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Abstract
The rate of uniform convergence for Hermite-Fejer polynomials to any continuous function f(x)

in each closed sub-interval of (-1,1) has been given by Schonhage in 1971 by means of estimating
the rate of convergence. The present paper deals with the acceleration of convergence and the rate
of convergence by improving the estimate given by Schonhage, throughout two parallel ways,
firstly, by use of the averaged moduli of smoothness or -moduli that gives much better estimation
than that of the moduli of continuity or -moduli. Secondly, by make use of the necessary and
sufficient conditions that we borrow from Szego in 1959 together with the well-known Fejer's
identity (3.8) and the properties of -moduli in addition to some known results that have been given
by Murray Spiegel in 1981 pp299-345.

Keywords: Hermite-Fejer's polynomials, Legendre nodes, acceleration of convergence, moduli of
smoothness.

Introduction
Let f(x) be a continuous function defined

on the closed interval [-1,1]. Recall Legendre
polynomials of the first kind (see [6] pp. 343-
345) which are solutions to the Legendre
differential equation:

( ) ( ) 0121 2 =++′+′′− ymmyyx .......... (1.1)
where m is a real number. This equation can be
solved by means of Frobinous series method
(see [7]) as follows: Since x=0 is an ordinary
point of the equation, then the solution will be
in the form

∑
∞

−∞=

=
j

j
j xay ...................................... (1.2)

From now on, we shall omit the limits of the
summation which are from - , to . The
singular points of this series are x= 1,
that means it should be converge at least in
the open interval (-1,1)
From (1.2) we have
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Substituting (1.3 ) into (1.1 ) we get
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i.e.
( )( ) ( ) ( )[ ]∑ =++−−−+− + 012112 2
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( )( ) ( ) ( )[ ][ ]∑ =+−++++ + 01112 2
j

jj xajjmmajj
Since xj 0, then

( )( ) ( ) ( )[ ] 01112 2 =+−++++ + jjmmajj j

............................... (1.4)
Putting j=-2 in (1.4) shows that a0 is arbitrary.
Putting j=-1 in (1.4) shows that a1 is arbitrary.
from (1.4) the general solution is given as: [7]
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Putting j=0,1,2,3,… in secession, we find
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Since m is a real number (not an integer), (see
[7] p.344) both of the two series in (1.5)
converge when -1<x<1, but they diverge for
x= 1. If m is a positive integer or zero, one of
these series becomes a polynomial, while the
other series converges for -1<x<1 but diverges
for x= 1. To find the polynomial solutions, for
m=0,1,2,3,…, we obtain 1, x, 1-3x2, x-
5/3x3,…which are polynomials of degree
0,1,2,3,…respectively.
Multiplying each of these polynomials by a
constant so chosen that the resulting
polynomial has the value 1 when x=1. The
resulting polynomials are called Legendre
polynomials and are denoted by Pn(x). Where
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Remarks:
Legendre polynomials satisfy the

following properties (see [7]):
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4. Legendre polynomials are the only solution

of Legendre equation [4] which are bounded

in -1 x 1, since the series giving all other
solutions diverge for x= 1

5. If Pn(x)=0 for n=-1,-2,…, then we get

( ) ( ) ( ) ( ) ( )' '
1 12 1 ,n n n nn P x P x P x P x dx+ −+ = − ∫

( ) ( )1 1

2 1
n nP x P x

C
n

+ −−
= +

+
6. ( ) ( ) ( ) ( )xPnxPxP nnn 1''

1 +=−+

7. ( ) ( ) ( )xnPxPxxP nnn =− −
'

1
'

8. ( ) 0012 =+nP

9. ( ) ( ) ( )
n

nP n
n 2...42

12...31102 ⋅⋅⋅
−⋅⋅⋅−=

10. ( ) ( ) ( ) ( ) ( ) ( )nnnn
n

n PPxPxP 11,11,1 −=−=−=−
Fig.(1) below (see[6]) represents Legendre
polynomials of the first kind p0(x), p1(x), …,
p5(x) defined on the closed interval [-1,1].

Fig.(1) : Legndre polynomials pi(x),
i=0,1,…,5 of the first kind [6].

2. Hermite-Fejer's polynomials and the
estimate of the rate of convergence [9]

Let 1>x1,n>x2,n>…>xn,n>-1 be the roots of the
Legendre polynomial pn(x) of degree n. The
general form of Hermite-Fejer interpolation
polynomials of degree 2n-1(see [9]) is
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these polynomials satisfy
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L. Fejer has proved (see [8]) that the
sequence Hn(f,x) converges uniformly to the
continuous function f(x) for |x|<1 in each
closed subinterval of (-1,1). Also he proved
that the following limit at the end points of the
interval [-1,1] is satisfied

( ) ( )dxxffH nn ∫−∞→
=±

1

12
11,lim .....................(2.2)

It has been given in [1] that the condition

( ) ( )dxxff ∫
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12
11 ..................................(2.3)

is necessary and sufficient for
( ) ( ) [ ] 1,0,lim

1,1
≤=−

−∞→
xxfHxf

Cnn
..... (2.4)

The rate of convergence has been estimated in
[9] for a continuous function f(x) in [-1,1] as:
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where f(.)= (f, ) denotes the modulus of
continuity of f(x) [2,3].

The graphical representation (see [11]) of
Legendre polynomials of the second kind is
shown in Fig.(2) below

Fig.(2): [11] Legendre polynomials of the
second kind  Qn, n=0,1,2,…,5 (solutions).

Definition: [7] Hermite Equation

022 =+′−′′ myyxy
is a special case of the Sturm-Liouville
Boundary Value Problem. It arises in the
treatment of the harmonic oscillator in
quantum mechanics. This equation has
solutions called Hermite polynomials when
n=0,1,2,… and are denoted by Hn(x) and have
many important properties analogous to those
of Bessel functions and Legendre polynomials
[7] such as:
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Below is the first six Hermite polynomials:
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Note: In Fig.(3) below Hermite polynomials
are scaled down by a factor of n2 in order to
be fit on the same plot i.e.
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Fig.(3) : graphical representation of Hermite
polynomials Hn(x)/n2, n=0,1,2,3, 4,5

(see [10]).

If equation (2.1) holds, Schonhage has proved
in [1] the following estimate as a corollary:

( ) ( ) 1,log, ≤













=− x

n
nOxfHxf fn

.............................. (2.6)

3. Preliminaries and moduli of smoothness
In order to improve error estimates (2.5)

and (2.6) by use of the well known averaged
moduli of smoothness [2] whenever possible.
In addition to these moduli,the given estimates
in section 4 (see [5]) will definitely give a
better acceleration to the rate of convergence
and minimize the error of the estimation of
Hermite-Fejer polynomials.

Some notations and definitions [2]:
The modulus of continuity is used to

measure the continuity of a function f C[a,b]
and is defined as

( ) ( )
( ) ( ) [ ]{ }

;

sup : , , ,

f

f x f x x x x x a b

=

′ ′ ′= − − ≤ ∈

............................. (3.1)
The kth difference with step h at a point x for
every continuous function f is

( ) ( ) ( ),1 mhxfxf
k

m
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( )!!
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mkm
kk

m −
=








where

is the binomial coefficient

The modulus of smoothness of order k of a
continuous function f is

( ) ( ) [ ]{ }bakhxxhxff k
hk ,,,:sup; ∈+≤∆=

............................... (3.2)
and has the following property:

( ) ( ) ( ) 0,,;1; >+≤ ff k
k

k ....... (3.3)

The integral Lp-modulus (or p-modulus) of
order k of the function f is

( ) ( ){ } pkhb

a

pk
h

h
Lk xff

p

1

0
sup; ∫

−

≤≤
∆=

............................... (3.4)
The local modulus of smoothness of the
continuous function f of order k at a point
x [a,b] is defined as

( )
( )

[ ]
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, ; sup

, ,
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k
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f t t t
f x k kkh x x a b

 ∆ +
 

=   ∈ − + ∩    

............................... (3.5)
so

( ) ( )
[ ]baCkk ff

,
;,; ⋅= ................... (3.6)

Evidently, the averaged modulus of
smoothness of order k ( -modulus) of the
function f M[a,b] (M is the set of bounded and
measurable functions on [a,b]) is defined as

( ) ( ) ( )( )
pb

a

p
kLkk dxxfff

p

1

;,;,; 



=⋅= ∫

............................... (3.7)
and has the following properties

( ) ( )( ) ( ) 0,,;12, 1 >+≤ +
pk

k
pk ff

............................... (3.8)
( ) ( ) ′′≤′′′≤′ ,;; ff kk ..................... (3.9)

4. Acceleration of Convergence
For the sake of simplicity, from now on we

shall write xk for xk,n.

Recall the following estimates (see [5]):
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( ) ,
2

114 2

n
xxPn ≤− ........................ (4.6)

where xk=cos k; x=cos
These estimates will play a basic role in the
proof of the following lemma.
Lemma:
Let xj be the root of Pn(x) which is nearest to x,
then
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Proof:
To prove that

( ) 1,1
2 ±=≠






= jkjkwhen
i

OxAk

From (4.6) we have
(*) ( ) ( ) ( )xpxxxP nn

2224 2 1]1[ −=−
For x=cos and xk=cos k (4.6) we find from
calculus (see for example, Thomas "calculus
and analytic geometry" 4th eddition) that
when xk=cos k then
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Therefore eq. (*) and the ineq. (**) yield
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the nearest to x, by hypothesis, then
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Theorem 1:
Let f(x) be a continuous function defined on
the interval [-1,1], then
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where x [-1,1].

Hermite-Fejer's polynomial (2.1) yields
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and Fejer's identity [4] is
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Using the last identity with equation (4.7) to
obtain the following identity
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This identity and equation (3.7) give
( ) ( )

( ) ( ) ( )
( )( )

( ) ( )[ ] ( ) 21

1
22

2

1

,

TTxAxfxf
xxP

xfxfxP

xfHxf

kk

n

k kkn

k
n

n

+=−

+







−′

−

=−

∑
=

............................. (4.10)
Let us estimate T1 firstly as 0 x 1. Then
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Recall estimation (2.6) and the fact that
|Pn(x)| 1 (see [5]) and -property (3.9), and
the last inquality (4.11) to get
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Let En(f) denotes the deviation from f(x) of the
polynomial qn(x) of degree less than or equal n
of best approximation on the interval [-1,1],
then by Jackson's theorem [3] we deduce

( ) 0,1; >





≤ c

n
fcfEn  .................. (4.13)

The Gauss-Jacobi quadrature formula is exact
for polynomials of degree 2n-1. Thus
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In virtue of Fejer's identity (4.8) and eqs.(4.11)
and (4.12) we find (4.12)
where c1>0
Equations (4.11), (4.12) and (4.15) imply the
estimate
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Similarly, when -1 x 0 we find the estimate
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Therefore, when -1 x 1, the two equations
(4.16) and (4.17) imply the estimate
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Now, to estimate T2, we have
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The previous lemma and the estimates (4.1),
(4.3), (4.6) and (3.8) when k=1 all of them
simultaneously imply the following estimate
for the first summation on the right side of the
last inequality above:
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Similarly, we get the estimation of the second
summation. Whence,
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The estimates given in (3.10), (4.18) and
(4.19) end the proof of theorem 1.
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Corollary:
Let f(x) be a continuous function in the

interval [-1,1] such that (2.3) is satisfied, then
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for -1 x 1. Moreover, if k(f;t)=t for 0< <1,
then using the estimate (14) and theorem 1 to
obtain
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where x [-1,1].
Definition:

(see [3]) A function f defined on A=[a,b],
satisfies a Lipschitz condition with constant M
and exponent , or belongs to the class LipM ,
M 0, 0< 1 if

( ) ( ) AxxxxMxfxf ∈′−′≤−′ ,,
The following theorem 2 proves that the
estimation included in this paper is precise for
f(x) Lip1, -1<x<1 [3].

Theorem 2:
There exists a function f(x) Lip1 and a

constant c such that

( ) ( ) ,log00,
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where n is even integer.

Proof:
Let f(x)=|x|,x=cos , = /2 and n be even,

we have [5],
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Estimations (4.1), (4.3), (4.5), and (4.20) give
for (4.21) and for = /2, the following
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and the proof is done.
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