EFFICIENCY OF PARASITOIDS OF PEA LEAFMINER *PHYTOMYZA HORTICOLA* GOUREAU AND THEIR APPEARANCE TIME IN THE FIELD

*A. F. Mekhilif and **M. S. Abdul-Rassoul

*Department of Biology, College of Education, Mosul University, Mosul

** Iraq Natural History Museum, University of Baghdad, Baghdad, Iraq.

ABSTRACT

Eleven hymenopterous species: two braconids, seven eulophids and two pteromalids parasitized the larvae of *Phytomyza horticola* Goureau. The activity of the parasites began at the end of April and evidently increased during May. The female of the parasites fed and parasitized mostly on the second and third larval instars of *P. horticola*. *Diglyphus iseae* Walker and *Cirrospilus vittatus* Walker were dominant larval parasites. *Chrysocharis pentheus* Walker and *Pediobius acantha* Walker were main pupal parasites.

INTRODUCTION

The pea leafminer *Phytomyza horticola* (Diptera, Agromyzidae) is a polyphagous species (Griffiths, 1976), and it may be of economic importance (Spencer, 1973). In Iraq, more than 40 host plant of this pest have been known, including some crops and ornamental plants (Al-Azawi, 1967 and Mekhlif, 1984).

Female of many hymenopterous parasites kill the host, either by oviposition or feeding on host fluids, since reproduction is impossible without protein in their diet (Bartell and Pass, 1978; Sugimoto et al., 1983). However, the growing emphasis on biological control in pest management, demands a greater knowledge of important parasites (Bartella and Pass, 1978). Takada and Kamijo (1979); Drea et al. (1982) investigated the parasitic complex of *P. horticola* and its effective parasitoids in Japan and Europe respectively. However, in Iraq *P. horticola* was found to have 15 parasites (Al-Azawi, 1967, 1971; Mekhlif, 1984). Therefore, the aim of this work was to know the effective parasitoids and the time of their appearance in Mosul.

MATERIALS AND METHODS

In spring of 1988 and 1989 regular collection of immature stages of *P. horticola* from various host plants were conducted in order to determine its mortality, parasitism and parasites identification. Adult parasites were obtained by caging the host leaves containing immature stage of the pest during April and May. Larval ectoparasites were confirmed through the dissecting microscope. Pupal endoparasite and larva-pupal endoparasite were determined by the scar on the host pupa. The dead larvae due to host-feeding were clear and their contents were extruded by female parasites.

RESULTS AND DISCUSSION

1. Host Mortality

In March, the activity of the parasitoids had not begun, so that, the mortality of immature stages of *P. horticola* were very low. Yet, in April and in the beginning of May, mortality
Parasites of pea leaf miner

started and increased (table 1). This observation was also reported by Mekhilf and Khazraji (1989). Most of the mortalities were due to host-feeding and parasitization. Table 1 also shows that the larval mortality was higher than the pupal mortality. Drea et al., (1982) and Sugimoto, (1979) reported that larval parasites were vary aggressive for some agromyzid leafminers, which one of them P. horticola. Most of larval mortality probably was due to host-feeding of parasites as well as parasitization.

Table 1: Mortality of immature stages of P. horticola in the field.
* Numbers in paranthesis indicate the mortality of larvae or pupae.

<table>
<thead>
<tr>
<th>Date of sampling</th>
<th>No. of hosts examined</th>
<th>No. of dead hosts</th>
<th>Total mortality %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>larvae</td>
<td>pupae</td>
<td>larvae</td>
</tr>
<tr>
<td>1989</td>
<td>18.3</td>
<td>354</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>31.3</td>
<td>369</td>
<td>143</td>
</tr>
<tr>
<td>20.4</td>
<td>294</td>
<td>144</td>
<td>264</td>
</tr>
<tr>
<td>30.4</td>
<td>675</td>
<td>56</td>
<td>596</td>
</tr>
<tr>
<td>7.5</td>
<td>906</td>
<td>21</td>
<td>887</td>
</tr>
<tr>
<td>10.5</td>
<td>218</td>
<td>3</td>
<td>216</td>
</tr>
</tbody>
</table>

2. Selection of the host instar
Female parasites evidently attacked second and third host instar larvae more than the first instar (table 2). Sugimoto (1979) observed that Chrysocharis pentheus experimentally fed on and parasitized second and third instars of runuculus leafminer, P. ranunculii (Schr.) this may be attributed to the parasites in having not enough ability to distinguish first instar larvae insides mines. Table 2 also reveals that the first instar larvae were rarely parasitized, on the other hand nearly half of the second instar larvae were parasitized. Parasites oviposited in most of third instar larvae causing their death. Perhaps the parasites preferred third instar larvae to ensure enough nutrients for their progeny to complete their development.

Table 2: Parasitism of P. horticola in different larval instars.

<table>
<thead>
<tr>
<th>Host instar</th>
<th>No. of hosts found killed</th>
<th>No. of hosts parasitized</th>
<th>Parasitism %</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>II</td>
<td>71</td>
<td>37</td>
<td>52</td>
</tr>
<tr>
<td>III</td>
<td>118</td>
<td>99</td>
<td>83.9</td>
</tr>
</tbody>
</table>

3. Parasitisum mode of dominant parasites
It was found that eulophid parasites D. iseae and C. vittatus completed their life-cycle on the host larvae (table 3) and P. acantha and C. pentheus were pupal endoparasites.

These observation were also reported by Takada and Kamijo (1979), for the same host, and Ibrahim and Madje (1979) for the host P. syngensiae (Hardy). The braconid Opius sp. is larval-pupal endoparasite, which lays its eggs on the host lava, and completes its development up to the adult stage inside the host pupa.

Opius spp. are also found as larval-pupal endoparasites of Liriomyza munda (Frick Hardling, 1965).
Table 3: Parasitizing phase of dominant parasites. Ect., Ectoparasite, End., Endoparasite.

<table>
<thead>
<tr>
<th>Parasites</th>
<th>Developmental stage of host at</th>
<th>Mode of parasitism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oviposition</td>
<td>Emergence</td>
</tr>
<tr>
<td>Diglyphus isaea Walker</td>
<td>Larvae</td>
<td>Larvae</td>
</tr>
<tr>
<td>Cirrospilus vittatus Wlk.</td>
<td>Larvae</td>
<td>Larvae</td>
</tr>
<tr>
<td>Pedioius acantha Wlk.</td>
<td>Pupa</td>
<td>Pupa</td>
</tr>
<tr>
<td>Chrysocharis pentheus Wlk.</td>
<td>Pupa</td>
<td>Pupa</td>
</tr>
<tr>
<td>Opius sp.</td>
<td>Larva</td>
<td>Pupa</td>
</tr>
</tbody>
</table>

4. Effective parasites

In the field, the efficiency of the parasite is mostly depended upon the period of its appearance, the parasite abundance in a given area and the ability of the female parasite to attack various host species, either for feeding or parasitization. Table 4 reveals the field appearance of the eulophid parasites *D. isaea* and *C. vittatus* during April and May and *Opius* sp. during April but was not obtained in May. The parasites *Dacnusa* sp. and *Halticoptera circulus* (Welker) appeared for a short time in samples collected at late April and first third of May. The parasites; _Chrysonotomya formosa_ Westwood, *P. acantha*, *C. pentheus* and _Tetrastichus strobilanea_ were obtained throughout May while *C. formosa* at first week of the same month.

Table 4: Parasitic efficiency of *P. hotricola* during April and May as indicated by parasitism of each parasitoid.

<table>
<thead>
<tr>
<th>Family and species</th>
<th>Braconidae</th>
<th>Eulophidae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dacnusa sp.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Opius sp.</td>
<td>14(8.3)</td>
<td>-</td>
</tr>
<tr>
<td>Chrysocharis pentheus</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chrysonotomya formosa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cirrospilus vittatus</td>
<td>1(0.6)</td>
<td>2(0.2)</td>
</tr>
<tr>
<td>Diglyphus isaea</td>
<td>154(91.1)</td>
<td>817(99.2)</td>
</tr>
<tr>
<td>D. crassinervis</td>
<td>-</td>
<td>1(0.2)</td>
</tr>
<tr>
<td>Pediecius acantha</td>
<td>-</td>
<td>2(0.3)</td>
</tr>
<tr>
<td>Tetrastichus strobilanea</td>
<td>-</td>
<td>1(0.2)</td>
</tr>
<tr>
<td>Pteromalidae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Halticoptera circulus</td>
<td>-</td>
<td>2(0.2)</td>
</tr>
<tr>
<td>Spegigaster sp. nr. orobnchiae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Larvae and pupae of host examined</td>
<td>438</td>
<td>731</td>
</tr>
</tbody>
</table>

According to Drea *et al.*, (1986); Ibrahim and Madje (1979); Takada and Kamijo (1979) *D. isaea* and *C. vittatus* were the main larval ectoparasites of various agromyzid leafminers. The present study confirms this observation, for the parasite *D. isaea*, its percentage to total parasites was more than 98% during April and first week of May, contrary *C. vittatus* rarely reared in some samples at the same time (table 4). The low number of *C. vittatus* may be attributed to competition between the larvae of *D. isaea* and *C. vittatus*. *D. isaea* is a multiple
Parasites of pea leaf miner

As many as four parasites was emerged from one host (Mekhlif, 1984). Table 4 also confirm this observation, thus, at 30th April collection, the number of D. iseae adults were only more than immature stage of the examined host. The main pupal parasites were P. acantha and C. pentheus, parasitizing nearly all the host pupae during the second half of May (table 4) which agrees with Ibrahim and Madje (1979); Kamijo (1978) they recorded that Chrysocharis spp. are main pupal parasites of many leaffminers of Diptera, Lepidoptera and Hymenoptera. The braconid parasite Opius sp. was active only during April (table 4), but latter disappeared. It is probable that the larval ectoparasite D. iseae kills the host and Opius sp. larvae which needs alive host larva to continue its development.

LITERATURE CITED

A.F. Mekhlif & M. S. Abdul- Rassoul

Parasites of pea leaf miner

دقيقًا فهمه نخيل ورَباه ورائع ليلام مملوء

فهد ابن الله فهد

متحف التاريخ الطبيعي
قسم علوم الحياة، كلية التربية
جامعة بغداد

الخلاصة

لوحظ نشاط أحد عشر طفيليًا من رتبة غشائية الأجنحة، تقضي على الأطوار غير الكاملة
للفحور النسيج البازلاء، *Phytomyza horticola*، بدأ نشاط الطفليات في نهاية نيسان ويرتد بشكل
واضح خلال مناسبة غالية ما تعذى إناث الطفليات وتتقلد على البرتقال وهي في الطرفين
الثاني والثالث، أكثر الطفليات البرقية فعالية *Cirrospilus vittatus* و *Diglyphus isaea*
الطفليات التي تحمي العدائي *Pediobius acantha* و *Chrysocharis pentheus*.