can
be respectively defined as:

∑ =
=

j

i ij pC
1 , }0,max{ CdE jjj −=    and }0,max{ dCT jjj −=
The objectives is then to find the schedule that minimizes the multiple objective

function (MOF) defined by ∑ ++ )(//1 jjj CTE . It is clear that our model differs from the
other models in that we consider a more general and realistic problem dealing with arbitrary
due dates. The inclusion of both earliness and tardiness cost in the objective function is
compatible with the philosophy of just in time production, which emphasizes producing
goods only when they are needed. As a generalization of weighted tardiness scheduling, the
problem is strongly NP-hard. To the best of our knowledge, we know of no published work
on penalties CTE // problem. Our scheduling problem can be state more precisely as
follows:
      Given a schedule (1, 2,…, n), then for each job j we can calculate jC , jE  and jT . The
objective is to find a schedule  = (  (1),…, (n)) of the jobs that minimize the total cost
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schedules, !nS = , then our problem can formally be stated as:

where )( jδ  denotes the position of job j in the ordering .δ

3. Special cases
It is clear that the problem ( P ) is NP-hard since the problem TE /  is NP- hard

[14]. The problem (p) is considered by Mohammed (2005) [16], he used a local search to find
the near optimal solution for problem (p) and he solved the problem with up to 150 jobs. A
special case of problem (p), if all jobs have the common due date (i.e. njdd j ,...,2,1, == ),

then, the resulting problem denoted by )(//1 jjjj CTEdd ++= ∑ has an optimal
solution given by the following result:

Theorem (1)
The SPT rule gives an optimal solution for problem

)(//1 jjjj CTEdd ++= ∑ .

Proof:
Let δδπ ′= ij be a sequence, where δ and δ ′ be a  subsequences and i, j two

jobs  with ji pp ≥  and let C  be denoted to completion time of jobs of subsequence δ , and
d the common due date for  all jobs, then:
First: If dpC i >+    (i .e.  job i is late), then,

dpCpCdpCCTE iiiiii −+=++−+=++ 22 .
Since i is late then j is late

dppCppCdppCCTE ijjijijjj −++=+++−++=++ 222
For the sequence π
∑

∈
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πji
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Second. If dpC i ≤+  (i.e. job i is early).
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 For sequenceπ , we get dCTE iii =++

jjj CTE ++












≤++

>++−++
=

dppCifd

dppCifdppC

ji

jiji

,

,222













≤++

>++++
=++∑

∈ dppCifd
dppCifppC

CTE
ji

jiji
ii

ji
i ,2

,222
)(

, π

for the sequence π ′ , if i is early then j is early
dCTE jjj =++









≤++
>++−++

=++
dppCifd
dppCifdPPC

CTE
ji

jiji
iii ,

,222









≤++
>++++

=++∑
′∈ dppCifd

dppCifPPC
CTE

ji

jiji
ii

ji
i ,2

,222
)(

, π

0)()( CTECTE i
i

iiii
i

i =++−++ ∑∑
′∈∈ ππ

      (2)

then from (1) and (2) we obtain that SPT rule gives an optimal solution for

∑ ++= )(//1 iiii CTEdd  problem.

Proposition (1)
       If the jobs ordered as SPT rule such that idC ii ∀> , in SPT , then SPT rule gives optimal

solution for ∑ ++ )(//1 iii CTE problem.

Proof:
Let π  be a schedule orderly according to SPT rule such

that n1,2,...,i, => ii dC . Then for each job i )( π∈i , i is late job and,

∑ ∑ ∑−=++ }2{)}({ iiiii dCMinCTEMin

but ∑
∈πi

id is a constant, then ∑ ∑− }2{ ii dCMin  depend on ∑ iC  only. Smith [20] shows

that SPT rule gives an optimal solution for ∑ iC//1 problem. So π  is optimal schedule for

∑ ++ )(//1 iii CTE  problem if π∈∀> idC ii , .

Proposition (2)
         If there is a scheduleπ , such that π∈∀< idC ii , , then schedule π is optimal solution
for ∑ ++ )(//1 iii CTE  problem with value .∑

∈πi
id



Journal of Kufa for Mathematics and Computer Vol.1, No.1, April, 2010, pp.10 - 25

14

Proof:
Since for each job i, π∈< idC ii ,  then each job i is an early job

and ∑∑ =++ iiii dCTE )( . Since ∑
∈πi

id is constant. Then π  is optimal solution for

∑ ++ )(//1 iii CTE  problem with value∑ =

n

i id
1 .

Proposition (3)
       If there is a schedule π orderly as SPT rule and π∈∀= idC ii ,  then schedule π  gives
an optimal solution for ∑ ++ )(//1 iii CTE problem.

Proof:
          Since π∈∀= idC ii ,  then 0== ∑∑

∈∈ ππ i
i

i
i ET and the problem ∑ ++ )(//1 iii CTE

reduce to ∑ iC//1 problem. Smith [20] shows that SPT rule is an optimal solution for

∑ iC//1  problem. Then, π is optimal solution for ∑ ++ )(//1 iii CTE  problem if

π∈∀= idC ii , .

Proposition (4)
          For the ∑ ++ )(//1 iii CTE   problem, the SPT schedule (1, 2,…,n) is optimal if

11 dp = and n,...,,j ,ddp jjj 321 =−= − .

Proof:
 Suppose ),...,2,1( n=δ  be a schedule orderly as SPT rule and satisfies the

condition of the proposition. Since 11 dp = , hence 111 dpC == ,

12122 pdddp −=−=  and 2121212 dpdpppC =−+=+= .

Thus, we concluded that jj dC =  for nj ,...2,1= , by using proposition (3) we

get that δ is an optimal for ∑ ++ )(//1 iii CTE  problem.

Theorem (2)
A schedule π obtained by ordering its jobs in non-decreasing order of due date

(EDD rule) is optimal for the ∑ ++ )(//1 iii CTE  problem if ii PT ≤ for all job i sequenced
in π .

Proof:

For each job i, ∑
=

≤−=≤
k

j
kkji pdpTT

1
max , for some job k. Let

),...,2,1( n=π  be a schedule obtained by EDD rule.
Suppose ER = }:{ jj dCj ≤∈π  and LT= }:{ jj dCj >∈π . Now consider
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)}({)}({)}({ ∑ +++∑=++∑
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The first term in the R.H.S is constant and the second term ( ∑
∈LTi

iT ) is minimized by EDD

rule since ii pT ≤ for each job i, π∈i [19]. Hence the EDD rule is optimal for

∑ ++ )(//1 iii CTE problem if ii pT ≤ .

Theorem 3.
       If the jobs sequencing according to SPT rule such that 1+≤+ iii Cpd , then SPT rule

gives an optimal solution for )( / /1
1 iii

n

i
CTE ++∑ =  problem.

Proof:
Let π  be a SPT schedule with 1+≤+ iii Cpd  for each job i inπ . Thus,

iiii

iiii

dCpp
, ..., n- ,  ipCpd

−≤−
=+≤+

+

+

1

1 11

Since π∈i  (π  is SPT schedule), then 1+≤ ii pp   and there are three cases for ii dC −
for each i in π .
Case (i). If 0<− ii dC , then π∈∀= iTi ,0  and ∑∑ =++

= iiii
n

i
dCTE )(

1

(Constant)
Case (ii). If 0=− ii dC , then π∈∀== iTE ii ,0 and

∑∑ =++
= iiii

n

i
CCTE )(

1
,

Smith [20] shows that SPT rule is optimal for ∑ iC//1  problem.

Case (iii). If 0>− ii dC , then π∈∀= iEi ,0  and

∑ ∑∑ −=++
= iiiii

n

i
dCCTE 2)(

1 ,

 Since ∑ id is constant, then SPT gives an optimal solution.
Hence for the three cases, SPT rule gives an optimal solution for

)(//1 iii CTE ++∑  Problem if 1+≤+ iii CPd  .

4. Lower Bounds
We propose more than one lower bound for problems (P).

4.1 Dynamic Programming State-Space Relaxation (DPSSR).
Christofides et al. (1981) [17] developed the dynamic programming state space

relaxation (DPSSR) method for various routing problem. Abdul- Razaq and Potts (1988) [1]
for the first time in scheduling using DPSSR method to obtained a lower bound for problem
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E/T. In this method, a relaxed problem is obtained from a dynamic programming formulation
by mapping the original state-space onto a smaller state-space and performing the recursion
on this smaller state-space. The procedure used in this section to compute a lower bound is
based on Abdul-Razaq and Potts [1].

Let N= {1, 2,…, n} be set of n jobs, let S ⊆ N  be an arbitrary subset of jobs. Let f
(S) is the minimum cost of scheduling jobs of S in the first initial S  positions. The object is
to find f (N) from the following recursion equations

)p ( gf(S-{i})MinS  f
Sj

jiSi 







+= ∑
∈∈

)(                    (3)

where f ( ) =0, )(∑
∈ Sj

ji pg  is the cost of completed job i at time ∑
∈

=
Sj

jpt . A state S is

mapped onto a state∑
∈Si

ip . (We assume that n

Ni
ipT 2<= ∑

∈
to ensure that there are fewer

states in the relaxed problem than in the original problem:
If nT 2≥ , it is more efficient to solve  the original problem). The relaxed problem is solved
by computing )(0 Tf from the recursion equations

tgpttf iiNi
)}()({fmin)( 00 +−=

∈
                      (4)

That are initialized by setting fo(t)= ∞  for t<0 and fo(0) = 0 where iiii CTE(t)g ++= , the
cost of scheduling job i to be completed at time t is ).(tg i

Theorem 4 : (Abdul  Razaq 1987)[3]
     If f (N) is obtained from (3) and if fo(T) is obtained from (4), then, fo(T) ≤ f(N).
        Hence LB1 = fo(T) is a lower bound for our problem P.

Theorem (5)
For the ∑ ++ )( / /1 iii CTE  problem if ∑ iC is obtained by SPT rule, then a lower bound

LB4 is given by },2{4 ∑∑∑
∈∈∈

−=
Ni

i
Ni

i
Ni

i ddCMaxLB .

Proof:
To show that LB2 is a valid LB for ∑ ++ )( / /1 iii CTE  problem, there are two

cases, either ∑∑
∈∈

−=
Ni

i
Ni

i dCLB 22      or ∑
∈

=
Ni

idLB2

Case1. If ∑ ∑ ∑∑∑
∈ ∈ ∈∈∈

−=−
Ni Ni

i
Ni

iii
Ni

i ddCdC },{2Max)2(
Ni

To show

∑∑∑
∈∈∈

++≤−
NiNiNi

)(2 iiiii CTEdC .

Since   for job i we have iiiiii CTECdC ++≤+−

∑∑∑
∈∈∈
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NiNiNi

)(2 iiiii CTEdC .
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Hence ∑∑
∈∈

−=
Ni

i
Ni

i dCLB 22  is   a lower bound for ∑
∈

++
Ni

)( iii CTE  problem.

Case 2. If ∑ ∑∑∑
∈ ∈∈∈
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Ni Ni
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∑ ∑
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∑∑∑∑
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1111
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 Hence ∑
∈

=
Ni

idLB2 is a lower bound for ∑
∈

++
Ni

)( iii CTE problem.

4.2  An Upper Bound (UB)
 In this section, we propose a heuristic method which is applied at the root node of

the branch and bound tree to find an upper bound UB on the minimum value of problem (P).
We now give precise details of our heuristic:

Heuristic UB
• Step 1. Ordered the jobs according to EDD rule, assume the resulting   sequence is σ .
• Step 2.  put SE={job ii dCi <∈ :σ }

SC= {job ii dCi =∈ :σ }
ST= {job ii dCi >∈ :σ }.

• Step 3.  Let 1be the order of the jobs in subset SE according to LPT      (i.e. 1+≥ ii pp ,)

2 be the order of the jobs in subset SC according SPT (i.e. 1+≤ ii pp )  and 3

be the order of the jobs in subset ST according to SPT.
• Step 4. Let π be a schedule consist of 2,1 σσ and 3σ  i.e. = ( 1, 2, 3).

• Step 5. Upper bound )(
1 iii

n

i
CTEUB ++= ∑ =  is obtained for .

             To find a lower bound for our problem (P), we applied the methods, which are
described in section (4).The method which gives a big lower bound will be used in BAB
method.

5. Optimal Solution by Using BAB Algorithms.
In this section, we consider the problems which are described in the previous

sections. We wish to find a schedule which minimizes the sum of of earliness, tardiness and
completion time. We shall use a branch and bound (BAB) method forward branching to find
exact solution for problem (P). The BAB method starts by applying the special cases given in
section (3). If the data for our problems satisfy the conditions of the special cases for the
problem (P) then that problem is solved with out branching. If the date does not satisfy the
conditions, then at this stage the BAB is started.

In our BAB method we applied the upper bound given in subsection (4.2) at the
root node of the search tree to provide an (UB) on the cost of optimal schedule. Also at the
root node of the search tree an initial lower bound on the cost of an optimal schedule is
obtained from LB given in subsection (4.1). A dynamic programming dominance (DP
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dominance) rule is used from level two of the search tree in an attempt to eliminate some of
the nodes which are not leads to optimal solution. For all nodes which are not eliminated by
DP dominance rule, we can use the bounding procedure described in the previous section to
compute a lower bound LB.  If  the LB for any node is greater than or equal to the current
upper bound (UB) already computed, then this node is discarded, otherwise it may be
selected for next branching.

The BAB method continues in a similar way by using forward branching
procedure. Whenever a complete sequence is obtained, this sequence is an evaluated and the
(UB) is altered if the new value is less than the old one. The procedure is repeated until all
nodes have been considered (by using backtracking procedure). Backtracking procedure is
the movement from the lowest level to the upper level in the search tree. The (UB) at the end
of this procedure is the optimal of our scheduling problem.

6. Local search
To solve the scheduling problems already maintained in the previous sections, one

tends to use optimization algorithms, which for sure always find optimal solution. However,
not for all optimization problems, polynomial time optimization algorithms can be
constructed. This is being because some of the problems are NP–hard. In such cases one
often uses heuristic (local search) algorithms which tend toward but do not guarantee the
finding of optimal solutions for any instance of an optimization problem. Hence in the recent
years, much attention has been devoted to a number of local search heuristics for solving
scheduling problems. Essentially, local search consists of moving from one solution to
another, in the neighborhood, according to some defined rules. The sequence of solutions can
be called a trajectory in the solution space. This trajectory depends heartily on the initial
solution and on the neighborhood generation adopted. The main weakness of basic
algorithms is their inability to escape from local optimal [15].

In this section we investigate the performance of several local search heuristics.

6.1 Descent Method (DM)
We suggested the following heuristic as a descent method to find an optimal or

near optimal solution for our problem. In this heuristic method we shall relate the weighted
with each schedule to prevent repetition of the schedule.

Algorithm (DM) for problem (P)
• Step1. Arrange the jobs according to SPT rule, to obtain an initial schedule π = (π (1),

π (2),…, π (n) ); k =1.
• Step 2.  Evaluate the weighted of schedule π

∑
∈

− =∗=
i

i ,...,n,,  i(i)H(k) 212 1 .

• Step 3.  Evaluate the cost )()(
1 iii

n

i
CTEZ ++= ∑ =

π  as current solution.

• Step 4. Select  randomly nii ≤≤1, .

• Step 5. Select  randomly 11, −≤≤ njj .
• Step 6.  if (i=j+1) go to step 5.
• Step 7.   Insert  the job in position i at  position j+1 (.i.e. π ( j+1) =π ( i)),
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                 to obtain  a new schedule π ′ ; k=k+1.
• Step 8.    Evaluate ∑

′∈

∗′=+
π

π 1-i2)()1(
i

ikH , the weighted of schedule π ′  .

• Step 9.    Let L =1.
• Step 10.  If (H(k+1)) = H(L) go to step 4.
• Step 11. Let L=L+1.
• Step 12.  If ( L ≤  K )  go to step Step10.
• Step 13.  Evaluate Z (π ′ ).
• Step 14.  If ),Z()   Z(;);)()(( ππππππ ′=′=<′ ZZ  Go to step 4.
• Step 15. The process is repeated from step 4 until no improvement can be found and stop.

6.2 The Simulated Annealing (SA) Method
In this subsection. We will refine the basic versions of the SA, we may vary or

specify three elements in algorithm of simulated annealing: the distribution on the set of
neighbors, the stopping criteria and the treatment of the control parameter T. The SA is a local
search algorithm where, given the current solution π , another solution π ′  is drawn
uniformly from the neighborhood of π  (N (π )). If π ′  is better than π , then the next
solution, is set equal to π ′ , if not we accept the deterioration with a certain probability P
(where )/( TEXPP ∆−= , ∆   a difference of costs) and do not accept with probability 1- P.
The algorithm terminates if there is no change after L repetitions. Otherwise, the iteration
continues with a new temperature (T).

Simulated annealing (SA) algorithm.
1. Common, We use a simulated annealing as a local search to find a best schedule gets a

minimum cost of objective function.
2. Input, π : an initial solution  (Current solution). T: an initial temperature (controls the

possibility of the acceptance of a deteriorating solution).
L:  iteration number (decides the number of repetitions until a solution reaches a stable

state under the temperature).
Z (π ): Cost of objective function which is associated with schedule π
N (π ): the neighborhood of schedule π

3. Output, the best schedule belong to N (π ) which is minimized the objective function.
4.   Do k =1, L
5.   Select at random )N(ππ ∈′  (a new solution)
6.  - Z Z )()( ′=∆

         if ,P  or αα()0( ><∆ random from interval (0,1))
    then )()(  Z; ππππ ′=′= Z
     End if

TT α=
     End do
7. If stop criterion is not true, pick a new control parameter T; go to  step 4.

6. 3  Threshold Accepting (T A) Method
 In this subsection we shall use threshold accepting method to solve our problems.

To obtain an initial solution we used the descent method presented in (6.1) as a current
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solution and the initial threshold value in our algorithm is equal to 0.5% of the multi
objective functions value of the starting solution. Further, we used a geometrically decreasing
threshold scheme and execute move iterations in later search phases.

Threshold Accepting (TA) Algorithm
• Step .1 Let π  be initial  solution
              Evaluate Z(π )
              Set UB: = Z (π ),  =π ,  = 0.000001.

Set t = 0.5% UB, be an initial threshold value, and  = 0.5.
• Step .2  Select randomly )(1 ∈  as a new solution
               Evaluate Z ( 1π ).
• Step .3   If (UB > Z(π 1) ), UB : = Z(π 1),  = π 1.
• Step .4   If (Z( 1π ) < Z(π ) + t ) then

π = 1π , Z (π ) = Z ( 1π )
                  End if
• Step .5   If (t > ) then

t= t
                   Go to step 2
                   End if
• Step .6   If (UB < Z( ) )  then

Z ( ) = UB, =
                    End if
• Step .7  Stop.

7.  Genetic Algorithm (G A )
Genetic algorithm has seen limited usage as a scheduling tool. It is based loosely

an evolution and the concept of “survival of the fittest”. A vector is used to represent the
parent chromosome and an allele is defined as the value represented by a single element
within the vector. A set of parents is generated and operations are performed to represent the
pooling of genes that result in an improvement to the species. Operations that may be
performed are crossover, a random exchange of genes between parents, and reproduction,
which allows the best solution to the next generation [5].

Initial GAs was programmed using a series of zeros and ones. Other variants
included the use of integers in the vector. A common problem within scheduling applications
was the creation of solutions that were not feasible (Bean, 1994) [4]. Now, we give an
example state by Bryan and Bahram (2002) [5], if we are given six jobs placed in the
following two sequences,
                                     1-4-6-3-2-5
                                     5-1-4-2-3-6
and they perform crossover at element three removing job 6  from the sequence one and
replacing it in the position of job 4 in sequence two and removing job 4 from sequence  two
and replacing it with job 6 resulting job sequences will be
                                      1-4-4-3-2-5
                                      5-1-6-2-3-6
The two new sequences are obviously not feasible solutions. To avoid this possibility Bean
(1994) [4] and Bryan & Bahram (2002) [5] proposed using random keys within the vectors to
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act as surrogates for the final job sequences. Vectors of random numbers selected from 0 to 1
are generated to represent the parents. To transform the offspring (sequences of random
numbers) into a feasible job sequences they start with the smallest number and place its
position number in the first position of the job sequence, the next smallest number is
identified and its position number is placed in the next position of the job sequence; and so on
until all elements are assigned. To avoid this not feasible solutions we proposed the following
method: in the final job sequence (not feasible solutions) we fixed the elements which are
performed  crossover on  them in the same positions, and we change the job which is listed
twice from sequence one with the job which is listed twice in sequence two. Using the
process previously we get the following two sequences each of which represent a feasible
solution.
                                     1-6-4-3-2-5
                                     5-1-6-2-3-4

Hybrid method apply when the parents generate identical offspring (i.e. generate
two identical chromosomes (sequences) have the same properties of his parents) and make
cycle. To avoid this cycle we hybrid parent one by using descent method to perform parent
are different from parent two and continue by crossover and reproduction operations.

7.2  Genetic simulated Annealing (GSA) Algorithm
In this section we present a hybrid GSA by combining the simulated annealing

with the genetic algorithm. This method aims to creating an alternative search technique
incorporating the best characteristics presented by each method while solving the problems
(P). The ultimate goal is to improve the efficiency by reducing the computational processing
time to improve the effective the solution. The results of GSA are comparing with results of
the GA and local search methods.

Celia and Potts (1996) [7] used hybrid method in which descent is incorporated
into the genetic algorithm to evaluate on the problem of scheduling jobs in permutation flow-
shop to minimize the weighted completion time. Celse et al. (2005) [6] propose a hybrid
strategies that combine genetic algorithms and tabu search concepts for the single-machine
scheduling problem with a common due date  performance is measured by the minimization
of the sum of earliness and tardiness penalties of the jobs.

8. Computational Experience
All the algorithms of this study are coded in Fortran Power Stations (Fortran 90)

and run on a Pentium IV hp-Compaq computer with a 2.8 GHz processed and 256 Mb of
RAM memories. The branch and bound algorithms are tested on problems 10, 15, 20, 25, 30
and 35 jobs for problems (P). We using the method of data generation that given by Abdul-
Razaq and Potts (1993). That were generated as follows: five integers were generated for
every job i, namely processing time pi, and due date di. pi were generated randomly from the
uniform distributions [1,10]. Due date di for every problem were generated from the uniform
distribution [h1T, h2T] where

h1 ∈{0.2, 0.4, 0.6, 0.8}
h2 ∈{0.4, 0.6, 0.8, 1.0}

∑
=

=
n

i
ipT

1
, h1<h2

For each selected value of n, two problems were generated for each of the ten pairs of h1, h2
producing 20 problems for each value of n. We solved the problem (P) with up to 150000
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jobs; the problems are tackled by reams of all of the 5 approaches, namely DM, SA, TS GA
and GSA.
     Table (1) illustrates the comparative of computational results and CPU in second for 5
approaches with the optimal value (obtain from BAB method), n=20 for problem (P). Table
(2) gives difference of the average of computational results of the 5 approaches with n=100,
200, 500, 1000, 1500, 5000, 10000, 15000, 50000, 100000 and 150000 jobs for problem (P).
Figure (1) indicates that the average CPU time (running time in second) required by each
method (for problem p).

Table (1) Comparative results and CPU in second, n=20 for the problem:
∑ ++ )(//1 iii CTE

 No. BAB time SA time TA time GA time GSA tim
e

DM time

1 1561 9.4 1955   0 1945 0 1705 0 1573 0 1817 .02
2 1465 30 1481 0 1473 0 1470 0 1465* 0 1469 .016
3 1538 15.6 1542 0 1542 0 1574 0 1542 0 1542 .028
4 1710 30.4 1724 0 1722 0 1722 0 1710* 0 1720 .02
5 1122 11.48 1174 0 1128 .06 1126 .01 1126 .06 1126 .16
6 1605 14.8 1617 0 1627 .06 1617 0 1613 0 1651 .17
7 1326 33.4 1400 0 1336 .06 1336 0 1326* 0 1342 .02
8 1473 31.5 1540 0 1476 0 1478 0 1473* 0 1492 .16
9 1509 41.6 1525 0 1523 0 1519 .05 1509* 0 1517 .17

10 1099 30.04 1117 0 1163 .05 1105 .06 1105 0 1129 .16
11 1125 30 1171 0 1167 0 1125* 0 1125* .05 1163 .17
12 1370 44.1 1388 0 1384 0 1384 .05 1384 0 1387 .11
13 1334 50 1371 0 1353 .06 1339 .05 1335 .06 1363 .16
14 1946 52.6 1956 0 1986 0 1956 0 1946* .06 1956 .11
15 1288 44.1 1289 .05 1291 0 1289 .05 1288* .05 1307 .16
16 1054 33 1080 0 1062 .05 1064 .06 1054* .05 1070 .17
17 1458 28 1460 0 1464 0 1476 0 1460 0 1464 .11
18 1429 25.9 1475 0 1437 0 1439 .05 1437 .05 1457 .16
19 1246 44.1 1282 0 1250 0 1256 .06 1456 .06 1256 .16
20 1494 50.2 1512 0 1518 .05 1494* 0 1494* 0 1510 .16

*: Indicates that the problem has an optimal solution equals to the heuristic value.
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Table (2) Averages deviations about the best average value for the problem
∑ ++ )(//1 iii CTE
deviations of averages

n. SA TA GA GSA DM
100
200
500
1000
1500
5000

10000
15000
50000
100000
150000

0
58.4

236.9
0
0

126.1
1157.8
1850

0
18690
101581

0.9
0
0

896
684
362

527.2
0

2408.1
11481
21953

9.9
78.8
49.56
868
148
0

84.17
1951
3358
5611
29915

0.2
4.13
45.78

0
0
0
0

696.2
0
0
0

2
56.8

1014.87
6751
738.4
461.3

2103.9
11532
48511
19234
11403

Fig. (1): Time averages for the problem. ∑ ++ )(//1 iii CTE
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Where:
ATA: Time averages of the results of the threshold accepting.
ASA:  Time averages of the results of the simulated annealing.
AGA:  Time averages of the results of the genetic algorithm.
AGSA: Time averages of the results of the hybrid (genetic simulated
            annealing).
ADM:  Time averages of the results of the descent method
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9.  Conclusions.
In the present chapter we consider a single machine scheduling problems to

minimize the sum of earliness, tardiness and completion time penalties of the jobs and its
special cases. As these problems are NP-hard, we propose a branch and bound algorithms to
obtain an optimal solution with up to 35 jobs, the implementation of optimizing algorithms
does seem to be promising. Thus we decided to tackle the problems with local search and
meta-heuristics methods. We solved the problem with up to 150000 jobs. From tables (1) and
(2) we see that BAB algorithm gives an optimal value but it need longer time comparative
with the local search methods. Furthermore, by comparing the performance of the local
search methods with optimal solution or best solutions, hybrid strategies GSA method to get
the better of other methods.
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