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Abstract Abstract 
Researches available in literature interrelating neural networks to civil engineering design problems, 
especially for beep beams, are very rare. Therefore, an optimization algorithm is developed and verified in 
this study and coded using MATLAB functions to determine the optimum cost design of reinforced 
concrete deep beams. ACI 318-14 code method is used benefiting from iterative particle swarm 
optimization technique due to its efficiency and reliability. Minimizing total cost is used as the objective 
function in terms of four decision variables. Self-adaptive penalty function technique is used to handle 
constraints for each of the 300 randomly selected particles, and in each of the 50 total iterations followed 
for each one of four suggested deep beam design case studies. Performing all iterations is used as a 
stopping criteria for the developed algorithm. Comparative studies are made to show the effect of 
concrete compressive strength, live load scheme, and length of deep beam, on the optimum total cost 
and the corresponding decision variables. Results presented in the form of graphs and tables show that 
the loading condition has a significant effect on the total cost of deep beams. The cost increase is 
accompanied by deep beam length increase, height increase, longitudinal reinforcement area increase 
and vertical shear reinforcement area decrease. The calculated optimum cost is noticed for beam DB1, 

which is 1255 US$, with 1.29 m beam height, 0.01445 m2 vertical shear reinforcement, 0.00914 m2 

horizontal shear reinforcement and 0.00238 m2 main longitudinal reinforcement. The results show a 
relatively less difference in total cost between all the four beams at 4 m length compared to 8 m length. 
Also, a relatively mild increase in total cost is happened for beams DB3 and DB4 as the height increases, 
especially above 1.7 m height. As the main longitudinal reinforcement increases, cost of DB4 is affected 
more significantly than others, and as the vertical shear reinforcement increases, DB4 curve shows a 
relatively low degradation in cost. 
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1. Introduction

The traditional design procedure of deep beams is
an iterative process, and the designer's experience,
sense, and skill play important roles in getting a
compatible, rigid, and safe design [1]. This process is
continued then terminated, only, when a design state
that satisfies accepted criteria is reached. In most
design cases, cross-sectional dimensions and material
grades are first adopted based on common experience
or practice, with the remaining challenge to design
efficient and cost-effective structures without losing
system integrity [2]. Therefore, design via optimization
is another and more systematic method [3], which
proceeds by analyzing a trial design to determine if it is
the “best” or not. For the case of deep beams, best
means the most efficient, reliable, durable, and cost-
effective design state [4]. The designer needs to
formulate the optimized design problem by defining a
set of decision (design) variables, an objective function
and constraint functions [5]. Particle Swarm Optimi-
zation (PSO) is a heuristic global neural network
optimization method put forward originally in 1995
[6]. PSO can be applied easily and efficiently to solve
complex design problems involving various objective
functions [7e11].

The behavior of the biological bacterial colony is
studied using the PSO algorithm [11]. Variation in
the component of the bacteria algorithm is compared
using the hybridization of an evolutionary algorithm.
Applications of the bacteria algorithm are analyzed
in various domains to show its response reality. The
PSO algorithm was proposed [12] to solve problems
of safety and real-time responses of intelligent ve-
hicles. The objective function is defined concerning
the intelligent vehicles driving characteristics, the
distance between intelligent vehicles and obstacles
and distance of intelligent vehicles and targets. The
simultaneous results showed that the PSO method
improved the perturbations of the vehicle planning
path and real-time and reliability. An investigation
using PSO algorithm is made for the tuning problem
of digital proportional-integral-derivative (PID) pa-
rameters for a DC motor controlled via the controller
area network (CAN) [13]. A sufficient condition is
adopted to guarantee the stability of the time-vary-
ing delay system. An optimization method based
on the particle swarm optimization (PSO) algorithm
and the linear-quadratic-regulator (LQR) technique
is proposed and verified. An optimal privacy pre-
serving clustering on homomorphically encrypted
data using K-means clustering and PSO algorithm

List of symbols and abbreviations

As Main longitudinal reinforcement area (m2)
Av Vertical shear reinforcement area (m2)
Avh Horizontal shear reinforcement area (m2)
b Deep beam width (m)
c Depth of neutral axis (m)
Cc Cost of concrete ($)
Cf Cost of framework ($)
Cs Cost of steel reinforcement ($)
CT Total deep beam cost ($)
Cc
1 Plain concrete cost per unit volume ($/m3)

Cf
1 Framework cost per unit area ($/m2)

Cs
1 Longitudinal steel bar cost per unit mass ($/kg)

Cs
2 Shear stirrups cost per unit mass ($/kg)

d Depth of bottom reinforcement (m)
d(x) Distance value for a particle in the swarm
Ec Concrete elastic modulus (MPa)
Es Steel elastic modulus (MPa)
F Objective function
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fy Yield strength of flexural bars (MPa)
fys Yield strength of shear bars (MPa)
f ‘c Concrete compressive strength at 28 days (MPa)
gbest

Global particle best position
h

Deep beam height (m)
i Current particle
iw Individuality constant
Icr Cracked moment of inertia (m4)
Ie Effective moment of inertia (m4)
Ig Gross moment of inertia (m4)
jd Lever arm (m)
lbest Particle best position in the neighbors
L Overall length of deep beam (m)
Ln Clear span of deep beam (m)
Mcr Cracking moment (kN.m)
Mu Ultimate moment (kN.m)
n Modular ratio
pbest Particle's best position visited ever
p(x) Penalty value for a particle in the swarm
PSO Particle Swarm Optimization
Pu Ultimate concentrated load (kN)
sh Spacing of horizontal shear reinforcement (m)
sv Spacing of vertical stirrups (m)
sw Sociality weight
t Iteration or time step
U Random number between [0,1]
Vc Concrete shear capacity (kN)
Vs Stirrup shear capacity (kN)
Vu Ultimate shear capacity (kN)
Vij Particles velocity in the swarm
w Inertia weight
wDL Dead load (kN/m)
wLL Live load (kN/m)
ws Unit weight of longitudinal steel bar (kg/m3)
wv Unit weight of shear stirrups (kg/m3)
wSDL Superimposed load (kN/m)
wu Ultimate load (kN/m)
x,y Decision variables
Di Immediate mid-span deflection (m)
(Di)DL Immediate dead load deflection (m)
(Di)LL Immediate live load deflection (m)
DLT Long term deflection (m)
r Longitudinal steel ratio
F Material reduction factor
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is proposed [14]. Experimental analysis carried
out on standard datasets show reduced quantization
error while preserving the privacy of the original
dataset.

The PSO algorithm was, also, used to optimize the
cost of one-way concrete slabs [15] according to ACI
318-08 code. The objective was to minimize the total
cost of four different slabs while satisfying all the
design requirements using a multi-stage dynamic
penalty implementation to solve the constrained
design problem. A procedure was presented for the
section design of FRP-reinforced concrete beams
following the recommendations of ACI 440.1 R-06
using the PSO algorithm [16]. A rectangular cross-
section beam was considered with two design vari-
ables, which are the width and height of the beam, as
well as the number and diameter of reinforcing bars.
A single objective cost optimization algorithm was
presented in Ref. [17] for pre-stressed beams using a
special differential evolutionary technique following
the European building code. A hybrid PSO and Ge-
netic algorithm were developed in Ref. [18] to solve
force method-based simultaneous analysis and design
problems for frame structures. In that work, compar-
isons were made for some design problems to
demonstrate the algorithm's efficiency and superiority,
especially for structures with a large number of
redundant forces.

The conventional design of reinforced concrete
deep beams leads to safe designs, but the economy of
the design is very much linked to experience of the
structural designer. Scarcity and the need for efficiency
in today's competitive world have forced engineers to
evince greater interest in economical and optimized
designs by recommending the use of nowadays tech-
niques and algorithms. In contrast, up to the knowledge
of the present authors, researches available in the
literature interrelating neural network optimizations
algorithms to civil engineering design problems,
especially for beep beams, are very rare. Therefore, it
seems to be important to develop an algorithm like
PSO which can efficiently and optimally solve various
reinforced concrete deep beam design problems. Such
an algorithm should produce the most cost-efficient
design state that satisfies all the intended serviceability
and safety conditions.

2. Design of deep beam sections

A procedure is developed, based on the ACI code
provisions [19], and followed here to design deep beams

for shear under uniformly distributed and concentrated
loads with simply supported beam conditions. Tradi-
tionally, when a reinforced concrete deep beam philos-
ophy is followed, the cross-sectional dimensions are
initially estimated according to a standard ratio between
overall depth of the beam, h, and the clear span between
its supports’ faces Ln, where Ln/h � 4. The uniformly
distributed dead load wDL can be computed as the
superimposed dead load wSDL plus the self-weight of the
beam. The factored (ultimate) uniformly distributed
load wu can then be computed as the combination of the
uniformly distributed dead and live loads. Also, the ul-
timate moment, Mu, due to both the distributed, wu, and
concentrated, Pu, ultimate loads can be calculated ac-
cording to the boundary conditions for the simply sup-
ported deep beam and the distance between supports L
(center-to-center). The critical section recommended to
calculate the ultimate shear Vu is at a distance of 0.5h
from the face of support, where h is the overall depth of
the beam. The ultimate shear force due to wu and Pu is:

Vu¼wu L

2
þPu

2
�wuð0:5 hÞ ð1Þ

The ACI code recommends a shear limit which
imposes a dimensional restriction to control cracking
under service loads and to guard against diagonal
compression failure in deep beams. If this limit is
exceeded, an enlargement of the section is needed. In
the current algorithm, the width of deep beam b is
given and the enlargement is available only in beam
depth h. Because of the fact that the ACI code [19]
does not specify a simplified procedure for flexural
analysis and design for deep beams, which follows
rigorous nonlinear approach, therefore, simplified
provisions are presented depending on the recom-
mendations of CEB “Comit�e Europ�een de B�eton” [20]
and the flexural reinforcement area As can be calcu-
lated from applied ultimate moment Mu, yield strength
of the flexural bars fy, moment lever arm jd and a
material reduction factor F;

As¼ Mu

F fy jd
ð2Þ

knowing that As must not be less than the minimum
flexural reinforcement area specified in CEB [20].
The least of the following expressions is recommended
to calculate shear strength capacity Vc of the concrete
section for deep beams from longitudinal reinforce-
ment steel ratio r, concrete compressive strength at
28 days f 'c and effective depth of bottom reinforcement
d [19];
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Vc¼
�
0:16

ffiffiffiffi
f 0c

q
þ17r

Vu d

Mu

�
b d ð3Þ

Vc¼
�
0:16

ffiffiffiffi
f 0c

q
þ17r

�
b d ð4Þ

Vc¼2
ffiffiffiffi
f 0c

q
b d ð5Þ

The requirements for deep beams stay that no
shear reinforcement is needed if the ultimate shear
force (Vu) is less than 0.5FVc [19], where F is a
material reduction factor taken as 0.85. However, for
practical reasons, minimum horizontal and vertical
shear reinforcements must be provided. If the ulti-
mate shear force is more than 0.5FVc, then a shear
reinforcement is required for the deep beam, and the
shear carried by the stirrups, Vs, can be calculated.
The ACI code methodology for calculating the
required vertical and horizontal stirrups is followed
by assuming initial values for the shear steel areas in
both directions and increasing either one or both of
them until the following basic design inequality is
satisfied:

Vs�Av fys d

sv
þAvh fys d

sh
ð6Þ

where fys is the yield strength of shear bars, Av and Avh are
vertical and horizontal shear reinforcement areas, respec-
tively, and sv, and sh are spacing values of the distributed
vertical and horizontal shear reinforcements, respectively.
Assuming that the applied moment exceeds the cracking
moment and the occurred cracks will cause a reduction in
stiffness, the cracked section moment of inertia Icr is:

Icr ¼ bc3

3
þ n Asðd� cÞ2 þ n Avh

�
h

2
� c

�2

ð7Þ

where n is the modular ratio, and c represents the depth
from the top beam face to the neutral axis, which is
found by solving a quadratic formula representing
moments of areas about the neutral axis;

n Asðd� cÞþn Avh

�
h

2
� c

�
¼b c

c

2
ð8Þ

The effective moment of inertia, Ie, depends on the
magnitude of the applied ultimate moment, Mu, and the

START

Set initial values for the constants related to beam geometry and material properties

Generate random feasible solutions matrix for velocity and position

For the current iteration and current particle, set values of h, Av, Avh and As

Calculate constraint functions and objective function

Handling constraints to get a new objective function

Is objective function is better than pbest ? Leave pbest as it is

Set the current objective function as the new pbest

Choose the best objective function (gbest) among all the particles

For each particle, update velocity and position

END

Yes
No

Does the current iteration represent the final one?

Yes

No

Fig. 1. Flowchart of the optimization process.
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cracking moment, Mcr, according to the following
equation:

Ie ¼
�

Mcr

Mu

�3

Ig þ
�
1�

�
Mcr

Mu

�3�
Icr ð9Þ

where Ig is gross moment of inertia of the section. The
immediate mid-span deflection due to dead and live
loads is computed using the concrete elastic modulus,
Ec, as in the following elastic formula:

Di¼ 5 wu L4

384 Ec Ie
þ Pu L3

48 Ec Ie
ð10Þ

According to ACI code limitations, the immediate
deflection should not exceeds L/360. For long term de-
flections, separation should be made between immediate
dead load deflection (Di)DL and immediate live load
deflection (Di)LL causedby the dead,wDL, and the live,wLL,
loads using a weighted average formula, as follows:

ðDiÞDL¼
WDL

wDL þ wLL

:Di ð11Þ

ðDiÞLL¼
WLL

wDL þ wLL

:Di ð12Þ

Finally, the long term deflection is calculated as
follows:

DLT ¼ðDiÞLL þ 0:6 x ½ðDiÞDLþð%ÞðDiÞLL� ð13Þ

where (%) represents the percentage of the live load that
can be considered sustained (typically set to 20%), and
x ¼ 2 for more than 5 years noting that ACI code rec-
ommends a value not exceeding L/480 for the long term
deflection.

3. Particle swarm optimization algorithm

PSO is an iterative technique, where the potential so-
lution called particles fly through the problem space by
following the current optimum particles. Each particle
keeps track of its coordinates in the problem space which
are associated with the best solution achieved so far [6].
To remember the previous experience, each particle has a
separate area of memory to store the best position visited
in the search space. This value is called as pbest. Another
best value that is tracked by the particle swarm optimizer
is the best value obtained so far by any particle in the
neighborhood of the particle, which is called lbest. When
a particle takes all the population as its topological
neighbors, the best value is a global best and is called as
gbest. The particle swarm optimization concept consists
of, at each time step, changing the velocity of each

particle toward its pbest and gbest. After finding the best
values, each particle updates its velocity and position
according to the following equations:

V
ðtÞ
ij ¼ wðtÞ�V ðt�1Þ

ij þ iwðtÞ�Uð0;1Þ�ðpbestðt�1Þ
ij �X

ðt�1Þ
ij Þ

þ swðtÞ�Uð0;1Þ�ðgbestðt�1Þ
j �X

ðt�1Þ
ij Þ

ð14Þ

X
ðtÞ
ij ¼ X

ðt�1Þ
ij þV

ðtÞ
ij ð15Þ

where;
Xij
(t): the jth component of the position of particle i at

iteration or time step t,
Vij
(t): the jth component of the velocity of particle i at

time step t,
w(t), iw(t), sw(t): inertia, individuality and sociality

weights, respectively, at time step t,
U(0,1): random number generated from a uniform

distribution in the range [0,1],
pbestij

(t�1), gbestj
(t�1): coordinate j of the best posi-

tion found by particle i and by the whole swarm,
respectively, up to time step t-1.

An annealing algorithm is used [21] to determine
the value of w(t). A stopping criterion, represented by
the maximum number of iterations, is used as a con-
dition for the termination of the search process. The
overall optimization PSO process followed in this
study is abbreviated in Fig. 1.

4. Constraints handling technique

In realistic optimization problems, there are certain
constraints imposed on the decision variables, this
type is called a constrained optimization problem
[21]. An excellent survey for the different constraints
handling techniques is presented in Ref. [22]. In most
of these techniques, the analyst resorts to converting
the main objective function with its constraints to one
or more unconstrained optimization problems [23]. In
any constrained optimization problem, the search
space can be divided into feasible and infeasible
points or regions. At feasible points, all the con-
straints are met, while at infeasible points, at least one
constraint is violated. The most common approach in
this field is the use of the so-called “Penalty Function”
approach which was originally proposed in 1943 by
Courant [24]. The idea of this method is to transform
a constrained optimization problem into uncon-
strained penalized one by adding or a certain value to
the original objective function or subtracting another
value from it, based on the amount of constraint
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violation present in a certain solution. In the litera-
ture, results obtained using dynamic penalty functions
are always superior when compared to those obtained
using static penalty functions [7,25]. One of the
recently introduced dynamic penalty functions is the
“Self-Adaptive Penalty Function” [26,27], where a
new penalized objective function for the infeasible
individuals can be calculated according to the
following equation:

Fð x!Þ¼dð x!Þþ pð x!Þ ð16Þ

where dð x!Þ and pð x!Þ are distance and penalty values
for each individual, respectively. The first part ðdð x!ÞÞ.
ðdð x!ÞÞ can be calculated in terms of the normalized
constraint violation and the normalized objective
function, while the second part represents a two-part
penalty function added to the distance function. In this
algorithm, besides the exact definition and formulation

Fig. 2. Particles' search for the optimum solution at different iterations for the Booth test function.

Table 1

Specifications and calculated results for verification the beam SRCDB.

f ’c fy fys Es h L Ln Pu Result in Ref. [31] Calculated Result Difference

MPa MPa MPa GPa m M m kN Av (m̂2) Ah (m̂2) Av (m̂2) Ah (m̂2) Av Ah

55 500 500 200 0.4 1.8 1.6 450 0.00157 0.00262 0.00135 0.00310 14% 18%

Fig. 3. Particles' search for the optimum solution at different iterations for verification beam SRCDB.

Table 2

Common parameters for the optimized deep beams.

Parameter C1
s C2

s C1
f ws wv L Ln b fy fys wSDL

$/kg $/kg $/m2 kg/m3 kg/m3 m m m MPa MPa kN/m

All the four beams 1.0 1.0 50 7850 7850 5 4.6 0.4 480 380 60
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of the deep beam design problem, the compatibility and
agreement of constraints with the real problem are
critical since otherwise, the solution might be

infeasible. Thus, the problem needs to be reduced to a
function of the design variables which has to be opti-
mized, plus a number of constraints that limit the
feasible region of the search space. In summary, a well-
posed optimization problem requires a good definition
of the objective function, the search space and the
constraints that define the feasible part of the search
space.

5. Optimum cost design of deep beams

Design guidelines for the different concrete struc-
tures including deep beams, available in all the codes
and most of the literature recommendations, are con-
cerned with the satisfaction of many strength and
serviceability constraints. Among the infinite design
cases which may meet those requirements, it is worth-
while seeking the designs that result in the minimal cost
of the structure [28,29]. It is always possible to construct
a computer program to design reinforced concrete deep
beams according to the standard procedure detailed in
the literature so that numerous design states can be

Table 3

Different parameters for the optimized deep beams.

Beam wLL Pu f ’c C1
c

kN/m kN MPa $/m3

DB1 0 0 25 100

DB2 0 0 50 140

DB3 50 0 25 100

DB4 0 80 25 100

Table 4

Optimum cost and the corresponding decision variables for the opti-

mized beams.

Beam Optimum cost h Av Avh As

US$ m m2 m2 m2

DB1 1255 1.29 0.01445 0.00914 0.00238

DB2 1380 1.25 0.01358 0.00782 0.00377

DB3 1641 1.49 0.01972 0.01089 0.00394

DB4 1602 1.45 0.01633 0.00819 0.00527

Fig. 4. Particles' search for the optimum solution at different iterations for beam DB1.
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examined and the case corresponding to the minimum
cost is chosen. However, every run of the program gives
a different and independent design state, thus neglecting
useful information gained from previous experiences. In
addition, this procedure is bound to be tedious and time-
consuming. Therefore, the importance of developing an
algorithm to design a least-cost reinforced concrete deep
beam, subject to strength and serviceability constraints,
is higher than ever taking into consideration that such an
algorithm is not yet available in the literature. The
present authors undertake the work of developing this
needed algorithm in this paper. The problem is repre-
sented by developing an objective function to compute
the cost of a deep beam, which is, then minimized to get
the optimal design including section dimensions and
reinforcements represented by four decision variables
(deep beam height h, vertical shear reinforcement area
Av, horizontal shear reinforcement area Avh and main
longitudinal reinforcement area As). In a reinforced
concrete deep beam design, at least three different cost
items should be considered in optimization: cost of the
concrete, Cc, cost of the steel, Cs, and cost of the

framework, Cf. The total cost function CT, which
implicitly includes the cost of materials, labor, and
transportation, can be defined as:

CT ¼Cc þCs þCf ð17Þ

The concrete cost, Cc, per deep beam can be
calculated by the equation:

Cc¼L b h C1
c ð18Þ

where L, b, h, and C1
c are the length, the width, the

height of the deep beam, and the plain concrete cost per
unit volume, respectively. The steel reinforcement cost,
Cs, per deep beam is computed from the sum of the
costs of the main and shear reinforcements, as follows:

Cs¼ ws L As C
1
s

þC2
s wv ½Avð2hþ2bþ0:1ÞþAvhð2bþ2Lþ0:1Þ�

ð19Þ

where C1
s ; C

2
s ; ws; and wv are costs of longitudinal

steel bars per unit weight, cost of shear stirrups per
unit weight, unit weight of longitudinal steel bars and

Fig. 5. Optimum total cost versus deep beam length, height, vertical shear reinforcement, and longitudinal reinforcement, for the four case

studies.

262 Q.F. Hasan et al. / Karbala International Journal of Modern Science 5 (2019) 255e265

mailto:Image of Fig. 5|tif


unit weight of shear stirrups, respectively. The
framework cost Cf per deep beam can be calculated
according to the cost of framework per unit area C1

f by
the equation:

Cf ¼C1
f L*ðbþ2hÞ ð20Þ

6. Results and discussion

6.1. Algorithm verification

In order to check the validity and efficiency of the
proposed algorithm and the corresponding MATLAB
code, the convergence aspect of the proposed algorithm
is illustrated in a well-known optimization test problem
named “Booth Test Function” [30]. This test problem
uses the minimization of the objective function:

Fðx;yÞ¼ðxþ 2y� 7Þ2 þ ð2xþ y� 5Þ2 ð21Þ

where; x and y are the decision variables. The standard
answer for this test problems gives x¼ 1 and y¼ 3. The
solution was calculated by the current algorithm, using
an input data set of 40 particles operating through 100
iterations. The progressive convergence illustrated in
Fig. 2 shows a perfect agreement with the standard
answer available in the literature.

Another verification is made through testing a
reinforced concrete deep beam test problem named
SRCDB [31], which is within the scope of the present
work and designed in the original work [31] using the
automated finite elements cost optimization method
with two decision variables (vertical and horizontal
reinforcements). The beam is a simply supported one
under four points loading designed to withstand a
total static load, Pu, of 450 kN, as given in Table 1.
The Convergence of the calculated results from 180
particles for 100 iterations, shown in Fig. 3 and pre-
sented in Table 1, indicates the reliability of the
current algorithm in searching for the optimized
design state that agrees well with that given in the
literature, where the difference in the calculated ver-
tical and horizontal reinforcement areas is ranging
between 14% and 18%. This means that the present
PSO algorithm and the MATLAB code give a realistic
determination of the optimized design of reinforced
concrete deep beams.

6.2. Deep beam case studies

In this work, a particle swarm optimization algorithm
for the design of reinforced concrete deep beams is
developed, coded using MATLAB functions, verified

and used to work out the designs of four simply sup-
ported beam case studies. These optimized beams are
divided into two groups. The first group consists of two
deep beams DB1 and DB2, which have the same loading
conditions and data given in Table 2. The comparative
variable for these two beams is the concrete compressive
strength f 'c and subsequently its cost, as given in Table
3. The beam DB1 has an f 'c of 25 MPa while DB2 has
an f 'c of 50 MPa. The second group consists of two deep
beams also, DB3 and DB4, which have the same f 'c of
25 MPa and the same data given in Table 2, but the
difference is in the applied loading conditions. The beam
DB3 has a uniformly distributed ultimate live load of
50 kN/m, while DB4 has a concentrated ultimate live
load of 80 kN at the beam center, as shown in Table 3.
Minimizing the total cost function for each of the four
deep beams gives optimized values of the four design
variables (h, Av, Avh and As), taking into consideration
code specifications and limitations. A total swarm size of
300 particles with 50 total number of iterations, are used
for each case study. Performing all iterations is used as a
stopping criterion for the developed algorithm. The po-
sitions of those 300 particles at six selected iterations
(5th, 10th, 15th, 20th, 25th, and 35th iterations) for DB1
is shown in Fig. 4 for the search space of two decision
variables (h versus Av). This figure verifies the developed
algorithm by showing the swarm philosophy in the
progressive searching for the optimum objective function
represented in minimizing the total cost of the designed
deep beam. The 35th iteration shows that most of the
individuals reach a stable optimum solution, where the
cost of the deep beam is about 1250 US$, giving h about
1.27 m and Av about 0.014 m2.

Summarized average results, for running the
developed MATLAB code 10 times for each one of the
four case studies, are shown in Table 4. Testing beam
DB1, which is assumed to have no acting live loads
and an f 'c of 25 MPa, as shown in Table 3, gives 1255
US$ optimum total cost. Testing beam DB2, which is
assumed, also, to has no acting live loads but with an f
'c of 50 MPa, gives 1380 US$ optimum total cost
which is about 10% more than that for DB1. This
difference is due to the increment in concrete cost
implied by the strength increment, while the h value
for DB2 is 1.25 m which is about 3% less than that of
the DB1 beam which was 1.29 m. Testing beam DB3,
which is assumed to have 50 kN/m uniformly distrib-
uted ultimate live load gives a noticeably higher total
cost of 1641 US$ compared to all the other cases
including beam DB4 which is assumed to have an
80 kN concentrated ultimate acting live load at the
mid-span corresponding to a total cost of 1602 US$.
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Therefore, the loading condition seems to be a signif-
icant factor in the optimal cost calculations of deep
beams.

The optimum total cost versus deep beam length
curves for the four case studies are shown in Fig. 5a.
These curves show that as the deep beam length in-
creases the corresponding optimal total cost increases.
It also shows a relatively less difference in total cost
between the four case studies at 4 m beam length
compared to that at 8 m beam length. Total optimal
cost versus deep beam height curves, shown in Fig. 5b,
also show a direct relationship for all the case studies.
They show a relatively mild increase in total cost for
both DB3 and DB4 as the beam height increases,
especially above 1.7 m height. Total optimal cost
versus vertical shear reinforcement curves, shown in
Fig. 5c, show that as the vertical shear reinforcement
decreases, which corresponds to the height increase,
the total cost increases. This is due to the fact that as
the height increases, the shear strength contribution by
concrete section increases at the expense of vertical
shear reinforcement. The DB4 curve shows a relatively
low degradation in total cost, represented in its mild
response, as the vertical shear reinforcement increases.
The increments in optimal total cost as the main lon-
gitudinal reinforcement increases are shown by the
curves in Fig. 5d. The cost corresponding to beam
DB4 is affected more significantly than others, as
represented by the steep curve, while the cost corre-
sponding to beam DB1 is affected to the lesser extent
as illustrated by the shallow curve.

7. Conclusions and recommendations

A PSO algorithm implemented through a MATLAB
code is presented in the present work to design cost-
effective reinforced concrete deep beams that satisfy
all serviceability and safety conditions with four de-
cision variables. Results gained from the verification
and the four deep beam case studies indicate that the
algorithm can perform well in optimal cost deep beam
design. A comparative study is made for two different
concrete compressive strengths and their correspond-
ing costs. Another comparative study is made for two
different live load conditions to show the effect of
these parameters on the optimized total cost function.
It is concluded that the loading condition has a sig-
nificant effect on the cost of deep beams, and as
the length increases, total cost, beam height and lon-
gitudinal reinforcement area also increase, but the
vertical shear reinforcement area decreases. This

decrease is due to the increase in concrete section
contribution in resisting shear due to the increase in
deep beam height. As future works, extending this
study to a multi-objective PSO algorithm, optimizing
deep beams using a strut and tie model and including
modern strengthening techniques of deep beams, are
suggested.
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