
 1

Digital Signature For Text File

Ayad Ibrahim Abdulsada
Dept. of Computer Science, College of Education, University of Basrah, Basrah, Iraq.

E-mail: mraiadibraheem@yahoo.com

Abstract:

 Digital signatures are used to detect unauthorized modifications to data and to

authenticate the identity of the signatory. In addition, the recipient of signed data can

use a digital signature as evidence in demonstrating to a third party that the signature

was, in fact, generated by the claimed signatory. This is known as non-repudiation,

since the signatory cannot easily repudiate the signature at a later time. In this paper,

an algorithm for signing text file has been presented. The famous RSA public key

algorithm and SHA-l(Secure Hash Algorithm) hash function are used to generate the

digital signature of a text file. Our algorithm consist of two parts: signature generation

and signature verification. Many experiments tested to examine the security of the

presented work.

Keywords: Computer security, Digital signatures, Public key cryptography, Hash

functions.

 2

1. Introduction

 Digital documents that are exchanged over the Internet can be accessed or

modified by a malicious user with relative ease. This creates an important security

concern while exchanging multimedia data over the Internet. Multimedia data

contains information in the form of audio, video, still images, etc. This increases the

need for authentication and verification of document integrity for users of such data.

One of the well-known methods used for authentication of digital documents is the

public key encryption-based authentication [1].

 A digital signature is represented in a computer as a string of bits. A digital

signature is computed using a set of rules and a set of parameters that allow the

identity of the signatory(authentication) and the integrity of the data to be verified.

Digital signatures may be generated on both stored and transmitted data. Signature

generation uses a private key to generate a digital signature; signature verification

uses a public key that corresponds to, but is not the same as, the private key. Each

signatory possesses a private and public key pair. Public keys may be known by the

public; private keys are kept secret. Anyone can verify the signature by employing the

signatory‟s public key. Only the user that possesses the private key can perform

signature generation.

 In detail, a Signature procedure looks like this: Senders use their message and

secret key to calculate the digital signature for the message. Compared to hand-

written signatures, digital signatures therefore have the advantage that they also

depend on the document to be signed. Signatures from one and the same participant

are different unless the signed documents are completely identical. Even inserting a

blank in the text would lead to a different signature. The recipient of the message

would therefore detect any injury to the message integrity as this would mean that the

signature no longer matches the document and is shown to be incorrect when verified.

The document is sent to the recipient together with the signature. The recipient can

then use the sender‟s public key, the document and the signature to establish whether

or not the signature is correct. Because a signature is about as long as the straight data

stream to be signed, the procedure we just described has in practice, however, a

decisive disadvantage. The signature is approximately as long as the document itself.

To prevent an unnecessary increase in data traffic, and also for reasons of

performance, we apply a cryptographic hash function to the document— before

signing. The output of the hash function will then be signed [2].

 A digital signature algorithm is intended for use in electronic mail, electronic

funds transfer, electronic data interchange, software distribution, data storage, and

other applications that require data integrity assurance and data origin authentication.

2. Hash Functions

 A hash function maps a message of any length to a string of characters with a

constant size, the hash value. Cryptographically secure hash functions fulfill the

following requirements [3, 4]:

• Resistance Against 1
st
 Pre-Image Attacks: It should be practically impossible, for a

given number, to find a message that has precisely this number as hash value. If we

have the hash value H‟, it‟s impossible to find message m, so that: H(m) = H‟.

• Resistance Against 2
nd

 Pre-Image Attacks: It should be practically impossible, for

a given message, to find another message, which has precisely the same hash value.

If we have message ml [and so the hash value H1 = H(ml)], it‟s impossible to search

message m2, so that: H(m2) = H1.

 3

• Collision Resistance: It should be practically impossible to find any two messages

with the same hash value (it doesn‟t matter what hash value). Searched 2 messages

ml and m2, so that: H(ml) = H(m2).

 Hash functions are normally used to provide the digital fingerprints of files to

ensure that the content of the file has not been altered in transit.

2.1 Secure Hash Algorithm (SHA-1) [5]

 The Secure Hash Algorithm (SHA) was developed by National Institute of

Standards and Technology (NIST) and published as a federal information processing

standard (FIPS 180) in 1993; a revised version was issued as FIPS 180-1 in 1995 and

is generally referred to as (SHA-l). This algorithm has been well taken and

appreciated by experts.

SHA-1 Logic

 The algorithm takes as input a message with length of less than 2
64

 bit. And

produces as output is 160-bit message digest. The input is processed in 512-bit

blocks. The algorithm steps are:

Step 1: Append padding bits. The message is padded so that its length is congruent to

448 modulo 512.

Step 2: Append length. A block of 64-bit is appended to the message. This block

contain length of the original message.

Step 3: Initialized buffer. The buffer can be represented as five 32-bit registers (A, B,

C, D, E). These registers initialized with the following values:

Step 4: Process message in 512-bit blocks. This step consist of four rounds of

processing of 20 steps each. Figure (1) illustrate the logic of this step.

Figure (l): SHA-1 Compression function.

A=67 45 23 01 D=10 32 54 76

B=ef cd ab 89 E=c3 d2 el f0

C=98 ba dc fe

 4

Where Yq: the current 512-bit being processed.

 CVq: 160-bit, the output of the previous block. CV0=(ABCDE).

 CVq+1: 160-bit, the output of the current block.

 Wt: a 32-bit word derived from the current 512-bit input block. The first 16

values of Wt are taken directly from the current block. The remaining values are

defined as follows:

 Wt = S
1
 (Wt-16 XOR Wt-14 XOR Wt-8 XOR Wt-3) 16≤t≤79 …(1)

S
k
: rotation of the 32-bit argument by k-bits to the left. +: addition module 2

32
.

K: constant. Table (1) explain K values.

 Each steps from the 80 steps (4-round * 20-step) has the following form:

A,B,C,D,E (E+f(t,B,C,D)+S
5
(A)+Wt+Kt),A, S

30
(B),C,D) . . . (2)

 The four rounds have a similar structure, but different logical functions, which

referred as f1, f2, f3, and f4. Table(2) explain the logic of the four functions.

Step 5: Output. After all L 512-bit blocks have been processed, the output from the

last stage is the 160-bit message digest (CVL).

2.2 Signing with Hash Functions

Rather than signing the actual document, the sender now first calculates the hash

value of the message and signs this. The recipient also calculates the hash value of the

message (the algorithm used must be known), then verifies whether the signature sent

with the message is a correct signature of the hash value. If this is the case, the

Table (1): K values.

0≤t≤19 Kt=5A827999 [2
30

* √2]

20≤t≤39 Kt=6ED9EBA1 [2
30

* √3]

40≤t≤59 Kt=8F1BBCDC [2
30

* √5]

60≤t≤79 Kt=CA62C1D6 [2
30

* √10]

Step Function Name Function value

(0≤t≤10) f1=f(t,B,C,D) (B^C)OR(B'^D)

(20≤t≤39) f2=f(t,B,C,D) B XOR C XOR D

(40≤t≤59) f3=f(t,B,C,D) (B^C) OR (B^D) OR (C^D)

(60≤t≤79) f4=f(t,B,C,D) B XOR C XOR D

Tab1e (2): Logic of SHA-1 functions.

 5

signature is verified to be correct. This means that the message is authentic, because

we have assumed that knowledge of the public key does not enable you to derive the

secret key. However, you would need this secret key to sign messages in another

name. Some digital signature schemes are based on asymmetric encryption

procedures, the most prominent example being the RSA system, which can be used

for signing by performing the private key operation on the hash value of the document

to be signed.

3. The RSA Procedure

 As early as 1978, R. Rivest, A. Shamir, L. Adleman introduced the most important

asymmetric cryptography procedure to date. It encrypt and decrypt numbers M less

than n. The following algorithm explain the RSA work [6]:

 The size of an RSA key pair is commonly considered to be the length of the

modulus n in bits. The corresponding RSA private key consists of the same modulus

N and a private key exponent d that depends on N and the public key exponent e(d is

the multiplicative inverse of e). Thus, the RSA private key is the pair of values (N, d)

and is used to generate digital signatures. In order to provide security for the digital

signature process, the two integers p and q, and the private key exponent d must be

kept secret. The modulus N and the public key exponent e may be made known to

anyone.

Key Generation

- Select two primes p,q, such that p≠ q.

- Calculate N= p*q.

- Calculate phi=(p1)*(q1). Phi: Euler phi function.

- Select integer e, such that: gcd (phi, e)=l; 1<e<phi.

- Calculate d, such that d ≡e1 mod phi.

- Public key {e, N}

- Private key = {d, N}

Encryption

Plaintext: M<n

Cipher text: C=M
e
 (mod N)

Decryption

Cipher text: C

Plaintext: M=C
d
 (mod N)

 6

4. RSA Digital Signature

Figure (2) explain the basic steps of our presented RSA digital Signature.

Our work consist of the following two algorithms:

4.1 Signature Generation

 In this algorithm, the sender sign his message by using his private key and send it

to the recipient as the following steps:

 1- Message Choosing: Determine the message to sign it. In this paper, a text file has

been as a message.

 2-Hash Function: We use SHA-1 algorithm to compress the message and compute

the hash code H, which consist of 160-bit.

 3- Key Generation: Choose two prime numbers p, q. Compute the RSA modulus N,

such that N=p*q. then compute Euler phi function, where: phi=(p1)*(q1). Select the

public key e, where gcd (e, phi)1, and 1<e<phi. Finally compute the secret key d

which is the multiplicative inverse (e
-1

) of e. The d value computed by using extended

Euclid algorithm as the following [4]:

Where d = B3.

4- Pre-encryption: In this step, we initialize the hash code by converting it to bytes

vector, to produce 20 byte vector (Vec). Then we convert the above vector into blocks

of two numbers. By combining each two bytes together into one block as:

 block=(byte1 *256)+byte2 … (3)

we obtain the following 10 blocks vector (Bvector). Notice that each number in

Bvector must be less than N (module).

 7

5- Sign Computation: In this step, we use the private key (d) of the sender (signatory)

to encrypt each number M in Bvector (hash code) as the following:

 C=M
d
 mod N . . . (4)

to obtain the 10 numbers sign vector (sign).

6-Sign Appending: the obtained sign is appended in the bottom of the signed text and

send to the recipient of that text.

4.2Signature Verification

 In this algorithm, the recipient do the steps to verify the sign in the received

message by using the public key of the sender:

1- Signature Authentication: The received signature numbers are decrypted first by

the public key (e) of the sender(signatory). As the following equation:

 M=C
e
 mod N …(5)

 Then each obtained block is converted back to its original two bytes. As the

following: Byte1= block/256, byte2= mod(block, 256). The final result of this step is

20 bytes.

 2- Hash code Comparison (integrity): Compute the hash code of the received

message (text) again and compare its hash code with the received hash code (result of

step l). If the two codes are equivalent, then we obtain the following results:

a. The message has not been modified during the transmission, since its hash code

equal the hash code of the signed message.

b. Message authentication, since its delivered by the public key of the sender.

c. No source-repudiation, Since the public key of the sender used to produce the

correct hash code for the received message.

5. Experimental Results

 In the present work, different experiments has been tested to explain how can we

sign a text file by RSA digital signature. MATLAB language programming has been

used as a language for our tests. We use the following text as a message to be signed:

Experiment1

 In this experiment, signature generation has been tested. First we compute the hash

code H for our text by using SHA-l hash algorithm. We obtain the following 160- bit:

H = (C6D74E00F627F4B9F231627AB36AE633463913D3)Hex. Then we use the

following parameters for the key generation of RSA algorithm:

- p=2617,q=3541,

- Compute N=p*q=2617*354l=9266797.

what is cryptool ?

cryptool is a freeware program which enables you to apply and analyses

cryptographic mechanisms. cryptool contains an exhaustive online help, which can

be understood without deep knowledge in cryptography, therefore no user manual on

how to use cryptool is provided cryptool is completely available in English and

German cryptool has implemented almost all state-of-the-art crypto functions and

allows you to learn about and use, modern and classic cryptography. the methods

available include both classic methods (e.g. the caesar encryption algorithm) and

modem cryptosystems (for example, the RSA and AES algorithms, as well as

algorithms based on elliptic curves).

 8

- Phi =2616*3540=9260640.

- Select the public key e=37.

- Compute the private key d by using extended Euclid algorithm. We obtain

d=l7520l3.

 In the Pre-encryption step we obtain:

Vec=[198,215,78,0,246,39,244, 185,242,49,98, 122, 179, 106,230, 51,70, 57, 19,211].

And Bvector = [50903, 19968, 63015, 62649, 62001, 25210, 45930,5893 1, 17977, 5075].

In the Sign computation step, we obtain the following:

Sign = [3908160, 9149082, 3252908, 8721426,1981821, 1803332, 2734167, 5217033, 2461338, 430770].

the generated signature is appended to the text file to obtain the signed message.

Experiment2
 In this experiment, we verify the message by the public key of the sender (e). We

find that the hash code of the received message and the hash code of the signature

both are equal: [198,215,78,0,246,39,244, 185,242,49,98, 122,179, 106,230,51,70, 57, 19,211].

 So, the signature is correct and the message is authenticated and not altered during

the transmission. If we use another public key such as e=36.,then we obtain the

following hash code: [15563, 102,19720, 63, 32405, 201, 20939, 150, 8094, 150, 7649, 228, 17126, 210,

25343, 67, 3762, 215, 11217, 215]. „Which is very different from the original hash code. So,

the received message is not authorized and the signature is incorrect.

Experiment3
 In this experiment, we test the sensitivity of the hash function SHA- 1 by altering

only 1-byte of the message during the transmission. We compare the hash code of our

text and the hash code of the following text (only remove‟?‟ from the first line):

We obtain the following hash code:

[C3397C1C82DD008E2913 1 16F27671766407F1250]
Hex

6.Conclusions

 The security strength associated with the RSA digital signature process is

no greater than the minimum of the security strength associated with the bit length of

the modulus and the security strength of the hash function that is employed. It is

recommended that the security strength of the modulus and the security strength of

the hash function be the same unless an agreement has been made between

what is cryptool

cryptool is a freeware program which enables you to apply and analyses

cryptographic mechanisms. cryptool contains an exhaustive online help, which can

be understood without deep knowledge in cryptography, therefore no user manual on

how to use cryptool is provided cryptool is completely available in English and

German cryptool has implemented almost all state-of-the-art crypto functions and

allows you to learn about and use, modern and classic cryptography. the methods

available include both classic methods (e.g. the caesar encryption algorithm) and

modem cryptosystems (for example, the RSA and AES algorithms, as well as

algorithms based on elliptic curves).

 9

participating entities to use a stronger hash function. A hash function that provides a

lower security strength than the security strength associated with the bit length of the

modulus ordinarily should not be used, since this would reduce the security strength

of the digital signature process to a level no greater than that provided by the hash

function.

References

[1]B. Schneier, "Applied Cryptography". John Wiley & Sons, 1996.

[2] FIPS PUB 186-3, “Digital Signature Standard (DSS)”, U.S. Department of

Commerce/N.I.S.T. , 2009.

[3] FIPS PUB 180-2, “Secure Hash Standard (SHS)”, U.S. Department of

Commerce/N.I.S.T., August 1, 2002.

[4] FIPS PUB 186,” Entity Authentication Using Public Key Cryptography”, U.S.

Department of Commerce/N.I.S.T. ,February 18, 1997.

[5] William Stalling, Cryptography and Network Security Principles and Practice, 3‟

Edition, Prentice Hall, 2003.

[6] Rivest R. L., Shamir A. and Adleman L.,”A Method for Obtaining Digital

Signatures and Public Key Cryptosystems”, Commun. ACM, Vol 21 , pp. 120-126,

April 1978.

 10

التوقيع الرقمي لملف نصي

أٌاد إبشاهٍى عبذ انسادة

. انعشاق, انبصشة, جايعت انبصشة, كهٍت انتشبٍت, قسى عهىو انحاسباث

 المستخلص

 تستخذو انتىاقٍع انشقًٍت نتحشّي انتعذٌلاث غٍش انًشخصت عهى انبٍاَاث ولإثباث هىٌت انشخص انًىّقع

بالإضافت إنى رنك فاٌ يستهى انبٍاَاث انًىقعت ًٌكُه أٌ ٌستخذو انتىقٍع انشقًً كذنٍم باٌ انبٍاَاث جاءث . نهبٍاَاث

لاٌ انًىقّع لا ٌستطٍع بسهىنت إَكاس إسسانه انبٍاَاث , وهزا يا ٌعشف بعذو الإَكاس. فعلا يٍ انشخص انًذعى

تعتًذ عًهٍت تىنٍذ انتىقٍع انشقًً عهى خىاسصيٍتً . تى فً هزا انبحث تقذٌى خىاسصيٍت نتىقٍع يهف َصً. انًىقعت

RSA انشهٍشة نهتشفٍش بانًفتاح انًعهٍ وخىاسصيٍت الاختضال SHA-1 . ٍتتكىٌ خىاسصيٍت انتىقٍع انشقًً ي

 .تى إجشاء عذة تجاسب لاختباس أيٍُت انطشٌقت انًستخذيت. تىنٍذ انتىقٍع انشقًً وفحص انتىقٍع انشقًً: جضأٌٍ

 .دوال الاختضال, انتشفٍش بانًفتاح انًعهٍ, انتىقٍع انشقًً, أيٍُت انحاسىب :الكلمات المفتاحية

