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ABSTRACT

In this study, to minimize a function of two cost criteria for scheduling n jobs
on a single machine , the problem is discussed :

“ Minimizing a function of total square completion time and maximum tardiness

simultaneously”.

For this problem we proposed some algorithms to find exact(optimal) solution
for hierarchical case and efficient (pareto optimal) solutions for simultaneous case,
Also we proposed branch and bound algorithm to find exact solution for sum of
total square completion time and maximum tardiness, and present algorithm B to
find exact solution in a fast way with respect to (BAB) method. We present
computational experience for the (BAB) method and algorithm(B) on a large set of
test problems.

INTRODUCTION

It is well known that the optimal solution of single objective
models can be quite different if the objective is different (for instance,
for the simplest model of one machine, without any additional
constraint, the rule SPT is optimal to minimize flow time but the rule
EDD is optimal to minimize the maximal tardiness T ax).

In fact, often each particular decision maker wants to minimize a
given criterion.

Recently, research on more than one criterion scheduling
has increased. Since real life scheduling problems may require the
decision maker to consider a number of criteria before arriving at any
decision. Nagar et al. (20) in their detailed literature survey of multiple
and bi-criteria problems in scheduling point out the importance of this
subject.

Because, the one-machine problem provides a useful laboratory
for the development of ideas for heuristics and interactive procedure
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that may prove to be useful in more general models. We consider the
one-machine case in this study.
Multi-Criteria Scheduling:

In general, multiple-criteria scheduling refers to the scheduling
problem in which the advantages of a particular schedule are evaluated
using more than one performance criterion. The managerial relevance of
considering multiple criteria for scheduling has been cited in the
production and operations management literature since the 1950’s.
Smith (1956)(22) shows that the choice of a criterion will affect the
characteristics of a “best schedule”; different optimizing criteria will
result in very different schedules. Van Wassenhove and Gelders
(1980)[25] and provide evidence that a schedule that performs well
using a certain criterion might yield a poor result using other criteria.
Hence, lack of consideration of various criteria may lead to solutions
that are very difficult to implement in practice. Although the importance
of multi-criteria scheduling has been recognized for many years (
French, 1982(7); Nelson et al., 1986(21); George S., and Paul S.
2007(8), little attention has been given in the literature to this topic.
From the problem complexity perspective, the multiple-criteria problem
becomes much more complex than related single-criteria counterparts (
Lenstra et al., 1975(18) Nagar et al. (1995)(20) reviews the problem in
its general form whereas Lee and Vairaktarakis (1993)(16) review a
special version of the problem, where one criterion is set to its best
possible value and the other criterion is tried to be optimized under this
restriction. Hoogeveen (2005)(11) studies a number of bi-criteria
scheduling problems.Also, there are some papers about this object
(Cheng et al. 2008(5), and Azizoglu et al. 2003 (1).

Approaches for Multi-Criteria Problems:

In literature there are two approaches for the bi-criteria problems:
the hierarchical approach and the simultaneous approach. In the
hierarchical approach, one of the two criteria is considered as the
primary criterion and the other one is considered as the secondary
criterion. The problem is to minimize the primary criterion while
breaking ties in favor of the schedule that has the minimum secondary
criterion value. The studies by Chang P. and Su L.(2001)(3) and Chen
W., et al.(1997)(4) are examples of hierarchical minimization problems
with earliness and tardiness costs. The computational complexity
results in hierarchical minimization are reviewed in Lee and
Vairaktarakis (1993)(17). In the simultaneous approach there are two
types ,the first one typically generates all efficient schedules and
selects the one that yields the best composite objective function value
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of the two criteria .The second is to find sum of these objectives
.Several scheduling problems considering the simultaneous
minimization of various forms of earliness and tardiness costs have
been studied in the literature (see, e.g. Hoogeveen, (1995)(12);
Moslehi, et al. (2005)(19) ) .

Basic definitions:

Definition(1):(14) The term “optimize” in a multi-objective
decision making problem refers to a solution around which there is no
way of improving any objective without worsening at least one other
objective.

Definition(2) (14) Suppose we have a problem P ,any schedule

S € 0 (where 0 is the set of all schedules ) is said to be feasible if it
satisfies the constraints of the problem P.

Definition(3): (1). A schedule S is said to be efficient if there

does not exist another schedule 5’satisfying fi(S’ )< AilS) |, i=1,...k
with at least one of the above holding as a strict inequality. Otherwise S
is said to be dominated by §'.

Definition(4): (20) A measure of performance is said to be
regular if it is a non-decreasing function of job completion times and
the scheduling objective is to minimize the performance measure.

Examples of regular measures are job flowtime (F), schedule
makespan (Cax) and tardiness based performance measures.

Definition (5): (11) The function F(f,g) is said to be non-decreasing
in both argument ,if for any pair of outcome value (x,y) of the functions
fand g ,we have F(x,y)< F(x+A,y+B) for each pair of non-negative
value A and B.

Theorem (1): (11) If the composite objective function F(f,g) is

non-decreasing in both argument ,then there exists a pareto optimal
schedule that minimize F.m

Basic Scheduling Concepts
We start with introducing some important notation where we

concentrate on the performance criteria with out elaborating on the
machine environment etc. We assume that there are n jobs, which we
denoted by ji,...,jn these jobs are to be scheduled on a set of machines
that are continuously available from time zero on words and that can
handle only one job at a time .

In this paper, we only state here the notation that is used for single
machine , jobs Ji(i=1,...,n) has:
N: set of jobs.
n: The number of jobs in a known sequence.
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P; : which means that it has to processed for a period of length p; .

d;: a due date ,the date when the jobs should ideally be completed , the
completion of job after its due date is allowed ,but a penalty is incurred .
When the due date absolutely must be met , it is referred to as deadline

d, and when due date is constant for all jobs ,then called common due
date.

The completion time C;

The lateness L;=C; -d;

The tardiness T;=max{ 0, C;-d;}
For a given schedule 6 we compute.
e Cia(c) =max;(C))

* Lpa(c)=maxj(Ly)

® Tha(o)=max;(T))

Fundamental Results and Algorithms:
Theorem (2)(Smith_1956)(22). The 1// ZC; problem is minimized by
sequencing the jobs according to the shortest —processing-time (SPT)
rule, thatis, in order of non-decreasing p;.m
Theorem(3)(Jackson 1955)(13). The 1/ / Ly problem is minimized by
sequencing the jobs according to the earliest-due- date (EDD) rule, that
IS, in order of non-decreasing d;.m
Theorem(4)(Lawler 1973)(16).The 1//f . problem, f... IS minimized
as follows: while there are unassigned jobs, assign the job that has
minimum cost when scheduled in the last unassigned position in that
position.m
Hoogeveen and Van de Velde (12) provide a generalization to the case
that the two criteria are Y C; and fp. where fo. is regular cost
function.
Van Wassenhove and Gelder (24)propose a pseudo-polynomial
algorithm for finding all efficient schedules with respect to Y Cj and Lax
.Their algorithm searches all possible L.« values .Since a given L

value imposes job dead line ¢ ,the algorithm of Smith (21) is used to

solve the corresponding 1/ />.C; problem.

The Problem Classification:

In this paper, we adopt the terminology of Graham ,Lawler ,and
Rinnooy Kan (1979) [9] to classify scheduling problems.

Suppose that m machines M; (i=1,...,m) have to process n jobs J;
(j=1,..n) - A schedule problem type can be specified using a three-field
classification o/f/y composed of the machine environment, the job
characteristics, and the optimality criterion .
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Minimizing Total Square Completion Time
This section deals with the Quadratic problem of scheduling jobs
on a single machine such that the sum of the square of the weighted

completion times of jobs is minimized(i.e. 1 //iwici2 problem) .

Relatively little work has been done on problems involving a quadratic
measure of performance for scheduling a single machine. The single
machine scheduling problem with the objective of minimizing the sum
of squares of the job completion times has been studied by Townsend
(1978)(24), Bagga and Kalra (1980)(2), Gupta and Sen (1984)(10), and
Szwarc, Posner, and Liu (1988)(23). Townsend (24) first formulated the
problem and presented a branch-and-bound search method to solve it.
Bagga and Kalra (2) improved the method by providing conditions for
precedence among set of jobs. If w; =1 for every ;, then the resulting
problem 1 //icf is solved by the following proposition.

Proposition(1):(15)The SPT rule gives an optimal value for 1//2”305

problem.
Minimizing Total Square Completion Time and Maximum Cost
Now, we will consider the bi-criteria single machine problem
concerns the simultaneous minimization of the performance measure

total square completion time > C? and maximum cost fu. (i.e.

i=1

1//F(Zn:c:i2 fnax) problem).Maximum cost is defined as max {fi(Ci)}.

1<i<n

where each f; denotes an arbitrary regular or irregular cost function for
job i; regular means that f;(C;) does not decrease when C; is increased .

The 1// F (Zn“cf Jmax)problem is described as follows. A set of n

independent jobs has to be scheduled on a single machine that is
continuously available from time zero on wards and that can process at
most one job at a time. Each job J; ( j =1, ..., n) requires an
uninterrupted positive processing time P, and has a due date d;.

Without loss of generality, we assume that the processing times and due
dates are integral. A schedule o specifies for each job when it is
executed while observing the machine availability constraints. Hence, a

schedule ¢ defines for each job J; its square of completion time Cj (0),
which we sometimes simply write as Ci :

The bi-criteria problem that we consider concerns the
simultaneous minimization of the performance measures total square
completion time and maximum cost fay.
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Hoogeveen and Van de Valde (12) proved that 1/FO.Ci ,fiax)
problem is solved in polynomial time ,Van Wassenhove and
Gelders(25) solved 1/F(3.Ci,Tmax) problem, Emmons (6)addresses the
hierarchical problem 1/ /Lex(fnax, >.Ci) ,where f* denotes the optimal
solution value of the 1/ fms problem, which is solved in O(n?) time by
Lawler algorithm(16) .

Let fax= Tmax IN OUr study , since criterion T, IS a particular case of
the function f, .
Now , consider the following two problems:

1//Lex(znlci2 , Tmax) problem ,and 1//Lex(TmaX,Zn:Ci2 ) problem.

The first problem 1//LeX(Zn:Ci2 ,Tax)

This problem can be written és:
Min Tax
s.t ...(P1)
>'ct=C" where C'=Y C*(SPT)

i=1

Algorithm for problem(P1):
Setp(0): Order the jobs by SPT rule and calculate znlcf and T ax.

Step(1): If there exist a tie( jobs with the same processing times) order
these jobs by EDD rule to minimize T ax -
Note that the problem (P1) can be written as:

1/ 32 =C" /T
i=1

Example-1: Consider the problem (P1) with the following data:
1| 1]2(3/4]5
Pil2] 2|5/ 9|5
di|10/10(9]19| 5
It is clear that the SPT rule is optimal for problem (P1).
i|1]2|3|5 | 4
2125|5109
101101 9| 5 | 19
2 |49 14| 23
4

0

[N

16 [ 81196 | 529
0/ 0] 9 4

=10 | O|2| 0| -
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Hence the SPT, schedule (1,2,3,5,4) with (Zn:Cf , Tmax)= (826,9).

i=1

But the SPT,(break a tie of job 3 and 5 ) the schedule (1,2,5,3,4) with
(D>.C%  Tma)= (826,5).
i=1

The second problem 1//Lex(Tmax icf )

This problem can be written as:

Min Zn:Cf
i=1
s.t. ...(P2)
Tmax=T Where T =T,.x(EDD)
Also the problem (P2) can be written as: 1/ ToasT /Zn“cf ,
i=1

which is equivalent to the problem 1/d_j/2nzci2 where o =di+T .
i=1

Its clear that problem (P2) can be solved by “Smith backward”
algorithm.

Algorithm(A) for problem(P2):
Step(0): Order the jobs by EDD rule and calculate T (EDD) =T*,
Step(1): Find ¢ ,=dj+T" vjeN ,N={1,...,n} unscheduled jobs ,and
o = (¢) for schedule jobs .
Step(2): Lett= Z p

=

Step(3): Find a job j*e N satisfy d_j*z t (if there exist a tie choose the

job j* with largest processing time ).
Step(4): Set t=t—pp, N =N-{j*} , o6 =( o(j*) ,0 ), if N= ¢ go to step
(5), else go to step (3).

Step(5): Calculate Zn:Cf () and Tax(0).
i=1
It is clear from the algorithm (A) ,we are interested in the
minimization of 1//LeX(T max ancf) problem. Since the SPT schedule

i=1

minimizes >'C, and > C?for the single machine problem [see

i=1 i=1

proposition( 1)] .Hence 1//Lex(Tmax , ancf) problem is equivalent to

LLex(T max, ici) problem . The later problem is a particular case of
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the L//F(T max Zn“ci ) problem which is solved by Van Wassenhove and

Gelders [25].This means that we can solve 1//LexX(T max, znlcf)
i=1

problem and this can be done by algorithm (A).
Example-2: Consider the problem (P2) with the following data:
1| 1(2]/3|4]|5
Pi| 5|8 8|10] 9
di[11/8|14|10]|10
EDD rule gives the schedule (2,4,5,1,3) with T,x(EDD)=26=T*
2415113
i18/10/ 9|5 |8
i18/10|10|11|14
i18]18|27|32]40
T;|0| 8 |17]21|26

Since (f,=d; +T* ,hence by using algorithm(A),

d, =37 d,=34, ds=40.d,=36, ds=36

[
40
32
22
13
5/ 5

Hence the schedule (1,2,5,4,3) with (T max, icf ) =(126, 3302).

i
P
d
C

ARIWIN|F .

R INOB~Ww

In the following section we consider the general problem
F((Q.CF  Tinax)-
i=1

Total Square Completion Time and Maximum Tardiness
In this section we will try to find an efficient (pareto optimal)

solutions for 1/ /F(Zn“(:i2 , Tmax) problem.

The 1/ /F(Zn:ci2 , Tmax) Problem can be written as:

i=1
Min Zn:Cf
i=1

s.t. ...(P3)
Trax <T where T [ Tnax (EDD), Trax (SPT
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Theorem (5)[11]: Consider the composite objective function F with

F(n )= F(fi(n),...,f(m)) ,where F is non- decreasing in all performance
criteria f, . There is a pareto optimal schedule with respect to fy,....fi
that minimizes the function F.m

Note that in the following proposition H= zn:Cf and T =T

i=1

Proposition(2):(15) There exists an efficient sequence for problem (P3)
that satisfy the SPT-rule.

Note that an analogous proposition for the EDD rule does not hold in
general as shown by the following example :

1 11(2]3]|4
Pil2]3]1]2
di|3|4|5|6

SPT* sequence (3,1,4,2), H(SPT*) =99, T(SPT*) =4

EDD sequence( 1,2,3,4), H(EDD) = 129, T(EDD) =2

SPT* is efficient by Proposition (2.1).

EDD is not efficient since it is dominated by sequence (3,1,2,4) with H
=110and T = 2.

It is clear that the 1/ /F(ici2 ,Tmax) Problem originates from

i=1

1//Zn:Ci2 problem and 1//T., problem. Both problems are solvable in

O(n log n) time.
In order to find the set of pareto optimal points , we solve the problem

of minimizing icf subject to Tma< T, where T~ corresponds to the

Tmax Value of a p_areto optimal point.
The next algorithm solve problem 1/ /F(Zn:Ci » Tmax)-
Algorithm(B) for (P3): _
Step(0): Compute Tha(EDD) ,and T (SPT) ;let k=1,
Timax (SPT)=T**,
Step(1): Solve 1/ Tma<T~ /s°c: by algorithm(A) for (P2) ; this

produces the k pareto optimal schedule 6 | and the k pareto optimal
point ($-c: o), Trmax(0™))-

Step(2): T**=T** -1, k=k+1.
Step(3): If T**< Tx(EDD) stop, else ,go to step (1).
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Example-3: Consider the problem (P3) with the following data:
i11]2]3|4|5
Pi13|1|71|7]10
di|4/12|14|8]10
Thmax(EDD)=14 | T1ax(SPT)=18=T**,
Now, by proposition (2.1) ,SPT rule gives efficient schedule(2,1,3,4,5)
then the first point is (1246,18).

T**=18-1=17

Now we will solve 1/ Ta<17 /ici2 by algorithm(A) for (P2) .Hence

d, =21+ d,=20 ds=31.0d,=25, g=27-

It
1128] 3
2|121| 5
3|11 4
41 411
5| 1|2
Hence the second efficient schedule (2,1,4,5,3), and the second point is

(1363,14).

T**=14-1=13< T,,x(EDD). Stop.

It is clear that from the example that the EDD schedule (1,4,5,2,3) with
(1734,14) is not efficient.

The 1//205 +T max Problem:
In this section we decompose the 1//Zn)Cf +T max Problem into two

subproblems with a simpler structure , and state some results which help
us in solving it.
This problem can be written as:
M:1=min {Zn:Cf +Tmax(0) } )

OE€SsS

S.t.

Ca(i)z D > ...(P4)

o)
Coty ™ Cﬁ(i'1)+P0(i)
Toi)> Coi) - d o)
Towy=0

_/
This problem can be decomposed into two subproblems (SP1) and
(SP2) .
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n

V= min Zl:cj(i) )
s.t.
Co= P, =1eom ...(SP1)
Co‘(i) :CG(i-1)+P0(i) i:2, .l >
V2=min {max{To}} |-
S.t. ...(SP2)
To@y> Coiy-doiy  1=1,...,0 >
T6iy=0 i=1,....n
Y,
Theorem(6)(20) :

VI+V2< M1 where V1 ,V2 ,and M1 are the minimum objective
function values of (SP1),(SP2), and (P4) respectively .m
Some Special Cases for the Problem (P4).
Case(1): If for every schedule Cj < d; v ieN then SPT rule gives
an optimal value for (P4).
Proof: Since C;<djthen T;=07 =N T max=0.

Hence the problem (P4) reduce to 1//Zn:Ci2 problem .Then by

proposition( 1) SPT rule gives optimal value .m
Case(2): If pi=p t ieN then EDD rule gives an optimal value for (P4).

Proof: If pi=p ¢ ieN then Zn:Cﬁ IS constant for every sequence

i=1
,since EDD rule gives minimum value for T , then EDD rule gives
optimal value for (P4).m

Case(3): Ifdi=d ¢ ieN then SPT rule gives an optimal value for (P4).
Proof: If di=d v ieN then T, IS constant for every sequence

,since SPT rule gives minimum value for Zn:Cf , then SPT rule gives
i=1

optimal value for (P4).m

Case(4): If the due date is agreeable (i.e.p:<...<p, and d;<...<d,) then

the SPT and EDD rule give an optimal schedule .

Proof: Since pi<...<p, then )} C? is minimum value , and at the same

i=1

time di<...<d,then Ty is minimum value ,then > C?+ T is the
i=1
minimum value .m
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Heuristic to calculate upper bound (UB) for the problem (P4).
To calculate upper bound (UB+)order the jobs by SPT rule and

then calculate Zn“cf and Tpay
i=1

Derivation of lower bound (LB)
To calculate a lower bound (LB) apply theorem (6).
Example-4 : Consider the problem (P4) with the following data:

1|12 3|4
P,| 34|87
d 12410 |7

1
The SPT rule gives the schedule (1,2,4,3) where =738,

The EDD rule gives the schedule (2,4,3,1) where T,.=10
Hence the LB=738+10=748.
Note that the exact solution for problem (P4) obtained by (BAB)

method. The optimal schedule is (1,2,4,3) with > C? +Ty=750.
i=1

The lower bound of each node in the solution search tree are
written against the nodes of the tree. To find the optimal solution for
(P4), we applied the methods for lower and upper bounds that will be
used in BAB algorithm. Where (BAB) Branch and bound method can
be used for solving many combinatorial optimization problems. These
procedures can be conveniently represented as a search (scheduling,
branching) tree whose nodes correspond to subsets of a feasible
solution. To minimize an objective function of a particular scheduling
problem, first an upper bound UB of the minimum of this objective
function is needed. A branching rule is used to partition feasible
solutions at a node into subsets and a bounding rule calculates a lower
bound LB on the value of each solution in a subset.

Computational experience

An intensive work of numerical experimentations has been
performed. We first present how instances (tests problem) can be
randomly generated .

There exists in the literature a classical way to randomly generate
tests problem of scheduling problems.
e The processing time P; are uniformly distributed in the interval [1,10].
e The due dates d; are uniformly distributed in the interval [p(1- TF-
RDD/2), p(1+ TF+ RDD/2)] ; where p:i p, - depending on the relative

range of due date (RDD) and on the average tardiness factor (TF).
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For both parameters, the values 0.2,0.4,0.6,0.8and 1.0, are considered .
For each selected value of n, one problem was generated for each of
five values of parameters producing five problems for each value of n .
The BAB and B algorithms were tested by coding them in matlab7 and
running on Pentium IV at 2800MHz with Ram 512MB computer. The
BAB algorithm is tested on problems with size (10,20,30) .

For problems that are not solved to optimally because the
execution time exceed 30 minutes, the optimal solution for these
unsolved problems found by our algorithm B.

Table(1) shows the results for problem (P4) obtained by BAB
algorithm. The first column “n” refers to the number of jobs, the second
column “EX” refers to the number of example for each instance n, the
third column “optimal” refers to the optimal value obtained by BAB
algorithm for problem (P4), the fourth column “UB” refers to the upper
bound , the fifth column “ILB” refers to the initial lower bound , the
sixth column ‘“nodes” refers to the number of nodes , the seventh
column “time” refers to the time cost ‘by seconds’ to solve the problem,
the last column “status” refers to the problem solved ‘0’ or not ‘1°. The
symbol “*” refers to the optimal=UB, we stopped when the sum of
status’ column >3.

Table(2) , show the results for problem (P4) obtained by
algorithm (B). The first two columns as the same columns in table(1),
the third column “value” refers to the minimum value that we get by
algorithms B, and the last column “time” refers to the time cost ‘by
seconds’ to solve the problem .

Table (3)compare between BAB and algorithm (B) to solve a
problem(P4)(time by seconds). It is clear from table (3) that the BAB
method can not solved problems with n>30.

Table -1:The performance of initial lower bound,upper
bound and computational time of BAB algorithm for (P4).

n | EX | optimal | UB ILB nodes time status
1 5868 5868* 5863 222 0.083753 0
10 2 | 14653 | 14653* | 14644 668 0.05233 0
3 9629 9629* 9614 241 0.022428 0
4 9798 9803 9792 71 0.008206 0
5 5518 5518* 5499 266 0.025065 0
1 74030 | 74030* | 74010 17887 1.331111 0
2 | 52867 | 52877 | 52810 | 417071 | 29.22711 0
20| 3 | 78694 | 78694* | 78661 | 1043412 | 81.99179 0
4 | 71171 | 71182 | 71096 | 240860 | 16.87217 0
5 | 46104 | 46114 | 46037 | 1097334 | 78.07866 0
1 | 210893 | 210893* | 210891 | 23445581 | 1800 1
2 | 157867 | 157867* | 157847 | 22422037 | 1800.001 1
30| 3 | 157309 | 157318 | 157293 | 21096053 | 1800.001 1
4 | 215258 | 215268 | 215137 | 21573266 | 1800.001 1
5 | 232131 | 232131* | 232053 | 21280420 | 1800 1
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Table -3:BAB Vs algorithm (B) to solve a problem(P4)

(time by seconds).

n | BAB| B
10 | 0.02 | 0.01
20 | 40 | 0.09
30 | 1800 | 0.1
100 | 1800 | 0.1
200 1800 | 75
300 | 1800 | 200
400 | 1800 | 510
500 | 1800 | 1550

Tardiness Simultaneously

Tariq And Haidar

Table - 2:Results of algorithm B for (P4).
n ex value time
1 5868 0.09719246
2 14653 0.00887009
10 3 9629 0.01406612
4 9798 0.01021048
5 5518 0.0208633
1 74030 0.08547378
2 52867 0.13290581
20 3 78694 0.06773622
4 71171 0.16499083
5 46104 0.15121613
1 210893 0.06058998
2 157867 0.08748179
30 3 157309 0.09807895
4 215258 0.46199023
5 232131 0.26577637
1 5868 0.05231801
2 14653 0.010738
100 3 9629 0.01390555
4 9798 0.01086037
5 5518 0.02007836
1 46373355 71.2329712
2 55521683 74.9988027
200 3 52408900 114.055689
4 43625257 47.1273153
5 45305234 78.6391166
1 180481870 | 28.6847228
2 189083219 | 252.168852
300 3 183437469 127.6062
4 157888207 | 223.006137
5 164142954 | 352.721073
1 421801412 | 308.649517
2 423348248 | 848.978298
400 3 430015881 | 921.210297
4 394605521 | 355.380809
5 413688655 | 531.261101
1 712946851 1496.9584
2 763797269 | 1551.28829
500 3 755495302 | 1676.87384
4 782832453 | 1768.17998
5 750245041 1633.0393
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