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ABSTRACT

We consider a single machine scheduling problem to minimize a multiple objective function; sum
of earliness, tardiness and completion time. As this problem is complete NP-hard we propose a branch and
bound algorithm to obtain an optimal solution. The implementation of optimizing algorithms dose seen to be
promising but it need longer time. Thus we tackle the problem with local search methods: descent method,
simulated annealing and threshold acceptance. The performance of these heuristic methods is evaluated on a
large set of test  problems, and the results are aso compared with these obtained by genetic algorithm and
hybrid method which is combining the smulated annealing with the genetic algorithm. The best results are
obtained with the hybrid method. We solved the problem optimal ity with up to 35 jobs and approximately with
up to 150000 jobs.

Keywords: Scheduling, single machine, local search, decent, simulated annealing, threshold accepting,
genetic, hybrid

1. Introduction

In this paper, we consder the problem of scheduling jobs on a single machine to
minimize sum of earliness, tardiness and completion time with constraint that the penalty
rates are equals for each job, which isin contrast with most workson E/T/C models.

The E/T problem with no idle time, however, has been consdered by several
authors, and both exact and heuristic approaches have been proposed. Among the exact
approaches, branch and bound algorithms were presented by Abdul-Razag and Potts (1988)
[1], the lower bounding procedure of Abdul-Razag and Potts was based on the sub gradient
optimization approach and the dynamic programming state-space relaxation technique.

For problem 1/d; = d /é_ (E; + T;) with arestricted common due date,

Hall, et a. (1991) [10] and Hoogeveen & Van de Vede (1991) [11] establish NP-hardness.
Kanet (1981) [13] derives properties of an optimal solution for the unrestricted common due
date version of this problem. Abdul-Razagq & Mahmood (2001) [2] found optima and near
optimal solution where jobs divided into F families each family f, (f=1,...., F) contains ry
jobs.

Among the heuristics, Enumerative Algorithms and local search, Ow and
Morten (1989) [18], developed severa dispatch rules and a filtered beam search
procedure a neighborhood search agorithm was also presented by George Li (1996) [9].
Celso, et a. (2005) [6], proposed a tabu search-based heuristic and a genetic algorithm which
exploit specific properties of the optimal solution for probleml/d; = d/é (E, +T)).
Chichang (2005) [8], proposed a genetic algorithm with sub-indexed partitioning genes
(GASP) to alow more flexible job assignments to machines for a problemP//E/T . Jan &
Frank (2000) [13], derived some structural properties useful in connection with the search for
an approximate solution for a problem Pm/d, =d,r;/E/T, Martin & Dirk (2003) [14],

considered a probleml/d; =d/E/T; they applied meta-heuristics, namely evolutionary
strategies, smulated annealing and threshold accepting. Hall, et a. (1991) [10], show that a
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problem 1/d; =d/E/Tis NP-hard in the ordinary sense, and they proposed an O
(né J_ P, ) pseudo polynomial dynamic programming algorithm. In this paper we present a

branch and bound algorithm based on the lower bounds obtained from dynamic programming
state space relaxation and relaxation of the objective function for the genera problem, we
find an optimal solution for special cases. Further, we use a local search, genetic algorithm
and we propose hybrid method to find near optimal solutions.

2. Formulation of the Problem:

The genera problem of scheduling jobs on a single machine to minimize the total
cost that can be state as follows. A set of n independent jobs N= {1, 2,..., n} are available
for processng at time zero, has to be scheduled without preemptions on a single machine
that can handle at most one job a a time. The machine is assumed to be continuously
available from time zero onwards and unforced machine idle time is not allowed. Each job |,
jT N requires a processing time p; and should ideally be completed on it is due date d,. For
any given schedule (1, 2,.., n), the completion time, the earliness and the tardiness of job j can
be respectively defined as:

C,=a’',p., E,=maqd,-C,,0 and T, =max{C,-d,,0
The objectives is then to find the schedule that minimizes the multiple objective

function (MOF) defined by 1/ é_ (E; +T, +C,) . Itisclear that our mode! differs from the

other models in that we consider a more general and realistic problem dealing with arbitrary
due dates. The incluson of both earliness and tardiness cost in the objective function is
compatible with the philosophy of just in time production, which emphasizes producing
goods only when they are needed. As a generalization of weighted tardiness scheduling, the
problem is strongly NP-hard. To the best of our knowledge, we know of no published work
on pendties E/T/Cproblem. Our scheduling problem can be state more precisely as
follows:

Given a schedule (1, 2,..., n), then for each job j we can calculate Cj , E, and T;. The
objective is to find a schedule 6 = (6 (1),..., d(n)) of the jobs that minimize the total cost
Z(d) where

Z(d)= (Ed(i) +Ty6 +Cd(i) )

Let She a set
Min{ Z (d)}; Min& (Eq (i) +Td(i) + Cd (i) )
ubject to:

Ri(j) >0, i=1..,

Ba(j)® 0 j=Ll..n

Ta(j) * 0. j=l..n

Td (j) - Ed(j) ® Cd(j) - dd (j)- i=1,..,n¥ (P)

Td(j) +Ed(j) =| Cd(j) - dd ()| j=1,..n
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schedules, |§ = n!, then our problem can formally be stated as:

where d(j) denotesthe position of job j inthe ordering d.

3. Special cases

It is clear that the problem (P) is NP-hard since the problem E/T is NP- hard
[14]. The problem (p) is considered by Mohammed (2005) [16], he used alocal search to find
the near optimal solution for problem (p) and he solved the problem with up to 150 jobs. A
specia case of problem (p), if al jobs have the common due date (i.e.d; =d, j=12,...,n),
then, the resulting problem denoted by 1/d, = d/a (E, +T +C,)has an optimal

solution given by the following result:

Theorem (1)
The  SPT rule gives an optimal solution for problem

1/d, =d/34 (E, +T, +C)).

Proof:
Let P =dijd(pe a sequence, where d and dtbe a subsequences and i, j two

jobs with p; 3 P; and let C be denoted to completion time of jobs of subsequence d , and
d the common due date for all jobs, then:

First: If C+p, >d (i.e jobiislate), then,

E +T,+C =C+p-d+C+p =2C+2p -d.
Sincei islatethenj islate

E +T,+C =C+p +p,- d+C+p +p, =2C+2p, +2p - d

For the sequence D

Q (E +T,+C))=4C+4p, +2p, - 2d

iilp

Now let p (=djid (be a new sequence obtained from P by interchangei and j, then,
2X+2p.-d |, if C+p >dj
E, +T, +C, —? J _ ey
E,+T, +C, =2C +2p; +2p, - d (Sincejobi islate).
For the sequence p ¢

AC+4p; +2p - 2d , If C+p;>di

A(E+T+C)=) " P LRty

i pe 12C+2p; +2p . if C+p £df
R-2p20 , if C+p>di

AETHQ)- AETH0)= 1,&29 a0 | it oogeal O

Second. If C+ p, £d (i.e jobiisealy).
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For sequencep ,weget E; +T, +C, =d

E 4T +C, = |2C +2p +2p;-d if C+p +p; >dg
}d BT C+pi+pj£d%
X+2p +2 , if  C+p+p >dj
AETO, R

iilp ) if C+p,+pj £d g
for the sequence p(, if i isearly thenj isearly

E, +T, +C, =d
E, +T, +C, : Y
| d, if C+p +p; £d
(E.+T+Q) |ZC +2P +28, if C+p +p, >di
|ﬂ,¢ 2, If C+Q +pj EdE
AE+T+C) - a(E +T+4G)=0 @
ilp ilp¢

then from (1) and (2) we obtain that SPT rule gives an optimal solution for
1/d, =d/§ (E +T, +C,) problem.

Proposition (1)
If the jobs ordered as SPT rulesuch that C, >d. ," iin SPT, then SPT rule gives optimal

solution for 1/ § (E, +T, +C,) problem.

Proof:
Let P be a <hedule orderly according to SPT rule such

thatC, >d, ,i =1,2,...,n. Thenfor eachjobi (i1 p),iislatejob and,
Min{@ (E, +T, +C)} =Min{2§ C,- § d}}
but éd is a constant, then MiH{Zé_ C - é d;} depend on § C, only. Smith [20] shows

ilp
that SPT rule gives an optimal solution for 1//'3'[ C, problem. So p isoptimal schedule for

1//Q (E, +T, +C,) problemifC, >d ," il p.

Proposition (2)
If there is a schedulep , such thatC, <d, ," il p _ then schedule p is optimal solution
for 1// § (E, +T, +C,) problemwith value § d..

imp
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Proof:
Since for each job i, C <d ,il p then each job i is an early job

o]
andé_(Ei +'E+Q)=é_d. Sinced d; is constant. Then p is optima solution for
iip

1/ § (E +T,+C,) problemwith valued | d,..

Proposition (3)
If there is a schedule p orderly as SPT ruleand C, =d. ," i1 p then schedule p gives

an optimal solution for 1// é (E, +T, +C,) problem.

Proof:
Since C, =d,," il p then §T =& E =Oand the problem 1// § (E, +T, +C,)

iip iip
reduce to 1//'8'[ C, problem. Smith [20] shows that SPT rule is an optimal solution for

1/ é C, problem. Then, P is optima solution for 1// é(Ei +T, +C,) problem if
C :di " il p .

Proposition (4)
For the 1//5 (E, +T, +C,) problem, the SPT schedule (1, 2,...,n) is optimal if

p,=dyand p, =d, - d,;,j=2.3,..n.

Proof:
Suppose d =(12,...,n) be a schedule orderly as SPT rule and satisfies the

condition of the proposition. Since p, = d,, henceC, = p, =d,,
p,=d,-d;,=d,- ppad C,=p, +p,=p,+d,- p,=d,.

Thus, we concluded that Cj = dj for ] =1,2,...n, by using proposition (3) we
get that d isan optimal for 1/ § (E, +T, +C,) problem.

Theorem (2)
A schedule P obtained by ordering its jobs in non-decreasing order of due date

(EDD rule) is optimal for the 1// § (E, +T, +C,) problemif T, £ P for all job i sequenced
inp .
Proof:

k
For each job i, TETm=a P, - d £P, for some job k Let
=1

P =(, 2,...,n) beascheduleobtained by EDD rule.
Suppose ER={j1 p :C, £d,} andLT={j1 p :C,; >d,}. Now consider
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Min{ & (E +T, +C;))} =Min{ & (E; +C)}+Min{ & (T, +C)}
ip il ER LT

=Ming d, +Ming (T, +C, - d, +d,)
il ER LT
=Min{§ d +23 T}
iip ihLT

The first term in the R.H.S is constant and the second term (é T. ) is minimized by EDD

LT

rue snce T £p, for each job i, il p[19]. Hence the EDD rule is optima for
1//§ (E, +T, +C,) problemifT, £ p..

Theorem 3.
If the jobs sequencing according to SPT rule such that O, + P, £C,,,, then SPT rule

gives an optimal solution for 1// a inzl(Ei + T. +C,) problem.

Proof:
Let p beaSPT schedulewith d; + p, £ C,,, for each jobi inp . Thus,
d+p £C+p,,1=1..,nl
P - Pia £Ci - di
Since i | P (p isSPT schedule), then P; £ P,., and there are three cases for C-d
foreachiinp.
Case(i). IfC, - d; <0, then T, =0, " il p and § " (E + T, +C)=4 d
(Constant)
Case(ii). IfC, - d, =0,then E, =T, =0, " il p and
éin:l(Ei + T +Ci):é o
Smith [20] shows that SPT rule is optimal for 1// 601 C, problem.
Case (jii). IfC, - d, >0, then E, =0, "il p and
éinzl(Ei + T +C) =2é C - é d; ,

[]
Since Q U, isconstant, then SPT gives an optimal solution.
Hence for the three cases, SPT rule gives an optimal solution for
11§ (E +T, +C,) Problemif d +P £C,, .

4. L ower Bounds
We propose more than one lower bound for problems (P).

4.1 Dynamic Programming State-Space Relaxation (DPSSR).
Chrigtofides et al. (1981) [17] developed the dynamic programming state space
relaxation (DPSSR) method for various routing problem. Abdul- Razag and Potts (1988) [1]
for the first time in scheduling using DPSSR method to obtained a lower bound for problem
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E/T. In this method, a relaxed problem is obtained from a dynamic programming formulation
by mapping the original state-space onto a smaller state-space and performing the recursion
on this smaller state-space. The procedure used in this section to compute a lower bound is
based on Abdul-Razag and Potts [1].

Let N={1, 2,..., n} beset of njobs, let Sl N bean arbitrary subset of jobs. Let f

(S isthe minimum cost of scheduling jobs of Sin the first initial |q positions. The object is
to find f (N) from the following recursion equations
] . o u
F(S)=Min 1St +9.(& Py 3
|

iis

[}
where f (¢) =0, G, (a pj) is the cost of completed job i at time t :é P;. A state Sis
iTs iis

o]
mapped onto astateA Pi . (We assumethat T = é_ P, <2" to ensure that there are fewer
ihs iTN

states in the relaxed problem than in the original problem:
If T3 2", it is more efficient to solve the original problem). The relaxed problem is solved
by computing f,(T) from the recursion equations

fo (t) :ri?i’\'ﬂ{fo(t' pi) + 9 (1)} (4)

That are initialized by setting fo(t)= ¥ for t<0 and f(0) = O where g,(t) = E, +T +C, the
cost of scheduling job i to be completed at timet isg; (t).

Theorem 4 : (Abdul Razagq 1987)[3]
If f (N) is obtained from (3) and if fo(T) is obtained from (4), then, fo(T) £ f(N).
Hence LB1 = f(T) isalower bound for our problem P.

Theorem (5)
o]
For the 1/ /é_ (E +T, +C,) problemif @ C, is obtained by SPT rule, then a lower bound

LB4isgivenbyLB4=Max{2§ C - § d.,g d.} .

iN il N il N
Proof:
To show that LB2 isavalid LB for 1//§ (E, +T, +C,) problem, there are two
cases either LB2=23 C - &d o LB2=§d

iTN iTN it N

Casel. If (Zé Ci - é di):MaX{zé Ci - é di’é di }
i N i N i N i N i N
To show

Zé Ci' édi £é(Ei+Ti+Ci)-

it N it N it N

Since forjobiwehave C, - d; +C, £ E; +T, +C,
Zé C - é di Eé (Ei +T, +Ci).

il N il N il N
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Hence LB2=23 C, - § d, is alower boundfor g (E, +T, +C,) problem
il N il N il N
Case 2. If ad :Max{zgaNc; . ;aNdi,;aNdi} this meansthat
IAodi'éCiBIO anld |
il N il N
SE=8(-C) AE+T+C)=4d,
i=1 i=1 i=1 i=1
Hence LB2= é d. isalower bound for é (E +T, +C,) problem.

it N imN

4.2 An Upper Bound (UB)

In this section, we propose a heuristic method which is applied at the root node of
the branch and bound tree to find an upper bound UB on the minimum value of problem (P).
We now give precise details of our heuristic:

Heuristic UB
- Step 1. Ordered the jobs according to EDD rule, assume the resulting sequenceis s .
- Step 2. put SE={job il s :C, <d }

SC={jobil s :C, =d}

ST={jobil s :C, >d,}.

. Step 3. Let aybe the order of the jobs in subset SE accordingto LPT (e B 3 Py ).

o2 be the order of the jobsin subset SC according SPT (ie. P £ By;) and o3

be the order of the jobsin subset ST according to SPT.
- Step 4. Let p beascheduleconsistof s, s, and s, i.e. 7= (o1, 02, 03).

. Step 5. Upper bound UB = é_in:l(Ei + T, +C,) isobtained for .

To find a lower bound for our problem (P), we applied the methods, which are
described in section (4).The method which gives a big lower bound will be used in BAB
method.

5. Optimal Solution by Using BAB Algorithms.

In this section, we consder the problems which are described in the previous
sections. We wish to find a schedule which minimizes the sum of of earliness, tardiness and
completion time. We shall use a branch and bound (BAB) method forward branching to find
exact solution for problem (P). The BAB method starts by applying the special cases given in
section (3). If the data for our problems satisfy the conditions of the special cases for the
problem (P) then that problem is solved with out branching. If the date does not satisfy the
conditions, then at this stage the BAB is started.

In our BAB method we applied the upper bound given in subsection (4.2) at the
root node of the search tree to provide an (UB) on the cost of optimal schedule. Also at the
root node of the search tree an initial lower bound on the cost of an optimal schedule is

obtained from LB given in subsection (4.1). A dynamic programming dominance (DP
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dominance) rule is used from level two of the search tree in an attempt to eliminate some of
the nodes which are not leads to optimal solution. For all nodes which are not eliminated by
DP dominance rule, we can use the bounding procedure described in the previous section to
compute a lower bound LB. If the LB for any node is greater than or equal to the current
upper bound (UB) aready computed, then this node is discarded, otherwise it may be
selected for next branching.

The BAB method continues in a similar way by using forward branching
procedure. Whenever a complete sequence is obtained, this sequence is an evaluated and the
(UB) is dltered if the new value is less than the old one. The procedure is repeated until all
nodes have been considered (by using backtracking procedure). Backtracking procedure is
the movement from the lowest level to the upper level in the search tree. The (UB) at the end
of this procedure is the optimal of our scheduling problem.

6. Local search

To solve the scheduling problems already maintained in the previous sections, one
tends to use optimization agorithms, which for sure always find optimal solution. However,
not for all optimization problems, polynomia time optimization agorithms can be
constructed. This is being because some of the problems are NP-hard. In such cases one
often uses heuristic (loca search) algorithms which tend toward but do not guarantee the
finding of optimal solutions for any instance of an optimization problem. Hence in the recent
years, much attention has been devoted to a number of local search heuristics for solving
scheduling problems. Essentialy, local search consists of moving from one solution to
another, in the neighborhood, according to some defined rules. The sequence of solutions can
be called a trgectory in the solution space. This tragectory depends heartily on the initial
solution and on the neighborhood generation adopted. The main weakness of basic
algorithms is their inability to escape from local optimal [15].

In this section we investigate the performance of several local search heuristics.

6.1 Descent M ethod (DM)

We suggested the following heuristic as a descent method to find an optimal or
near optimal solution for our problem. In this heuristic method we shall relate the weighted
with each schedule to prevent repetition of the schedule.

Algorithm (DM) for problem (P)
- Stepl. Arrange the jobs according to SPT rule, to obtain an initial schedule p = (p (2),
p(2),..., p(n)); k=1
- Step 2. Evaluate the weighted of schedule p
HK) =g =) * 2" i=12,...n.
il =

. Step 3. Evaluatethe cost Z(P) :éin:l(Ei + T, +C,) ascurrent solution.

. Step4. Select randomly 1, 1ET £ N

. Step 5. Select randomly J,1E£ JEn- 1,

- Step 6. if (i=j+1) goto step 5.

- Step 7. Insert thejobin positioni at postionj+1 (.i.e. p (j+1) =p (1)),
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to obtain anew schedule p¢; k=k+1.
. Step8. EvaluateH (k+1) = § p&i)* 2™ |, the weighted of schedule p ¢ .
iipe¢
- Step9. LetL =1
- Step 10. If (H(k+1)) = H(L) go to step 4.
- Step11. Let L=L+1.
- Step 12. If (LE K) go to step SeplO.
- Step 13. Evaluate Z (p ©).

- Step14. If (Z(p9<Z(p)); p=p¢; Z(P)=Z(p9, Gotostep4.
- Step 15. The processis repeated from step 4 until no improvement can be found and stop.

6.2 The Simulated Annealing (SA) Method

In this subsection. We will refine the basic versions of the SA, we may vary or
specify three elements in algorithm of simulated annealing: the distribution on the set of
neighbors, the stopping criteria and the treatment of the control parameter T. The SAisalocal
search algorithm where, given the current solution p, another solution p( is drawn
uniformly from the neighborhood of p (N (p)). If pC is better than p, then the next
solution, is set equal to p¢, if not we accept the deterioration with a certain probability P
(whereP = EXP(- D/T), D adifference of costs) and do not accept with probability 1- P.
The algorithm terminates if there is no change after L repetitions. Otherwise, the iteration
continues with a new temperature (T).

Simulated annealing (SA) algorithm.
1. Common, We use a simulated annealing as a local search to find a best schedule gets a
minimum cost of objective function.
2. Input, p : aninitial solution (Current solution). T: an initial temperature (controls the
possibility of the acceptance of a deteriorating solution).
L: iteration number (decides the number of repetitions until a solution reaches a stable
state under the temperature).
Z (p ): Cost of objective function which is associated with schedule p
N (p ): the neighborhood of schedule p
3. Output, the best schedule belong to N (p ) which is minimized the objective function.
4. Dok=1,L
5. Selectatrandompd N(p ) (anew solution)
6. D=2Z(x)-2Z(7)
if (D <0)o (P>a,a randomfrominterva (0,1))
thenp =p¢; Z(p)=2(p9
End if
T=aT
End do
7. If stop criterion is not true, pick a new control parameter T; go to step 4.

6. 3 Threshold Accepting (T A) Method
In this subsection we shall use threshold accepting method to solve our problems.
To obtain an initial solution we used the descent method presented in (6.1) as a current
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solution and the initial threshold value in our algorithm is equal to 0.5% of the muilti
objective functions value of the starting solution. Further, we used a geometrically decreasing
threshold scheme and execute move iterationsin later search phases.

Threshold Accepting (TA) Algorithm
- Step .1 Let p beinitial solution
Evaluate Z(p )
SetUB:=Z(p),u=P ., €=0.000001.
Set t=0.5% UB, be an initial threshold value, and = 0.5.
. Step .2 Select randomly T | N (7T) asanew solution
Evaluate Z (P 1).
. Step.3 If (UB>2Z(P 1)), UB:=Z(P 1),xu=p 1.
- Step .4 1f(Z(P1) < Z(P )+ t) then
P=p1.z(P)=2(pP1)
End if
- Step .5 If (t> €) then
t= pt
Goto step 2
End if
- Step.6 If(UB< Z(7T)) then
Z(T)=UB, T=u
End if
- Step .7 Stop.

7. Genetic Algorithm (G A)

Genetic algorithm has seen limited usage as a scheduling tool. It is based loosely
an evolution and the concept of “survival of the fittest”. A vector is used to represent the
parent chromosome and an allele is defined as the value represented by a single element
within the vector. A set of parents is generated and operations are performed to represent the
pooling of genes that result in an improvement to the species. Operations that may be
performed are crossover, a random exchange of genes between parents, and reproduction,
which allows the best solution to the next generation [5].

Initial GAs was programmed using a series of zeros and ones. Other variants
included the use of integers in the vector. A common problem within scheduling applications
was the creation of solutions that were not feasible (Bean, 1994) [4]. Now, we give an
example state by Bryan and Bahram (2002) [5], if we are given six jobs placed in the
following two sequences,

1-4-6-3-2-5

5-1-4-2-3-6
and they perform crossover at element three removing job 6 from the sequence one and
replacing it in the position of job 4 in sequence two and removing job 4 from sequence two
and replacing it with job 6 resulting job sequences will be

1-4-4-3-2-5

5-1-6-2-3-6
The two new sequences are obviously not feasible solutions. To avoid this possibility Bean
(1994) [4] and Bryan & Bahram (2002) [5] proposed using random keys within the vectors to
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act as surrogates for the final job sequences. Vectors of random numbers selected from O to 1
are generated to represent the parents. To transform the offspring (sequences of random
numbers) into a feasible job sequences they start with the smallest number and place its
position number in the first position of the job sequence, the next smallest number is
identified and its position number is placed in the next position of the job sequence; and so on
until all elements are assigned. To avoid this not feasible solutions we proposed the following
method: in the final job sequence (not feasible solutions) we fixed the elements which are
performed crossover on them in the same positions, and we change the job which is listed
twice from sequence one with the job which is listed twice in sequence two. Using the
process previously we get the following two sequences each of which represent a feasible
solution.

1-6-4-3-2-5
5-1-6-2-3-4
Hybrid method apply when the parents generate identical offspring (i.e. generate
two identical chromosomes (sequences) have the same properties of his parents) and make
cycle. To avoid this cycle we hybrid parent one by using descent method to perform parent
are different from parent two and continue by crossover and reproduction operations.

7.2 Genetic simulated Annealing (GSA) Algorithm

In this section we present a hybrid GSA by combining the smulated annealing
with the genetic algorithm. This method aims to creating an aternative search technique
incorporating the best characteristics presented by each method while solving the problems
(P). The ultimate goal is to improve the efficiency by reducing the computational processing
time to improve the effective the solution. The results of GSA are comparing with results of
the GA and local search methods.

Cedlia and Potts (1996) [7] used hybrid method in which descent is incorporated
into the genetic algorithm to evaluate on the problem of scheduling jobs in permutation flow-
shop to minimize the weighted completion time. Celse et a. (2005) [6] propose a hybrid
strategies that combine genetic algorithms and tabu search concepts for the single-machine
scheduling problem with a common due date performance is measured by the minimization
of the sum of earliness and tardiness penalties of the jobs.

8. Computational Experience
All the algorithms of this study are coded in Fortran Power Stations (Fortran 90)

and run on a Pentium 1V hp-Compag computer with a 2.8 GHz processed and 256 Mb of
RAM memories. The branch and bound algorithms are tested on problems 10, 15, 20, 25, 30
and 35 jobs for problems (P). We using the method of data generation that given by Abdul-
Razag and Potts (1993). That were generated as follows: five integers were generated for
every job i, namely processing time p;, and due date d.. p; were generated randomly from the
uniform distributions [1,10]. Due date d; for every problem were generated from the uniform
distribution [hy T, h,T] where

h;1 {0.2,0.4, 0.6, 0.8}

h,1 {0.4, 0.6, 0.8, 1.0}

T=a p . h<h,
i=1
For each selected value of n, two problems were generated for each of the ten pairs of hy, h;
producing 20 problems for each value of n. We solved the problem (P) with up to 150000
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jobs; the problems are tackled by reams of al of the 5 approaches, namely DM, SA, TS GA
and GSA.

Table (1) illustrates the comparative of computational results and CPU in second for 5
approaches with the optimal value (obtain from BAB method), n=20 for problem (P). Table
(2) gives difference of the average of computational results of the 5 approaches with n=100,
200, 500, 1000, 1500, 5000, 10000, 15000, 50000, 100000 and 150000 jobs for problem (P).
Figure (1) indicates that the average CPU time (running time in second) required by each

method (for problem p).

Table (1) Comparative results and CPU in second, n=20 for the problem:

1//Q (E +T +C)

No. | BAB time SA time | TA time GA time | GSA |tim | DM time
e
1 [1561 |94 1955 0 |1945 0 |1705 0 1573 | 0 | 1817 | .02
2 1465 30 [ 1481 | 0 | 1473 | O 1470 0 |1465 | 0 | 1469 |.016
3 1538 | 156 | 1542 | 0 | 1542 | O 1574 0 1542 | 0 | 1542 | .028
4 1710 | 304 | 1724 | 0 | 1722 | © 1722 0 | 1710 | 0 | 1720 | .02
5 1122 1148 | 1174 | 0 | 1128 | .06 | 1126 | .01 | 1126 | .06 | 1126 | .16
6 1605 | 148 | 1617 | 0 | 1627 | .06 | 1617 0 1613 | 0 [1651 | .17
7 1326 | 334 | 1400 | O | 1336 | .06 | 1336 0 |1326° | 0 | 1342 | .02
8 1473 | 315 | 1540 | 0 | 1476 | © 1478 0O 1473 | 0 | 1492 | .16
9 1509 | 416 | 1525 | 0 | 1523 | O 1519 | .05 | 1509 | 0 | 1517 | .17
10 | 1099 [3004 | 1117 | 0 | 1163 | .05 | 1105 | .06 | 1105 | O | 1129 | .16
11 | 1125 30 1171 | 0 | 1167 | 0 [1125 | 0 | 1125 |.05 | 1163 | .17
12 | 1370 | 441 | 1388 | 0 |1384 0 1384 | .05 | 1384 | 0 | 1387 | .11
13 | 1334 50 [1371 | 0 | 1353 | .06 | 1339 | .05 | 1335 |.06 | 1363 | .16
14 | 1946 | 526 | 1956 | O | 1986 | O 1956 0 | 1946 | .06 | 1956 | .11
15 | 1288 | 441 | 1289 | .05 | 1291 | O 1289 | .05 | 1288" | .05 | 1307 | .16
16 | 1054 33 [ 1080 | 0 | 1062 | .05 | 1064 | .06 | 1054 | .05 | 1070 | .17
17 | 1458 28 | 1460 | 0 | 1464 | O 1476 0 1460 | 0 | 1464 | .11
18 | 1429 | 259 | 1475 | 0 | 1437 | © 1439 | .05 | 1437 | .05 | 1457 | .16
19 | 1246 | 441 | 1282 | 0 | 1250 | O 1256 | .06 | 1456 | .06 | 1256 | .16
20 | 1494 | 502 [ 1512 | 0 | 1518 | .05 | 1494 | O | 1494 | 0 | 1510 | .16

*: Indicates that the problem has an optimal solution equals to the heuristic value.
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Table (2) Averages deviations about the best average value for the problem

1//Q (E +T +C)

deviations of averages
n. SA TA GA GSA DM
100 0 0.9 9.9 0.2 2
200 58.4 0 78.8 4.13 56.8
500 236.9 0 49.56 45.78 1014.87
1000 0 896 868 0 6751
1500 0 684 148 0 738.4
5000 126.1 362 0 0 461.3
10000 | 1157.8 527.2 84.17 0 2103.9
15000 1850 0 1951 696.2 11532
50000 0 2408.1 3358 0 48511
100000 | 18690 11481 5611 0 19234
150000 | 101581 21953 29915 0 11403

Fig. (1): Time averages for the problem.1// é (E, +T. +C)
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Where:

ATA: Time averages of the results of the threshold accepting.

ASA: Time averages of the results of the simulated annealing.

AGA: Time averages of the results of the genetic algorithm.

AGSA: Time averages of the results of the hybrid (genetic simulated
annealing).

ADM: Time averages of the results of the descent method
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9. Conclusions.

In the present chapter we consder a single machine scheduling problems to
minimize the sum of earliness, tardiness and completion time penalties of the jobs and its
special cases. As these problems are NP-hard, we propose a branch and bound agorithms to
obtain an optimal solution with up to 35 jobs, the implementation of optimizing algorithms
does seem to be promising. Thus we decided to tackle the problems with local search and
meta-heuristics methods. We solved the problem with up to 150000 jobs. From tables (1) and
(2) we see that BAB agorithm gives an optima value but it need longer time comparative
with the local search methods. Furthermore, by comparing the performance of the local
search methods with optimal solution or best solutions, hybrid strategies GSA method to get
the better of other methods.
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