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 الخلاصة
من الاعمال على ماكنة واحدة  nفي هذه الدراسة ولتصغير دالة الكلفة لمعيارين والحاصلة من جدولة 

 :درست المسألة

F( ∑Ci تصغير الدالة  
2
 , Tmax)   حيث انTmax    هيregular measure  هذه المسألة اقترحنا  في

والحلول الكفوءة في حالة الـ (  hierarchical)بعض الخوارزميات لايجاد الحل الامثل في حالة الـ 

(simultaneous  . ) وكذلك اقترحنا خوارزمية للـ(BAB ) لايجاد  الحل الامثل للمسألة(P4 .  ) وقدمنا

( .  BAB)ولكن بطريقة اسرع من خوارزمية(   P4)لايجاد  الحل الامثل للمسألة    Bايضاً حوارزمية 

 .والتي تم تنفيذها على مجموعة كبيرة من المسائل   Bو  BABت وقدمنا حسابات الاختبارات لخوارزميا
 

ABSTRACT 
In this study, to minimize a function of two cost criteria for scheduling  n jobs 

on a single machine , the  problem is discussed : 

“ Minimizing a function of total square completion time and maximum tardiness 

simultaneously”. 

For this problem we proposed some algorithms to find exact(optimal) solution 

for hierarchical case  and efficient (pareto optimal) solutions for simultaneous case,  

Also we proposed branch and bound algorithm to find exact solution for sum of  

total square completion time and maximum tardiness, and present algorithm  B to 

find exact solution in a fast way with respect to (BAB) method.  We present 

computational experience for the (BAB) method and algorithm(B) on a large set of 

test problems.  

 

INTRODUCTION 

 It is well known that the optimal solution of single objective 

models can be quite different if the objective is different (for instance, 

for the simplest model of one machine, without any additional 

constraint, the rule SPT is optimal to minimize flow time but the rule 

EDD is optimal to minimize the maximal tardiness Tmax). 

           In fact, often each particular decision maker wants to minimize a 

given criterion. 

 Recently, research on more than one criterion scheduling 

has increased. Since real life scheduling problems may require the 

decision maker to consider a number of criteria before arriving at any 

decision. Nagar et al. (20) in their detailed literature survey of multiple 

and bi-criteria problems in scheduling point out the importance of this 

subject. 

Because, the one-machine problem provides a useful laboratory 

for the development of ideas for heuristics and interactive procedure 
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that may prove to be useful in more general models. We consider the 

one-machine case in this study. 

Multi-Criteria Scheduling: 

 In general, multiple-criteria scheduling refers to the scheduling 

problem in which the advantages of a particular schedule are evaluated 

using more than one performance criterion. The managerial relevance of 

considering multiple criteria for scheduling has been cited in the 

production and operations management literature since the 1950’s. 

Smith (1956)(22) shows that the choice of a criterion will affect the 

characteristics of a “best schedule”; different optimizing criteria will 

result in very different schedules. Van Wassenhove and Gelders 

(1980)[25] and  provide evidence that a schedule that performs well 

using a certain criterion might yield a poor result using other criteria. 

Hence, lack of consideration of various criteria may lead to solutions 

that are very difficult to implement in practice. Although the importance 

of multi-criteria scheduling has been recognized for many years ( 

French, 1982(7); Nelson et al., 1986(21); George S., and Paul S. 

2007(8), little attention has been given in the literature to this topic. 

From the problem complexity perspective, the multiple-criteria problem 

becomes much more complex than related single-criteria counterparts ( 

Lenstra et al., 1975(18) Nagar et al. (1995)(20) reviews the problem in 

its general form whereas Lee and Vairaktarakis (1993)(16) review a 

special version of the problem, where one criterion is set to its best 

possible value and the other criterion is tried to be optimized under this 

restriction. Hoogeveen (2005)(11) studies a number of bi-criteria 

scheduling problems.Also, there are some papers about this object 

(Cheng et al. 2008(5), and Azizoglu et al. 2003 (1). 

 

Approaches for Multi-Criteria Problems: 

 In literature there are two approaches for the bi-criteria problems: 

the hierarchical approach and the simultaneous approach. In the 

hierarchical approach, one of the two criteria is considered as the 

primary criterion and the other one is considered as the secondary 

criterion. The problem is to minimize the primary criterion while 

breaking ties in favor of the schedule that has the  minimum secondary 

criterion value. The studies by Chang P. and Su L.(2001)(3) and Chen 

W., et al.(1997)(4) are examples of hierarchical minimization problems 

with earliness and tardiness costs. The computational complexity 

results in hierarchical minimization are reviewed in Lee and 

Vairaktarakis (1993)(17). In the simultaneous approach there are two 

types ,the first one typically generates all efficient schedules and 

selects the one that yields the best composite objective function value 
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of the two criteria .The second is to find sum of these objectives 

.Several scheduling problems considering the simultaneous 

minimization of various forms of earliness and tardiness costs have 

been studied in the literature  (see, e.g.   Hoogeveen, (1995)(12);   

Moslehi, et al. (2005)(19) ) . 

 

Basic definitions: 

   Definition(1):(14) The term ”optimize” in a multi-objective 

decision making problem refers to a solution around which there is no 

way of improving any objective without worsening at least one other 

objective. 

        Definition(2) (14) Suppose we have a problem P ,any schedule      

S  δ (where δ is the set of all schedules ) is said to be feasible if it 

satisfies the constraints of the problem P. 

 Definition(3): (1). A schedule S is said to be efficient if there 

does not exist another schedule S
/
satisfying fi(S

/
 )≤ fi(S) , i=1,…,k  

with at least one of the above holding as a strict inequality. Otherwise S 

is said to be dominated by S
/
.  

 Definition(4): (20) A measure of performance is said to be 

regular if it is a non-decreasing function of job completion times and 

the scheduling objective is to minimize the performance measure. 

Examples of regular measures are job flowtime (
_

F ), schedule 

makespan (Cmax) and tardiness based performance  measures. 

 Definition (5): (11) The function F(f,g) is said to be non-decreasing 

in both argument ,if for any pair of outcome value (x,y) of the functions 

f and g ,we have F(x,y)≤ F(x+A,y+B) for each pair of non-negative 

value A and B. 

 Theorem (1): (11) If the composite objective function F(f,g) is 

non-decreasing in both argument ,then there exists a pareto optimal 

schedule that minimize F.■ 

 

 Basic Scheduling Concepts 

      We start with introducing some important notation where we 

concentrate on the performance criteria with out elaborating on the 

machine environment etc.  We assume that there are n jobs, which we 

denoted by j1,…,jn these jobs are to be scheduled on  a set of machines 

that are continuously available from time zero on words and that can 

handle only one job at a time . 

    In this paper, we only state here the notation that is used for single 

machine , jobs Ji(i=1,…,n) has: 

 N: set of jobs. 

 n: The number of jobs in a known sequence. 
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 Pj : which means that it has to processed for a period of length pj . 

 dj: a due date ,the date when the jobs should ideally be completed , the 

completion of job after its due date is allowed ,but a penalty is incurred . 

When the due date absolutely must be met , it is referred to as deadline 
_

d j
 , and when due date is constant for all jobs ,then called common due 

date.   

 The completion time  Cj  

  The lateness Lj=Cj -dj 

 The tardiness Tj=max{ 0, Cj-dj} 

For a given schedule σ we compute. 

 Cmax(σ) =maxj(Cj) 

 Lmax(σ)=maxj(Lj) 

 Tmax(σ)=maxj(Tj) 

 

 Fundamental Results and Algorithms: 

Theorem (2)(Smith 1956)(22). The  1/ / ΣCi problem is minimized by 

sequencing the jobs according to the shortest –processing-time (SPT) 

rule,  that is, in order of non-decreasing pi.■ 

Theorem(3)(Jackson 1955)(13). The 1/ / Lmax problem is minimized by 

sequencing the jobs according to the earliest-due- date (EDD) rule, that 

is, in order of non-decreasing di.■ 

Theorem(4)(Lawler 1973)(16).The 1//fmax problem, fmax is minimized 

as follows: while there are unassigned jobs, assign the job that has 

minimum cost when scheduled in the last unassigned position in that 

position.■ 

Hoogeveen and Van de Velde (12) provide a generalization to the case 

that the two criteria are  ∑Cj  and fmax where fmax is regular cost 

function. 

Van Wassenhove and Gelder (24)propose a pseudo-polynomial 

algorithm for finding all efficient schedules with respect to ∑Cj and Lmax 

.Their algorithm searches all possible Lmax values .Since a given Lmax 

value imposes job dead line d j


 ,the algorithm of Smith (21) is used to 

solve the corresponding  1/d j


/ ∑Cj  problem. 

The Problem Classification: 

In this paper, we adopt the terminology of Graham ,Lawler ,and 

Rinnooy Kan   (1979) [9] to classify scheduling problems.   

  Suppose that m machines Mi (i=1,…,m) have to process n jobs Jj 

(j=1,…,n) . A schedule problem type can be specified using a three-field 

classification α/β/γ composed of the machine environment, the job 

characteristics, and the optimality criterion . 
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Minimizing Total Square Completion Time   

This section  deals with the Quadratic problem of scheduling jobs 

on a single machine such that the  sum of the square of the weighted  

completion times of jobs is minimized(i.e. 1 //


n

i

ii
Cw

1

2  problem) . 

Relatively little work has been done on problems involving a quadratic 

measure of performance for scheduling a single machine. The single 

machine scheduling problem with the objective of minimizing the sum 

of squares of the job completion times has been studied by Townsend 

(1978)(24), Bagga and Kalra (1980)(2), Gupta and Sen (1984)(10), and 

Szwarc, Posner, and Liu (1988)(23). Townsend (24) first formulated the 

problem and presented a branch-and-bound search method to solve it. 

Bagga and Kalra (2) improved the method by providing conditions for 

precedence among set of jobs.  If wi =1 for every i , then the resulting 

problem 1 //


n

i

iC
1

2 is solved by the following proposition. 

Proposition(1):(15)The SPT rule gives an optimal value for 1//


n

i

iC
1

2  

problem. 

     Minimizing Total  Square Completion Time and Maximum Cost 

Now, we will consider the bi-criteria  single machine problem 

concerns the simultaneous minimization of the performance measure 

total square completion time  


n

i

iC
1

2  and maximum cost fmax (i.e. 

1//F(


n

i

iC
1

2 ,fmax) problem).Maximum cost is defined as  max
1 ni

{fi(Ci)}, 

where each fi denotes an arbitrary regular or   irregular cost function for 

job i; regular means that fi(Ci) does not decrease when Ci is increased . 

 The 1/ / F (


n

i

iC
1

2 ,fmax)problem  is described as follows. A set of n 

independent jobs has to be scheduled on a single machine that is 

continuously available from time zero on wards and that can process at 

most one job at a time. Each job Jj ( j =1, ...., n) requires an 

uninterrupted positive processing time p
j
 and has a due date dj. 

Without loss of generality, we assume that the processing times and due 

dates are integral. A schedule σ specifies for each job when it is 

executed while observing the machine availability constraints. Hence, a 

schedule σ defines for each job Jj its square of completion time 
 

C j

2
 (σ), 

which we sometimes simply write as  C j

2
 . 

The bi-criteria problem that we consider concerns the 

simultaneous minimization of the performance measures total square 

completion time  and maximum cost fmax.   
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  Hoogeveen and Van de Valde (12) proved that 1//F(∑Ci ,fmax) 

problem is solved in polynomial time ,Van Wassenhove and 

Gelders(25) solved 1//F(∑Ci,Tmax) problem, Emmons (6)addresses the 

hierarchical problem 1/ /Lex(fmax,  ∑Ci) ,where f* denotes the optimal 

solution value of the 1// fmax problem, which is solved in O(n
2
) time by 

Lawler algorithm(16)  . 

Let fmax= Tmax in our study , since criterion Tmax is a particular case of 

the function fmax .  

 Now , consider the following two problems:  

1//Lex(


n

i

iC
1

2 ,Tmax) problem ,and 1//Lex(Tmax,


n

i

iC
1

2  ) problem. 

   The first problem 1//Lex(


n

i

iC
1

2 ,Tmax) 

 This problem can be written as: 

 Min  Tmax 

 s.t             …(P1)  

 


n

i

iC
1

2 =C
*
   where C

*
=∑C i

2
(SPT)                                    

 

Algorithm for problem(P1): 

Setp(0): Order the jobs by SPT rule and calculate  


n

i

iC
1

2  and Tmax. 

Step(1): If there exist a tie( jobs with the same processing times) order 

these jobs by EDD rule to minimize Tmax . 

 Note that the problem (P1) can be written as: 

 1/  


n

i

iC
1

2 =C
*
   /Tmax. 

Example-1: Consider the problem (P1) with the following data: 

i 1 2 3 4 5 

Pi 2 2 5 9 5 

di 10 10 9 19 5 

 It is clear that the SPT rule is optimal for problem (P1). 

i 1 2 3 5 4 

Pi 2 2 5 5 9 

di 10 10 9 5 19 

Ci 2 4 9 14 23 

C i

2 4 16 81 196 529 

Ti 0 0 0 9 4 
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Hence the SPT1 schedule (1,2,3,5,4) with (


n

i

iC
1

2 ,Tmax)= (826,9). 

But the SPT2(break a tie of job 3 and 5 ) the schedule (1,2,5,3,4) with 

(


n

i

iC
1

2 ,Tmax)= (826,5). 

  The second problem 1//Lex(Tmax , 


n

i

iC
1

2 ) 

This problem can be written as: 

  

Min 


n

i

iC
1

2  

 s.t.              …(P2)  

 Tmax=T
*
  where T

*
=Tmax(EDD). 

Also the problem (P2) can be written as: 1/ Tmax=T
*
  /



n

i

iC
1

2 , 

which is equivalent to the problem  1/
_

d j
/



n

i

iC
1

2  where 
_

d j
=dj+T

*
. 

Its clear that problem (P2) can be solved by “Smith backward” 

algorithm.   

 

Algorithm(A) for problem(P2): 

Step(0): Order the jobs by EDD rule and calculate Tmax(EDD) =T*. 

Step(1): Find 
_

d j
=dj+T

*
  jN ,N={1,…,n} unscheduled jobs ,and  

σ = (φ) for schedule jobs . 

Step(2): Let t = 


n

j

jp
1

 

Step(3): Find a job j* N satisfy  
_

*d j
≥ t (if there exist a tie choose the 

job j* with largest processing time ). 

Step(4): Set  t= t –pj* , N =N-{j*} , σ =( σ(j*) ,σ   ), if N= φ go to step 

(5), else go to step (3). 

Step(5): Calculate  


n

i

iC
1

2
(σ) and Tmax(σ). 

It is clear from the algorithm (A) ,we are interested in the 

minimization of  1//Lex(Tmax , 


n

i

iC
1

2 ) problem. Since the SPT schedule 

minimizes 


n

i

iC
1

 and 


n

i

iC
1

2 for the single machine problem [see 

proposition( 1)] .Hence  1//Lex(Tmax , 


n

i

iC
1

2 ) problem is equivalent to 

1//Lex(Tmax,  


n

i

iC
1

) problem . The later problem is a particular case of 
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the 1//F(Tmax , 


n

i

iC
1

) problem which is solved by Van Wassenhove and 

Gelders [25].This means that we can solve  1//Lex(Tmax,   


n

i

iC
1

2 ) 

problem and this can be done by algorithm (A). 

 Example-2: Consider the problem (P2) with the following data: 

i 1 2 3 4 5 

Pi 5 8 8 10 9 

di 11 8 14 10 10 

EDD rule gives the schedule (2,4,5,1,3) with Tmax(EDD)=26=T*  

i 2 4 5 1 3 

Pi 8 10 9 5 8 

di 8 10 10 11 14 

Ci 8 18 27 32 40 

Ti 0 8 17 21 26 

Since  
_

d j
=di +T* ,hence by using algorithm(A), 

d


1
=37 , d



2 = 34 , d


3 = 40 ,d


4 = 36 , d


5 = 36  

j t j* 

1 40 3 

2 32 4 

3 22 5 

4 13 2 

5 5 1 

Hence the schedule (1,2,5,4,3) with (Tmax, 


n

i

iC
1

2 ) =( 26, 3302). 

In the following section we consider the general problem 

F((


n

i

iC
1

2 ,Tmax).    

    Total Square Completion Time and Maximum Tardiness   

 In this section we will try to find an efficient (pareto optimal)   

solutions for 1/ /F(


n

i

iC
1

2 ,Tmax) problem. 

 The 1/ /F(


n

i

iC
1

2 ,Tmax) problem can be written as: 

 Min 


n

i

iC
1

2  

 s.t.              …(P3) 

 Tmax ≤ T     where T [ Tmax (EDD), Tmax (SPT)] 
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Theorem (5)[11]: Consider the composite objective function F with  

F(π )= F(f1(π),…,fk(π)) ,where F is non- decreasing in all performance 

criteria fk . There is a pareto optimal schedule with respect to f1,…,fk 

that minimizes the function F.■   

Note that in the following proposition H=  


n

i

iC
1

2  and T =Tmax. .  

   

Proposition(2):(15) There exists an efficient sequence for problem (P3) 

that satisfy the SPT-rule. 

 Note  that an analogous proposition for the EDD rule does not hold in 

general as shown by the following example :  

 

 

 

 

 

SPT*  sequence (3,1,4,2), H(SPT*) = 99, T(SPT*) = 4 

EDD   sequence( 1,2,3,4), H(EDD) = 129, T(EDD) = 2 

SPT* is efficient by Proposition (2.1). 

EDD is not efficient since it is dominated by sequence (3,1,2,4) with H 

= 110 and T = 2. 

It is clear that the 1/ /F(


n

i

iC
1

2 ,Tmax) problem originates from 

1//


n

i

iC
1

2 problem and 1//Tmax problem. Both problems are solvable in 

O(n log n) time. 

In order to find the set of pareto optimal points , we solve the problem 

of minimizing 


n

i

iC
1

2  subject to Tmax≤ T
**

 , where T
**

 corresponds to the 

Tmax value of a pareto optimal point.  

 The next algorithm solve problem 1/ /F(


n

i

iC
1

,Tmax). 

Algorithm(B) for (P3): 

Step(0): Compute Tmax(EDD) ,and Tmax (SPT) ;let k=1 ,  

Tmax (SPT)=T**. 

Step(1): Solve 1/ Tmax≤T
**

  /


n

i

iC
1

2  by algorithm(A) for (P2)  ; this 

produces the k pareto optimal schedule σ
(k)

 , and the k pareto optimal 

point (


n

i

iC
1

2 (σ
(k)

), Tmax(σ
(k)

)). 

Step(2): T**=T** -1, k=k+1. 

Step(3): If T**< Tmax(EDD) stop, else ,go to step (1). 

 

 

i 1 2 3 4 

Pi 2 3 1 2 

di 3 4 5 6 
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Example-3: Consider the problem (P3) with the following data: 

i 1 2 3 4 5 

Pi 3 1 7 7 10 

di 4 12 14 8 10 

Tmax(EDD)=14  ,Tmax(SPT)=18=T**. 

Now, by proposition (2.1) ,SPT rule gives efficient schedule(2,1,3,4,5) 

then the first point is (1246,18). 

T**=18-1=17 

Now we will solve 1/ Tmax≤17  /


n

i

iC
1

2 by algorithm(A) for (P2) .Hence 

d


1
=21  , d



2 = 29, d


3 = 31 ,d


4 = 25 , d


5 =27 . 

j t j* 

1 28 3 

2 21 5 

3 11 4 

4 4 1 

5 1 2 

Hence the second efficient schedule (2,1,4,5,3), and the second point is 

(1363,14). 

T**=14-1=13< Tmax(EDD). Stop. 

It is clear that from the example that the EDD schedule (1,4,5,2,3) with 

(1734,14) is not efficient.  

 

 The 1//


n

i

iC
1

2 +Tmax problem: 

 In this section we decompose the 1//


n

i

iC
1

2 +Tmax problem into two 

subproblems with a simpler structure , and state some results which help 

us in solving it. 

 This problem can be written as: 

 M1=min
s

{


n

i

iC
1

2 +Tmax(σ)}   

 s.t. 

 c i)(
≥ p

i)(

     …(P4) 

 c i)(
= Cσ(i-1)+Pσ(i) 

 Tσ(i) ≥ Cσ(i) - d σ(i) 

 Tσ(i) ≥ 0 

 

This problem can be decomposed into two subproblems (SP1) and 

(SP2) . 
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V1=min
s

 


n

i

iC
1

2

)(  

s.t. 

 c i)(
≥ p

i)(
  i=1,…,n                         …(SP1)  

c i)(
=Cσ(i-1)+Pσ(i)   i=2,…,n  

V2=min
s

{max{Tσ(i)}} 

 s.t.      …(SP2) 

 Tσ(i) ≥ Cσ(i) - d σ(i)     i=1,…,n 

  Tσ(i) ≥ 0      i=1,…,n  

 

 

 Theorem(6)(20) : 

 V1+V2≤ M1 where V1 ,V2 ,and M1 are the minimum objective 

function values of (SP1),(SP2), and (P4) respectively .■ 

  Some Special Cases for the Problem (P4). 

          Case(1): If for every schedule Ci ≤ di  iN then SPT rule gives 

an optimal value for (P4). 

Proof: Since Ci ≤ di then   Ti=0  iN         Tmax=0. 

Hence the problem (P4) reduce to 1//


n

i

iC
1

2 problem .Then by 

proposition( 1) SPT rule gives optimal value .■ 

Case(2): If pi=p   iN then EDD rule gives an optimal value for (P4). 

 Proof: If pi=p   iN then 


n

i

iC
1

2  is constant for every sequence 

,since EDD rule gives minimum value for Tmax , then EDD rule gives 

optimal value for (P4).■ 
 

Case(3): If di=d  iN then SPT rule gives an optimal value for (P4). 

 Proof:   If  di=d   iN then Tmax is constant for every sequence 

,since SPT rule gives minimum value for 


n

i

iC
1

2 , then SPT rule gives 

optimal value for (P4).■ 

Case(4): If the due date is   agreeable (i.e.p1≤…≤pn and d1≤…≤dn) then 

the SPT and EDD rule give an optimal schedule . 

Proof: Since p1≤…≤pn  then 


n

i

iC
1

2  is minimum value , and at the same 

time  d1≤…≤dn then Tmax  is minimum value ,then  


n

i

iC
1

2 + Tmax  is the 

minimum value .■ 
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 Heuristic to calculate upper bound (UB) for the problem  (P4). 

 To calculate upper bound (UBT)order the jobs by SPT rule and 

then calculate 


n

i

iC
1

2  and Tmax. 

     Derivation of lower bound (LB) 

To calculate  a lower bound (LB) apply theorem (6). 

Example-4 : Consider the problem (P4) with the following data: 

i 1 2 3 4 

Pi 3 4 8 7 

di 12 4 10 7 

The SPT rule gives the schedule (1,2,4,3) where  



n

i

iC
1

2 =738, 

The EDD rule gives the schedule (2,4,3,1) where  Tmax=10 

Hence the LB=738+10=748. 

Note that the exact solution for problem (P4) obtained by (BAB) 

method. The optimal schedule is (1,2,4,3) with 


n

i

iC
1

2 +Tmax=750. 

  The lower bound of each node in the solution search tree are 

written against the nodes of the tree. To find the optimal solution for 

(P4), we applied the methods for lower and upper bounds that will be 

used in BAB algorithm. Where (BAB) Branch and bound method  can 

be used for solving many combinatorial optimization problems. These 

procedures can be conveniently represented as a search (scheduling, 

branching) tree whose nodes correspond to subsets of a feasible 

solution. To minimize an objective function of a particular scheduling 

problem, first an upper bound UB of the minimum of this objective 

function is needed. A branching rule is used to partition feasible 

solutions at a node into subsets and a bounding rule calculates a lower 

bound LB on the value of each solution in a subset.  
 

Computational experience  

 An intensive work of numerical experimentations has been 

performed. We first present how instances (tests problem) can be 

randomly generated . 

 There exists in the literature a classical way to randomly generate 

tests problem of scheduling problems. 

 The processing time Pi are uniformly distributed in the interval [1,10]. 

 The due dates di  are uniformly distributed in the interval [p(1- TF- 

RDD/2), p(1+ TF+ RDD/2)] ; where p=


n

i
i

p
1

 , depending on the relative 

range of due date (RDD) and on the average tardiness factor (TF). 
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 For both parameters, the values 0.2,0.4,0.6,0.8and 1.0, are considered .   

For each selected value of n, one problem was generated for each of 

five values of parameters producing five problems for each value of n .  

The BAB and B algorithms were tested by coding them in matlab7 and 

running on Pentium IV at 2800MHz with Ram 512MB computer. The 

BAB algorithm is tested on problems with size (10,20,30) . 

 For problems that are not solved to optimally because the 

execution time exceed 30 minutes, the optimal solution for these 

unsolved problems found by our algorithm  B . 

 Table(1) shows the results for problem  (P4) obtained by BAB 

algorithm. The first column “n” refers to the number of jobs, the second 

column “EX” refers to the number of example for each instance n, the 

third column “optimal” refers to the optimal value obtained by BAB 

algorithm for problem  (P4), the fourth column “UB” refers to the upper 

bound , the fifth column “ILB” refers to the initial lower bound , the 

sixth column “nodes” refers to the  number of nodes , the seventh 

column “time” refers to the time cost ‘by seconds’ to solve the problem, 

the last column “status” refers to the problem solved ‘0’ or not ‘1’. The 

symbol “*” refers to the optimal=UB, we stopped when the sum of 

status’ column ≥3. 

 Table(2) , show the results for problem  (P4)   obtained by 

algorithm  (B). The first two columns as the same columns in table(1), 

the third column “value” refers to the minimum value that we get by 

algorithms B, and the last column “time” refers to the time cost ‘by 

seconds’ to solve the problem . 

  Table (3)compare between BAB and algorithm (B) to solve a 

problem(P4)(time by seconds). It is clear from table (3) that the BAB 

method can not solved problems with n30.  

Table -1:The performance of initial lower bound,upper 

bound and computational time of BAB algorithm for (P4). 
n EX optimal UB ILB nodes time status 

10 

 

1 5868 5868* 5863 222 0.083753 0 

2 14653 14653* 14644 668 0.05233 0 

3 9629 9629* 9614 241 0.022428 0 

4 9798 9803 9792 71 0.008206 0 

5 5518 5518* 5499 266 0.025065 0 

20 

1 74030 74030* 74010 17887 1.331111 0 

2 52867 52877 52810 417071 29.22711 0 

3 78694 78694* 78661 1043412 81.99179 0 

4 71171 71182 71096 240860 16.87217 0 

5 46104 46114 46037 1097334 78.07866 0 

30 

1 210893 210893* 210891 23445581 1800 1 

2 157867 157867* 157847 22422037 1800.001 1 

3 157309 157318 157293 21096053 1800.001 1 

4 215258 215268 215137 21573266 1800.001 1 

5 232131 232131* 232053 21280420 1800 1 
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Table -3:BAB Vs  algorithm (B) to solve a problem(P4) 

(time by seconds). 

n BAB B 

1100 00..0022 00..0011 

2200 4400 00..0099 

3300 11880000 00..11 

110000 11880000 00..11 

220000 11880000 7755 

330000 11880000 220000 

440000 11880000 551100 

550000 11880000 11555500 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table - 2:Results of algorithm B for (P4).                

n ex value time 

10 

1 5868 0.09719246 

2 14653 0.00887009 

3 9629 0.01406612 

4 9798 0.01021048 

5 5518 0.0208633 

20 

1 74030 0.08547378 

2 52867 0.13290581 

3 78694 0.06773622 

4 71171 0.16499083 

5 46104 0.15121613 

30 

1 210893 0.06058998 

2 157867 0.08748179 

3 157309 0.09807895 

4 215258 0.46199023 

5 232131 0.26577637 

100 

1 5868 0.05231801 

2 14653 0.010738 

3 9629 0.01390555 

4 9798 0.01086037 

5 5518 0.02007836 

200 

1 46373355 71.2329712 

2 55521683 74.9988027 

3 52408900 114.055689 

4 43625257 47.1273153 

5 45305234 78.6391166 

300 

1 180481870 28.6847228 

2 189083219 252.168852 

3 183437469 127.6062 

4 157888207 223.006137 

5 164142954 352.721073 

400 

1 421801412 308.649517 

2 423348248 848.978298 

3 430915881 921.210297 

4 394605521 355.380809 

5 413688655 531.261101 

500 

1 712946851 1496.9584 

2 763797269 1551.28829 

3 755495302 1676.87384 

4 782832453 1768.17998 

5 750245041 1633.0393 
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