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Abstract 

In this paper, we present modified conjugancy coefficient for the conjugate gradient method. 

This modification using the extention Dai and Yuan Method to solve non-linear programming 

problems. The algorithm of particle swarm optimization (PSO) is applied in this work, to 

coefficients extracted by features extraction techniques. The sufficient descent and the global 

convergence properties for the proposed algorithm are proved. The numerical results of our finding 

for the large scale optimization problem are very encouraging comparison with standard methods 

The experimental results showed that PSO can generate excellent recognition results with the 

minimal set of selected features. Finally, the algorithm PSO based approaches are proposed and the 

influence of PSO parameters on the performance is evaluated. 
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1. Introduction 
In unconstrained optimization, Minimizing 

on an objective function will done depends on 

real variables with no restrictions on the values 

of these variables. The unconstrained 

optimization problem is: 

nRxxfMin :)( ,  ....................................... (1)  

where RRf n :  is a continuously 

differentiable function, bounded from below. 

A nonlinear conjugate gradient method 

generates a sequence kx , k  is integer number, 

0k . Starting from an initial point 
0x , the 

value of 
kx  calculate by the following 

equation: 
 

kkkk
dxx 

1 ,  ............................................. (2) 
 

where the positive step size 0k  is 

obtained by a line search, and the directions 

kd are generated as:  
 

kkkk
dgd 

 11 ,  ..................................... (3) 
 

where kd  is a descent search direction and 

10   , where 
k  is defined by one of 

the following formulas: 
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Where 00
gd  , the value of k

  is 

determine according to the algorithm of 

Conjugate Gradient (CG), and its known as a 

conjugate gradient parameter, kkk xxs  1  

and   )(
kkk

xfxfg  , consider .  is the 

Euclidean norm and kkk
ggy 

1 . The 

termination conditions for the conjugate 

gradient line search are often based on some 

version of the Wolfe conditions. The standard 

Wolfe conditions: [8][9] 
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2. Particle Swarm Optimization Algorithm  

The Particle Swarm Optimization (PSO) 

algorithm was originally designed by Kennedy 

and Eberhart in 1995. PSO is a population-

based searching method which imitates the 

social behavior of bird flocks or fish schools. 

The population and the individuals are called a 

“swarm” and “particles”, respectively. Each 

particle moves in the swarm with a velocity 

that is adjusted according to its own flying 

experience and retains the best position it has 

ever encountered in memory. The best local 

and global positions ever encountered by all 

particles of the swarm are also communicated 

to all other particles. The advantages of PSO 

are that there is neither mutation calculation 

nor overlapping. The popular form of particle 

swarm optimizer is defined in the following 

equations and in the flow chart in Fig.(1) show 

New PSO Flow Chart with new conjugate 

gradient parameter[10][11][12]. 
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Where:  

idV : is the velocity of particle i along 

dimension d.  

idx : is the position of particle i in dimension d.  

c1: is a weight applied to the cognitive 

learning portion.  

c2: is a similar weight applied to the influence 

of the social learning portion.  

r1, r2: are separately generated random 

numbers in the range of zero and one.  

w: is the inertia weight. 

cost function is  
n
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n
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In 2005 Mahamed used (PSO) in Pattern 

Recognition and Image Processing. 

Konstantinos and Michael used Particle 

Swarm Optimization Method for Constrained 

Optimization Problems [11] 

In 2013 MAJIDA used (PSO) in 

Handwritten Characters Recognition [10]. 

In 2011 Parvinder S. Sandhu, Shalini 

Chhabra used (PSO) with Conjugate Gradient 

Algorithms. 

3. Modified PSO Algorithm  
The modified PSO Algorithm is the same 

PSO algorithm but the change is normalize the 

Initialization the best by conjugate gradient 

Algorithm. The new PSO Flow Chart with 

new conjugate gradient parameter. 

 

 
Fig.(1): Modified PSO Flow Chart with new 

conjugate gradient parameter. 

 

4. Extension Dai and Yuan Method 

By using extended of Dai and Yuan (DY) 

method they need to find new beta that 

produces a descent search direction .this 

requires that [13][14]: 
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Letting 1k  be a positive parameter, then 

define 
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Equation (14) is equivalent to 
 

k

T

kk dg 11     ......................................... (16) 
 

Taking the positivity of 1k  into 

consideration, they have  
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Therefore, if condition (14) is satisfied for 

all k, the conjugate gradient method with 

equation (15), they can get various kinds of 

conjugate gradient methods by choosing 

various 1k , where 1k satisfying equation. 

(17) and prove global convergence of the 

proposed method. We note that the Wolfe 

condition in equation (11) guarantees 
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By setting k

T

kk yd formula (15) reduce 

to this DY method as: 
 

k

T

k

kDY

k
yd

g
2

1
  

 

It follows from (3) and (15) that  
 

k

T

kkkk

T

k
dggdg

11

2

111 
   

   k

T

kkkk
dg

1111 
   

   111
)(




kk

T

kk
dg   

 

The above relation can be rewritten as: 
 

k

T

kk

k

T

k

k
dg

dg

11

11

1













  ............................. (19) 
 

Recall that if put k

T

kk yd
, this method 

reduces to the DY method. 

 

5. The proposed Conjugancy Coefficient 
Consider the following quadratic model as: 
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Where 
nnRA   is a symmetric positive 

definite matrix, 
nRb and Rc . Then 
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From Taylor series b=g then: 
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Multiplying both sides by 2 
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It follows from Perry's conjugacy conditions 
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From eq.(3) and now assume that 
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6. Outline of The New Extended  

CG-Method. 

Step 1: Given 
nRx 1 ; ( 0 ); (k) is an index 

of the algorithm 

Step 2: Set k=1; kk gd 
 

Step 3: Set kkkk
dxx 

1 ; k  is satisfy 

Wolfe Condition. 

Step 4: If Powell restarting, 

2

1 2.0 kk

T

k ggg  , 

satisfied then set:  

      11 


kk
gd

 else set k

New

kkk
dgd 

 11    
New

k


is defined in (25), go to Step 2. 

Step 5: If 


1k
g

,  stop else set  k=k+1 go to  

Step 3. 

 

7. The Convergence Analysis 

7.1 Theoretical Properties for the New CG-

Method. 
In this section, the convergence behavior on 

the 
New

k  method with exact line searches are 

explain. Hence, the following basic 

assumptions on the objective function is 

depend to find modify CG-Method. 

Assumption (1) [15] 
 

f  is bounded below in the level set 

})()({ 0
0

xfxfRxL n

x 
; in some 

neighborhood U  of the level set 0xL
, f  is 

continuously differentiable and its gradient f  

is Lipschitz continuous in the level set 0xL , 

namely, there exists a constant L> 0 such that: 
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0xL   

  ................................. (27) 
 

7.2 Sufficient Descent Property: 

In this section will show that the proposed 

algorithm which defined in equations (26) and 

(3) satisfy the sufficient descent property 

which satisfy the convergence property. 

 

Theorem (1):  

The search direction 
kd  that generated by 

the proposed algorithm of modified CG satisfy 

the descent property for all k , when the step 

size 
k  satisfied the Wolfe conditions (10), 

(11). 
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7.3 Global Convergence Property: 

Lemma 1: [16] 

Let assumptions (i) and (ii) hold and 

consider any conjugate gradient method (2) 

and (3), where dk is a descent direction and 
k  

is obtained by the strong Wolfe line search. If  
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For uniformly convex functions which 

satisfy the above assumptions, the norm of 

dk+1 given by equation (28) can prove bounded 

above. Assume that the function f is a 

uniformly convex function, i.e. there exists a 

constant 0  such that for all Syx , , 
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Theorem 2: [17] 

Suppose that the assumptions (i) and (ii) 

hold. Consider the algorithm (2), (26). If ks  
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tends to zero and there exists nonnegative 

constants 1  and 2 such that: 
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From equation. (43) Then get: 
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8. Results and Discussion  

The practical side includes some numerical 

results which are obtained with the 

implementation of new algorithm (on asset of 

unconstrained optimization). 

Large scale unconstrained optimization 

problems are selected (generalized form). 

For each test function, n=1000, 10000 is the 

number of variable consider as numerical 

experiment. By using the standard wolfe 

conditions (4) and (5) with stopping criteria is 
6

1 10

 kg . 

All the computations in this part are carried 

out by using Fortran 90 Language. 

Method and FR method (7) are compared in 

this research. The preliminary numerical 

results of tests are show in Tables (1) and (2). 

The first column is “test fun” (name of test 

function), the second column “NOI” denoted 

the number of iterations, the third column 

“NOF” denoted the number of calculated 

functions and the fourth column “MIN” 

denoted the minimum values. 
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Table (1) 

Comparison between standard method and modified method with respect to  

(NOI and NOF) for n = 1000. 
 

Test Functions 

Fletcher - Reeves Dai- Yuan modified method 

NOI NOF MIN NOI NOF MIN NOI NOF MIN 

Extended Rosenbrock SROSENBR 

(CUTE) 
fail fail fail fail fail fail 62 123 6.32E-15 

Extended White & Holst fail fail fail fail fail fail 79 152 1.20E-15 

Extended Beale 1108 1154 1.04E-12 1126 1173 7.18E-13 31 56 8.84E-14 

Penalty 24 61 8.83E+02 24 60 8.83E+02 13 37 8.83E+02 

Generalized Tridiagonal 65 776 9.97E+02 131 3005 2.00E+03 49 731 9.97E+02 

Generalized Tridiagonal 2 233 280 9.58E-01 233 280 9.58E-01 54 88 1.16E-14 

Diagonal 641 677 3.69E-13 661 698 1.71E-13 17 32 2.00E-16 

Extended Himmelblau 30 61 8.22E-15 30 61 8.29E-15 18 33 5.89E-16 

Extended Maratos fail fail fail fail fail fail 69 140 -5.00E+02 

Extended Wood WOODS (CUTE) fail fail fail fail fail fail 282 525 1.21E-13 

Extended Hiebert fail fail fail fail fail fail 99 217 1.57E-12 

Extended Quadratic Penalty QP2 fail fail fail fail fail fail 50 104 6.69E-15 

ARWHEAD (CUTE) 1546 2433 0.00E+00 1540 2516 0.00E+00 42 426 0.00E+00 

NONDIA (CUTE) fail fail fail fail fail fail 25 47 3.44E-17 

DQDRTIC (CUTE) 1589 1632 1.22E-13 1596 1639 1.08E-13 171 285 2.21E-13 

Broyden Tridiagonal 83 127 1.36E-14 83 127 1.41E-14 37 62 1.48E-14 

LIARWHD (CUTE) fail fail fail fail fail fail 57 107 6.22E-15 

DENSCHNA (CUTE) 23 37 8.86E-14 25 38 1.28E-13 15 27 9.09E-15 

DENSCHNC  (CUTE) 132 170 8.79E-14 132 170 8.82E-14 35 70 5.12E-14 

Extended Block-Diagonal BD2 130 166 1.93E-13 132 169 1.21E-13 35 70 1.72E-14 

Generalized quartic GQ1 10 24 1.30E-13 12 28 3.66E-14 9 22 1.38E-15 

Generalized quartic GQ2 118 153 1.22E-13 117 152 2.23E-13 45 71 2.65E-13 

FLETCHCR (CUTE) 32 62 2.09E-16 32 62 2.12E-16 32 56 1.12E-16 

HIMMELBH (CUTE) 21 43 -5.00E+02 21 43 -5.00E+02   -5.00E+02 

 
As shown in Table (1) a comparison 

between standard method (Fletcher and 

Reeves, Daiand Yuan) and modified method 

with respect to (NOI and NOF) for n=1000, 

The results are obtained in modified method 

are better than the results in standard method 

(Fletcher and Reeves, Daiand Yuan). 
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Table (2) 

Comparison between standard method and modified method with respect to (NOI and NOF) for 

n = 10000. 

 

Test Functions 
Fletcher - Reeves Dai- Yuan modified method 

NOI NOF MIN NOI NOF MIN NOI NOF MIN 

Extended Rosenbrock SROSENBR 
(CUTE) 

fail fail fail fail fail fail 54 109 4.37E-17 

Extended White & Holst fail fail fail fail fail fail 91 177 1.61E-16 

Extended Beale 1194 1243 1.15E-12 1222 1272 6.06E-13 37 65 1.02E-12 

Penalty 25 71 9.45E+03 24 65 9.45E+03 13 43 9.45E+03 

Generalized Tridiagonal 34 64 1.00E+04 2001 2015 3.39E-05 27 59 1.00E+04 

Generalized Tridiagonal 2 1458 1527 3.41E+00 1479 1557 3.41E+00 82 132 9.58E-01 

Diagonal 701 740 3.11E-13 701 740 3.30E-13 17 32 7.59E-15 

Extended Himmelblau 32 65 6.87E-15 32 65 6.93E-15 18 34 1.46E-16 

Extended Maratos fail fail fail fail fail fail 303 661 -5.00E+03 

Extended Wood WOODS (CUTE) fail fail fail fail fail fail 243 447 1.65E-13 

Extended Hiebert fail fail fail fail fail fail 2001 2097 4.70E-05 

Extended Quadratic Penalty QP2 fail fail fail fail fail fail 53 120 4.15E-14 

ARWHEAD (CUTE) fail fail fail fail fail fail 42 645 0.00E+00 

NONDIA (CUTE) fail fail fail fail fail fail 30 60 1.38E-13 

DQDRTIC (CUTE) 1591 1634 1.17E-13 1598 1641 1.03E-13 206 341 1.53E-13 

Broyden Tridiagonal 1169 1217 8.74E-01 1169 1217 8.74E-01 124 207 3.97E-01 

LIARWHD (CUTE) fail fail fail fail fail fail 59 116 6.83E-19 

DENSCHNA (CUTE) 25 40 2.02E-13 30 48 2.08E-13 16 28 6.66E-16 

DENSCHNC (CUTE) 148 191 7.35E-14 137 179 1.33E-13 35 68 1.86E-14 

Extended Block-Diagonal BD2 142 181 9.80E-14 140 179 1.64E-13 36 72 1.11E-13 

Generalized quartic GQ1 13 32 1.12E-14 13 32 1.37E-14 11 28 4.78E-15 

Generalized quartic GQ2 116 154 1.67E-13 119 158 1.45E-13 48 75 1.60E-13 

FLETCHCR (CUTE) 233 2075 4.96E+01 245 2490 4.96E+01 90 585 4.96E+01 

HIMMELBH (CUTE) 31 183 -5.00E+03 22 46 -5.00E+03 14 130 -5.00E+03 

 

Table (2) shows a comparison between 

standard method (Fletcher and Reeves, Daiand 

Yuan) and modified method with respect to 

(NOI and NOF) for n=10000, The results are 

obtained in modified method are better than 

the results in standard method (Fletcher and 

Reeves, Daiand Yuan). 

 

Table (3) 

Result of PSO with new CG recognized ear 

image of database. 
 

 

Number 

of subject 

No of 

features 

Recognized 

ear image 

Recognition 

rate (%) 

120 6 120 100% 

140 7 140 100% 

 

Table (4) 

Result of PSO with new CG recognized ear 

image of test. 
 

Number of 

subject 

No of 

features 

Recognized 

ear image 

Recognition 

rate (%) 

50 6 33 66 

50 7 35 70 

 

Table (3) show two number of subject 18 

person, Table (3) cluster subject 120(6) is 

shows the (6) features data ear image for 

person and 140(7) shows the (7) features data 

ear image for person. We shows the 

recognized ear image with the recognition  

rate is (100%). While Table (4) explain 

recognized ear image (33) for 50(6) and  

(35) for 50(7) with unrecognized ear image  
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17 and 15 respectively with recognized ear 

rate 66% and 70% respectively. 

PSO based feature selection algorithm 

found to generate excellent recognition result 

with the minimal set of selected features. 

 

9. Conclusion 

PSO is computation paradigm based on the 

idea of collaboration behavior inspired by the 

social behavior of bird flocking or fish 

schooling. Feature selection algorithm is 

utilized to search the feature space for the 

optimal feature subset where features are 

carefully selected to a well defined in terms of 

maximizing the class separation. The 

application of the proposed clustering 

algorithm to the problem of segmentation of 

images is investigated. A clustering algorithm 

with minimal user in deference is developed in 

this work. 

The numerical results of our finding of 

standard method and modified method are 

very encouraging by using the proposed 

algorithm. Through the results and minimum 

errors for the large scale optimization problem. 

These out come of results is to show that 

modified method are more effective than the 

standard method. And the accuracy of the 

modified method gives a good optimization 

problem. 

 

References 

[1] Hestenes, M. R., Stiefel, E.L, “Methods of 

Conjugate gradient for solving linear 

systems”, J. Res. Ntal. Bur. stant., 49, 409-

346, 1952. 

[2] Fletcher, R. and Reeves, C., “Function 

minimization by conjugate gradients”, 

Comput. J., 7, 149-154, 1964. 

[3] Polak, E. and Ribiere, G., “Note sur la 

convergence de directions conjugees”, Rev. 

Francaise Informat Recherche Opertionelle, 

3e Annee 16, 35-43, 1969. 

[4] Polyak, B. T., “The conjugate gradient 

method in extreme problems”, USSR Comp 

Math. Phys., 9, 94-112, 1969. 

[5] Fletcher, R., “Practical Methods of 

Optimization” vol. 1: Unconstrained 

Optimization, John Wiley & Sons, New 

York, 1987. 

 

[6] Liu, Y. and Storey, C., “Efficient 

generalized conjugate gradient algorithms”, 

Part 1: Theory, J. Optim. Theory Appl., 69, 

129-137, 1991.  

[7] Dai, Y. H. and Yuan, Y., “A nonlinear 

conjugate gradient method with a strong 

global convergence property”, SIAM J. 

Optim., 10, 177-182, 1999. 

[8] Wolfe, P., “Convergence conditions for 

ascent methods” I, SIAM Review, 11, 226-

235, 1969. 

[9] Wolfe, P., “Convergence conditions for 

ascent methods” II, Some corrections, 

SIAM Review, 13, 185-188, 1971. 

[10] Omran, M G. H., “Particle Swarm 

Optimization Methods for Pattern 

Recognition and Image Processing” thesis, 

University of Pretoria, 2005. 

[11] Abed, M Ali and Alasadi, H Ali, 

“Simplifying Handwritten Characters 

Recognition Using a Particle Swarm 

Optimization Approach”, european 

academic research, I(1), 2286-4822, 2013. 

[12] Bratton, Daniel and Kennedy, James, 

“Defining a Standard for Particle Swarm 

Optimization”, IEEE Swarm Intelligence 

Symposium, 2007. 

[13] Yabe, Hiroshi and Sakaiwa Naoki,. “A 

New Nonlinear Conjugate Gradient Method 

for Unconstrained Optimization”, Tokyo 

University of Science Hitachi Information 

Systems, 48(4), 284-296, 2005. 

[14] Dai, Y. H. and Liu, G.H., Sun, D.F., Yin, 

X., and Yuan, Y., “Convergence properties 

of nonlinear conjugate gradient thods. 

SIAM J. Optim. 10, 348-358, 1999. 

[15] Glibert, J.C. and Nocedal, J,. “Global 

Convergence Properties of Conjugate 

gradient methods for optimization”, SIAM 

J. optimization, 2(1), 21-42, 1992. 

[16] Kiwiel, K.C., Murty, K., “Convergence of 

the steepest descent method for minimizing 

quasiconvex functions. J. Optim. Theory 

Appl. 89(1), 221-226, 1996  

[17] Andrei, N, “Scaled conjugate gradient 

algorithms for unconstrained optimization” 

Comput. Optim. Appl. 38, 401-416, 2007. 

 

 
 
 



Ban Ahmed Mitras 

147 

 الخلاصة
اشتــــقاق معامل ترافق محسن لطريقة تم في هذا البحث 

المتــــجهات المترافقة. هذا التحسين استخدام توسيع طريقة 
(Dai and Yuan Method الحل مسائل البرمجة غير )

الخطية، كما تم تطبيق خوارزمية الطيور في هذا العمل، 
لتحديد المعاملات باستخدام مميزات التقنيات المحددة. تم 

 (sufficient descent)نــــحدار الكافي الا خاصيةإثبات 
وخاصية التقارب الشامل للخوارزمية المقترحة، تم الحصول 
على نتائج عددية مشجعة جدا لمسائل الأمثلة ذات القياس 

 العالي مقارنة مع الطرق القياسية.
النتائج التجريبية وضحت ان طريقة خوارزمية الطيور 

المميزات المختارة، أخيرا  كانت نتائجها مميزة مع اقل خطأ في
طريقة خوارزمية الطيور المقترحة التي اعتمده التقريبات 

 ومعاملات أداء الطريقة قد قيمت.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


