Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

Generalized Weak Forms of Irresolute Mappings in Intuitionistic Topological Spaces

Samer R. Yaseen¹, Nabila I. Aziz², Suham I. Aziz³

¹Department of Mathematics, College of Science, Tikrit University, Tikrit, Iraq.

²Department of Mathematics, College of Education -Tuzkhurmatu, Tikrit University, Tikrit, Iraq.

³Ministry of Education, General Directorate of Kirkuk Province Education, Kirkuk, Iraq. ¹samer2017@tu.edu.iq, ²nabila.be@tu.edu.iq, ³suham-70100@yahoo.com

Abstract

The purpose of this paper is to study a new classes of irresolute mappings called Intuitionistic Generalized Pre irresolute mappings, Intuitionistic Generalized Semi irresolute mappings, Intuitionistic Generalized α -irresolute mappings and Intuitionistic Generalized β -irresolute mappings with study of their properties. Then we investigate relationships between them.

Keywords: intuitionistic set, intuitionistic topological spaces, Irresolute mappings, Intuitionistic Generalized mappings.

DOI: http://doi.org/10.32894/kujss.2018.13.4.3

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

تعميم الصيغ الضعيفة للتطبيقات المحيرة في الفضاءات التبولوجية الحدسية

سامر رعد ياسين ¹، نبيلة ابراهيم عزيز ²، سهام ابراهيم عزيز ¹قسم الرياضيات، كلية العلوم، جامعة تكريت، تكريت، العراق.

²قسم الرياضيات، كلية التربية – توزخورماتو، جامعة تكريت، تكريت، العراق.

³وزارة التربية / مديرية العامة لتربية كركوك، كركوك، العراق.

⁴samer2017@tu.edu.iq, ²nabila.be@tu.edu.iq, ³suham-70100@yahoo.com

الملخص

في هذا البحث قدمنا صفوف جديدة من التطبيقات المحيرة وهي: التطبيق المحير من النوع Pre المعمم والتطبيق المحير شبه المعمم والتطبيق المحير شبه المعمم والتطبيق المحير من النوع α المعمم والتطبيق المحير شبه المعمم والتطبيق المحير من النوع α المعمم والتطبيق المحير شبه المعمم والتطبيق المحير من النوع α المعمم والتطبيق المحير من النوع α المعمم والتطبيق المحير شبه المعاهيم.

الكلمات الدالة: المجموعة الحدسية، الفضاءات التبولوجية الحدسية، التطبيقات المحيرة، التطبيقات المعممة الحدسية.

DOI: http://doi.org/10.32894/kujss.2018.13.4.3

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

1. Introduction:

In 1965, Zadeh [8] introduced the concept of fuzzy set, later Atanassov introduced the concept of Intuitionistic fuzzy set [1,2] using generalized of fuzzy set, this concept used to defined intuitionistic fuzzy special sets and "intuitionistic fuzzy topological spaces which introduced by Coker [4,5]. Finally, in 2000, Coker [6] introduced the concept of intuitionistic topological spaces. In this paper we introduce a new classes of weak irresolute mappings with study their properties. Finally, we investigate relationships between them.

2. Preliminaries:

Since We require the following known definitions, notations, and some properties so we recall them in this section.

Definition 2.1 [6] Let $\widetilde{M} \subseteq X \neq \emptyset$. The Intuitionistic set \widetilde{M} (IS, for short) is the form $\widetilde{M} = \langle x, M_1, M_2 \rangle$ and $M_1, M_2 \subseteq X$ with condition $M_1 \cap M_2 = \emptyset$. The set M_1 is a set of members of \widetilde{M} and M_2 is a set of non-members of \widetilde{M} .

Definition 2. 2 [6] Let $X \neq \emptyset$, and let $\widetilde{M} = \langle x, M_1, M_2 \rangle$ and $\widetilde{N} = \langle x, N_1, N_2 \rangle$ are two IS. also, let $\{\widetilde{M}_s; s \in S\}$ be a collection of Intuitionistic sets in X, with $\widetilde{M}_i = \langle x, M_s^{(1)}, M_s^{(2)} \rangle$, where $M_s^{(1)}$ is a set of members of \widetilde{M} and $M_s^{(2)}$ is a set of non-members of \widetilde{M} . Then:

- 1) $\widetilde{M} \subseteq \widetilde{N}$ iff $M_1 \subseteq N_1$ and $N_2 \subseteq M_2$,
- 2) $\widetilde{M} = \widetilde{N}$ iff $\widetilde{M} \subseteq \widetilde{N}$ and $\widetilde{N} \subseteq \widetilde{M}$,
- 3) The complement of \widetilde{M} is denoted by \widetilde{M}^c and \widetilde{M}^c =(x, M2, M1),
- 5) $\dot{\emptyset} = \langle x, \emptyset, X \rangle$, $\dot{X} = \langle x, X, \emptyset \rangle$.

Definition 2.3 [4] Let $X \neq \emptyset$, $w \in X$ and let $\widetilde{M} = \langle x, M_1, M_2 \rangle$ be an Intuitionistic set the Intuitionistic point (IP, for short) IS \dot{w} defined by $\dot{w} = \langle x, \{w\}, \{w\}^c \rangle$ in X. Also a Vanishing Intuitionistic point defined by IS $\ddot{w} = \langle x, \emptyset, \{w\}^c \rangle$ in X. The IS \dot{w} belongs to \widetilde{M} ($\dot{w} \in M$, for short) iff $w \notin M_1$, also IS \ddot{p} contained in \widetilde{M} ($\ddot{w} \in \widetilde{M}$, for short) iff $w \notin M_2$.

Definition 2.4 [3] Let $X \neq \emptyset$. An Intuitionistic topology (ITS, for short) on X is a collection μ of an Intuitionistic sets in X with the following conditions:

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

- 1) $\dot{\emptyset}, \dot{X} \in \mu$.
- 2) μ is closed under finite intersections.
- 3) μ is closed under arbitrary unions

Each element in μ is called Intuitionistic open set denoted by " IOS ". The complement of an Intuitionistic open set is called Intuitionistic closed set Denoted by "ICS".

Definition 2.5 [6] Let X, $Y \neq \emptyset$, and $f: (X, \mu) \rightarrow (Y, \gamma)$ be a mapping.

- a) If $\widetilde{N} = \langle y, N_1, N_2 \rangle$ is an IS in Y. Then the inverse image of \widetilde{N} defined by $f^{-1}(\widetilde{N}) = \langle x, f^{-1}(N_1), f^{-1}(N_2) \rangle$.
- **b**) If $\widetilde{M} = \langle x, M_1, M_2 \rangle$ is an IS in X. Then $f\left(\widetilde{V}\right) = \langle y, f(M_1), \widecheck{f}(M_2) \rangle$ is an IS in Y,X where $\widecheck{f}\left(\widetilde{M}\right) = \overline{\left(f\left(\overline{\widetilde{M}_2}\right)\right)}$.

Definition 2.6 [6] Let (X, μ) be an ITS and let $\widetilde{M} = \langle x, M_1, M_2 \rangle$ be IS. The Interior (namely, int(\widetilde{M})) and the Closure (namely, cl(\widetilde{M})) of a set \widetilde{M} defined by:

$$int(\widetilde{M}) = \bigcup \{ \widetilde{J} : \widetilde{J} \subseteq \widetilde{M}, J \in \mu \},$$

$$cl(\widetilde{M}) = \cap \{ \widetilde{K} : \widetilde{M} \subseteq \widetilde{K}, \overline{\widetilde{K}} \in \mu \}.$$

Also,

1- $\operatorname{sint}(\widetilde{M}) = \cup \{ \ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, \ V \in ISOX \},$

$$scl(\widetilde{M}) = \bigcap \{ \widetilde{J} : \widetilde{M} \subseteq \widetilde{J}, \overline{\widetilde{J}} \in ISCS \}.$$

2- $pint(\widetilde{M}) = \bigcup \{ \ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, \ V \in IPOX \},$

$$pcl(\widetilde{M}) = \cap \{ \widetilde{J} : \widetilde{M} \subseteq \widetilde{J}, \overline{\widetilde{J}} \in IPCS \}.$$

3- $\alpha \operatorname{int}(\widetilde{M}) = \bigcup \{ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, V \in I\alpha OX \},$

$$\alpha \operatorname{cl}(\widetilde{M}) = \bigcap \{ \widetilde{J} : \widetilde{M} \subseteq \widetilde{J}, \overline{\widetilde{J}} \in \operatorname{I}\alpha \operatorname{CS} \}.$$

 $\textbf{4-}\,\beta \mathrm{int}(\widetilde{M}) = \cup \{\ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, \, V \in I\beta OX \,\}\,,$

 $\beta \operatorname{cl}(\widetilde{M}) = \bigcap \{ \widetilde{J} : \widetilde{M} \subseteq \widetilde{J}, \overline{\widetilde{J}} \in \operatorname{I}\beta \operatorname{CS} \}.$

Definition 2.9. [7] Let (X, μ) be an ITS. An intuitionistic set \widetilde{M} of X is said to be:

- 1) Intuitionistic generalizes semi-open set(IGSOS , for short) if $\ \ \forall \ U \ ISCS \ \ s.t$
- $U \subseteq \widetilde{M}$ then $U \subseteq int(\widetilde{M})$. The complement of IGSOS is called IGSCS.
- 2) Intuitionistic generalizes pre-open set (IGPOS , for short) if ∀ U IPCS s.t

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

- $U \subseteq \widetilde{M}$ then $U \subseteq int(\widetilde{M})$. The complement of IGPOS is called IGPCS.
- 3) Intuitionistic generalizes α -open set (IG α OS, for short) if \forall U I α CS s.t
- $U \subseteq \widetilde{M}$ then $U \subseteq \operatorname{int}(\widetilde{M})$. The complement of $IG\alpha OS$ is called $IG\alpha CS$.
- 4) Intuitionistic generalizes β -open set (IG β OS, for short) if \forall U I β CS s.t
- $U \subseteq \widetilde{M}$ then $U \subseteq int(\widetilde{M})$. The complement of $IG\beta OS$ is called $IG\beta CS$.

3. Intuitionistic Generalized Pre Irresolute & Semi Irresolute Mappings:

In this part we introduce Intuitionistic Generalized pre irresolute, Intuitionistic Generalized semi irresolute, Intuitionistic Generalized β -irresolute, Intuitionistic Generalized α -irresolute of mappings and study their properties.

Definition 3.1: A mapping h: $(Q, \mu) \rightarrow (W, \gamma)$ is an Intuitionistic Generalized Pre Irresolute (IGPIr, for short) (resp., Intuitionistic Generalized semi Irresolute (IGSIr, for short), Intuitionistic generalized α irresolute (IGαIr, for short) Intuitionistic Generalized β Irresolute (IGβIr, for short) mapping if $h^{-1}(\widetilde{M})$ is IGPCS (resp., is IGSCS, IGαCS, IGβCS) in (Q, μ) for every IGPCS \widetilde{M} of (W, γ) (resp., for every IGSCS \widetilde{M} , IGαCS \widetilde{M} IGβCS \widetilde{M} of (W, γ)).

Proposition 3.2: Let h: $(Q, \mu) \to (W, \gamma)$ and k: $(W, \gamma) \to (T, \delta)$ be IGPIr mapping. Then $k \circ h$: $(Q, \mu) \to (T, \delta)$ is an IGPIr mapping.

Proof: Let \widetilde{M} be an IGPCS in T. Then k^{-1} (\widetilde{M}) is an IGPCS in W. Since h is an IGPIr, so that h^{-1} (k^{-1} (\widetilde{M})) is an IGPCS in Q. Thus $k \circ h$ is IGPIr mapping.

Proposition 3.3: Let h: $(Q, \mu) \to (W, \gamma)$ and k: $(W, \gamma) \to (T, \delta)$ be IG α Ir mapping. Then $k \circ h: (Q, \mu) \to (T, \delta)$ is an IGSIr mapping.

Proof: Let \widetilde{M} be an IG α CS in T. Then k^{-1} (\widetilde{M}) is an IG α CS in W, since h is IG α IIr, and \forall IG α CS is IGSCS. Thus h^{-1} (k^{-1} (\widetilde{M})) is an IGSCS in Q. Therefore $k \circ h$ is IGSIr mapping.

Proposition 3.4: Let h: $(Q, \mu) \to (W, \gamma)$ be an IGPIr mapping and k: $(W, \gamma) \to (T, \delta)$ be IGP continuous mapping, then $k \circ h$: $(Q, \mu) \to (T, \delta)$ is IGP continuous mapping.

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

Proof: Let \widetilde{M} be ICS in T. Then $k^{-1}(\widetilde{M})$ is IGPCS in W. Since h is an IGPIr mapping, $h^{-1}(k^{-1}(\widetilde{M}))$ is IGPCS in Q. Therefore, $k \circ h$ is IGPS continuous mapping.

Proposition 3.5: Let h: $(Q, \mu) \to (W, \gamma)$ be IG α Ir mapping and k: $(W, \gamma) \to (T, \delta)$ be IG α continuous mapping, then k \circ h: $(Q, \mu) \to (T, \delta)$ is IGS continuous mapping.

Proof: Let \widetilde{M} be ICS in T .Then $k^{-1}(\widetilde{M})$ is an IG α CS in W. Since h is IG α Ir mapping, $h^{-1}(k^{-1}(\widetilde{M}))$ is IGSCS in Q and \forall IG α CS is IGSCS. Hence $k \circ h$ is IGS continuous mapping.

Proposition 3.6: Let h: $(Q, \mu) \to (W, \gamma)$ be IGPIr mapping and k: $(W, \gamma) \to (T, \delta)$ be IGP continuous mapping, then $k \circ h$: $(Q, \mu) \to (T, \delta)$ is IG β continuous mapping.

Proof: from the definition.

Theorem 3.7: Let h: $(Q, \mu) \to (W, \gamma)$ be a mapping. Then the following conditions are equivalent:

(i) $h^{-1}(\widetilde{M})$ is IGPOS in Q \forall IGPOS \widetilde{M} in W, (ii) h^{-1} Pint(\widetilde{M}) \subseteq Pint h^{-1} (\widetilde{M}) for every IS \widetilde{M} of W, (iii) Pcl h^{-1} (\widetilde{M}) \subseteq h^{-1} Pcl(\widetilde{M}) \forall IS \widetilde{M} of Y.

Proof: (i) \Rightarrow (ii) Let \widetilde{M} be IS in W and Pint(\widetilde{M}) \subseteq \widetilde{M} . Also $h^{-1}pint(\widetilde{M}) \subseteq h^{-1}(\widetilde{M})$, since Pint(\widetilde{M}) is IPOS in W, so that IGPOS in W. Thus h^{-1} Pint(\widetilde{M}) is IGPOS in Q, and h^{-1} Pint(\widetilde{M}) is IPOS in Q. Hence h^{-1} Pint(\widetilde{M}) = Pint h^{-1} Pint(\widetilde{M}) \subseteq Pint $h^{-1}(\widetilde{M})$.

 $(ii) \Rightarrow (iii)$ is easy by taking complement in (ii).

 $\begin{array}{l} \text{(iii)} \Rightarrow \text{(i) Let \widetilde{M} be an IGPCS in W. Since \widetilde{M} is an IPCS in W and $Pcl(\widetilde{M})$} = \widetilde{M} \text{. Hence h^{-1}} \\ (\widetilde{M}) = h^{-1} \ Pcl(\widetilde{M}) \supseteq Pcl \ h^{-1} \ (\widetilde{M}), \text{ by assumption . This implies h^{-1}} \ (\widetilde{M}) \text{ is IGPCS in Q} \,. \end{array}$

Theorem 3.8: Let h: $(Q, \mu) \to (W, \gamma)$ be a mapping. Then the following conditions are equivalent:

(i) $h^{-1}(\widetilde{M})$ is IGSOS in Q \forall IGSOS \widetilde{M} in W, (ii) h^{-1} $\alpha int(\widetilde{M}) \subseteq \alpha int h^{-1}(\widetilde{M})$ for every IS \widetilde{M} of W, (iii) Scl $h^{-1}(\widetilde{M}) \subseteq h^{-1}$ Scl(\widetilde{M}) \forall IS \widetilde{M} of Y.

Proof: (i) \Rightarrow (ii) Let \widetilde{M} be any IS in W and $\alpha int(\widetilde{M}) \subseteq \widetilde{M}$. Also $h^{-1}\alpha int(\widetilde{M}) \subseteq h^{-1}(\widetilde{M})$. Since $\alpha int(\widetilde{M})$ is I α OS in W, so that IGSOS in W. Therefore $h^{-1}\alpha int(\widetilde{M})$ is IGSOS in Q, and $h^{-1}\alpha int(\widetilde{M})$ is ISOS in Q. Thus $h^{-1}\alpha int(\widetilde{M}) = \alpha int h^{-1}\alpha int(\widetilde{M}) \subseteq \alpha int h^{-1}(\widetilde{M})$.

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

 $(ii) \Rightarrow (iii)$ is obvious.

(iii) \Rightarrow (i) Let \widetilde{M} be an IGSCS in W. Since \widetilde{M} is an ISCS in W and $Scl(\widetilde{M}) = \widetilde{M}$. Hence $h^{-1}(\widetilde{M}) = Scl(\widetilde{M}) \subseteq h^{-1}Scl(\widetilde{M})$, by assumption. Therefore $h^{-1}(\widetilde{M})$ is an IGSCS in Q.

Proposition 3.9: Let h: $(Q, \mu) \to (W, \gamma)$ and k: $(W, \gamma) \to (T, \delta)$ be IG α Ir mapping. Then $k \circ h$: $(Q, \mu) \to (T, \delta)$ is IGP mapping.

Proof: Let \widetilde{M} be IGSCS in T. Then k^{-1} (\widetilde{M}) is IGSCS in W. Since h is IG α Ir, h^{-1} (k^{-1} (\widetilde{M})) is IG α CS in Q, by assumption. Since every IG α CS is IGPCS. Thus h^{-1} (k^{-1} (\widetilde{M})) is IGSCS in Q. Therefore $k \circ h$ is IGPIr mapping.

Proposition 3.10: Let h: $(Q, \mu) \to (W, \gamma)$ be IGPIr mapping and k: $(W, \gamma) \to (T, \delta)$ be IG α continuous mapping, then k \circ h: $(Q, \mu) \to (T, \delta)$ is IGP continuous mapping.

Proof: Let \widetilde{M} be ICS in T. Then $k^{-1}(\widetilde{M})$ is IGPCS in W. Since h is an IGPIr mapping, $h^{-1}(k^{-1}(\widetilde{M}))$ is IG α CS in Q. Since every IG α CS is IGPCS. Thus $h^{-1}(k^{-1}(\widetilde{M}))$ is IGPCS in Q. Hence $k \circ h$ is IGP continuous mapping.

Proposition 3.11: Let h: $(Q, \mu) \to (W, \gamma)$ be IG α Ir mapping and k: $(W, \gamma) \to (T, \delta)$ be IG α continuous mapping, then k \circ h: $(Q, \mu) \to (T, \delta)$ is IGS continuous mapping.

Proof: Let \widetilde{M} be I α CS in T. Then $k^{-1}(\widetilde{M})$ is IG α CS in W. Since h is IG α Ir mapping, $h^{-1}(k^{-1}(\widetilde{M}))$ is IG α CS in Q . Since every IG α CS is IGSCS. Thus $h^{-1}(k^{-1}(\widetilde{M}))$ is IGSCS in Q. Hence $k \circ h$ is IGS continuous mapping.

Theorem 3.12: Let h: $(Q, \mu) \to (W, \gamma)$ be a mapping. Then the following conditions are equivalent (i) $h^{-1}(\widetilde{M})$ is IGPOS in $Q \vee IG\alpha OS \widetilde{M}$ in W, (ii) $h^{-1}Pint(\widetilde{M}) \subseteq Pint h^{-1}(\widetilde{M}) \vee IS \widetilde{M}$ of W, (iii) $Pcl h^{-1}(\widetilde{M}) \subseteq h^{-1} Pcl(\widetilde{M}) \vee IS \widetilde{M}$ of W.

Proof: (i) \Rightarrow (ii) Let \widetilde{M} be Is in W and Pint(\widetilde{M}) \subseteq \widetilde{M} . Also $h^{-1}Pint(\widetilde{M}) \subseteq h^{-1}$ (\widetilde{M}). Since Pint(\widetilde{M}) is IPOS in W, so that IG α OS in W. Therefore $h^{-1}Pint(B)$ is an IGPOS in Q, and $h^{-1}Pint(B)$ is IPOS in Q. Hence $h^{-1}Pint(B) = Pint(B) \subseteq Pint(B) \subseteq Pint(B)$. (ii) \Rightarrow (iii) is clear.

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

(iii) \Rightarrow (i) Let \widetilde{M} be IG α CS in W. Since \widetilde{M} is I α CS in W and α cl $(\widetilde{M}) \subseteq Pcl(\widetilde{M})$. Thus Pcl $h^{-1}(\widetilde{M}) \subseteq h^{-1}$ Pcl (\widetilde{M}) , by assumption. Therefore $h^{-1}(\widetilde{M})$ is IGPCS in Q.

Proposition 3.13: Let h: $(Q, \mu) \to (W, \gamma)$ be IGSIr mapping and k: $(W, \gamma) \to (T, \delta)$ be IG continuous mapping, then k \circ h: $(Q, \mu) \to (T, \delta)$ is IGS continuous mapping.

Proof: Let \widetilde{M} be ICS in T. Then $k^{-1}(\widetilde{M})$ is IGSCS in W. Since h is an IGSIr mapping, $h^{-1}(k^{-1}(\widetilde{M}))$ is IGCS in Q. Since every IGCS is IGSCS. Thus $h^{-1}(k^{-1}(\widetilde{M}))$ is IGSCS in Q. Hence $k \circ h$ is IGS continuous mapping.

Proposition 3.14: Let h: $(Q, \mu) \to (W, \gamma)$ be IGPIr mapping and k: $(W, \gamma) \to (T, \delta)$ be IGp continuous mapping, then $k \circ h: (Q, \mu) \to (T, \delta)$ is IG β continuous mapping.

Proof: Let \widetilde{M} be an ICS in T. Then $k^{-1}(\widetilde{M})$ is IGPCS in W. Since h is IGPIr mapping, $h^{-1}(k^{-1}(\widetilde{M}))$ is IGPCS in Q. Since every IGPCS is IG β SCS. Thus $h^{-1}(k^{-1}(\widetilde{M}))$ is an IG β CS in Q. Hence $k \circ h$ is IG β continuous mapping.

4. The Relations Among Intuitionistic Generalized Pre Irresolute, Intuitionistic Generalized β –Irresolute, Intuitionistic Generalized α –Irresolute & Semi Irresolute Mappings:

First, we give this proposition:

Proposition 4.1. The implication among some types of mappings are given by the following diagram.

Proof: IGPIr → IGβIr

Let $h: (Q, \mu) \to (W, \gamma)$ be a mapping. Let \widetilde{M} be IPCS in W. Since h is IGPIr then $h^{-1}(\widetilde{M})$ is IGPCS in Q, since every IPC(W) is I β C(W). Thus $h^{-1}(\widetilde{M})$ is IG β CS in Q \forall \widetilde{M} be I β CS in W. Therefore h is IG β Ir.

 $IGIr \longrightarrow IG\alpha Ir$

Let h: $(Q, \mu) \rightarrow (W, \gamma)$ be a mapping. Let \widetilde{M} be ICS in W. Since h is IGIr then

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

 $h^{-1}(\widetilde{M})$ is IGCS in Q, since every IC(W) is $I\alpha C(W)$. Thus $h^{-1}(\widetilde{M})$ is IG α CS in Q \forall \widetilde{M} be $I\alpha$ CS in W. Therefore h is IG α Ir.

IGIr → IGPIr

Its obvious.

 $IG\alpha Ir \longrightarrow IGSIr$

Its obvious.

IGSIr——→IGβIr

Let $h: (Q, \mu) \to (W, \gamma)$ be a mapping. Let \widetilde{M} be ISCS in W. Since h is IGSIr then $h^{-1}(\widetilde{M})$ is IGSCS in Q, since every ISC(W) is $I\beta C(W)$. Thus $h^{-1}(\widetilde{M})$ is $IG\beta CS$ in Q \forall \widetilde{M} be $I\beta CS$ in W. Therefore h is $IG\beta Ir$.

The reverse of above Proposition is not true, the next examples are show the cases.

Example 4.2. Let $Q = \{y, t, z\}$ with topology $\mu = \{\dot{Q}, \dot{\emptyset}, \widetilde{B}, \widetilde{H}, \widetilde{T}, \widetilde{E}\}$, where $\widetilde{B} = \langle q, \{y\}, \{t, z\}\rangle$, $\widetilde{H} = \langle q, \{y\}, \emptyset\rangle$, $\widetilde{T} = \langle q, \{y\}, \emptyset\rangle$, $\widetilde{E} = \langle q, \{y\}, \{z\}\rangle$, $W = \{2,3,4\}$ with topology $\gamma = \{\dot{W}, \dot{\emptyset}, \widetilde{K}, \widetilde{L}\}$, where $\widetilde{K} = \langle w, \{3\}, \{4,5\}\rangle$, $\widetilde{L} = \langle w, \{3,4\}, \emptyset\rangle$. Define a mapping

h: $(Q, \mu) \to (W, \gamma)$ as $h(\{y\}) = \{2\}$, $h(\{t\}) = \{4\}$, $h(\{z\}) = \{3\}$. Then h is $IG\beta Ir$, because $\forall \widetilde{M}$ be $IG\beta CS$ in W, $h^{-1}(\widetilde{M})$ is $IG\beta CS$ in Q. But h is not IGPIr, because $h^{-1}(\{2,4\}) = \{y,t\}$ is not IGPCS in Q. Also h is not IGSIr, because $h^{-1}(\{3,4\}) = \{z,t\}$ is not IGSCS in Q.

Example 4.3. Let $Q = \{m, n, r\}$ with topology $\mu = \{\dot{Q}, \dot{\emptyset}, \widetilde{R}, \widetilde{S}\}$, where $\widetilde{R} = \langle q, \{m\}, \{n, r\} \rangle$, $\widetilde{S} = \langle q, \{m\}, \emptyset \rangle$, $W = \{5,6,7\}$ with topology $\gamma = \{\dot{Y}, \dot{\emptyset}, \widetilde{T}, \widetilde{D}\}$, where $\widetilde{T} = \langle w, \{5\}, \{7\} \rangle$, $\widetilde{D} = \langle w, \{5\}, \emptyset \rangle$. Define a mapping $h: (Q, \mu) \to (W, \gamma)$ as $h(\{m\}) = \{5\}$, $h(\{n\}) = \{7\}$, $h(\{r\}) = \{6\}$. Then h is IGPIr, because $\forall \widetilde{M}$ be IGPCS in W, $h^{-1}(\widetilde{M})$ is IGPCS in Q. But h is not IGIr, Because $h^{-1}(\{5,7\}) = \{m,n\}$ is not IGCS in Q.

Example 4.4. Let $Q = \{v, t, r, e\}$ with topology $\mu = \{\dot{Q}, \dot{\emptyset}, \widetilde{N}, \widetilde{L}, \widetilde{S}, \widetilde{Z}\}$, where $\widetilde{N} = \langle q, \{v\}, \{t, r, e\} \rangle$, $\widetilde{L} = \langle q, \emptyset, \emptyset \rangle$, $\widetilde{S} = \langle q, \emptyset, \{t, r, e\} \rangle$, $\widetilde{Z} = \langle q, \{v\}, \emptyset \rangle$, $W = \{2,4,6\}$ with topology $\gamma = \{\dot{W}, \dot{\emptyset}, \widetilde{F}, \widetilde{H}\}$, where $\widetilde{F} = \langle w, \{2\}, \{4,6\} \rangle$, $\widetilde{H} = \langle w, \{2\}, \emptyset \rangle$. Define

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

a mapping h: $(Q, \mu) \to (W, \gamma)$ as $h(\{v\}) = \{4\}$, $h(\{t\}) = h(\{r\}) = \{6\}$, $h(\{e\}) = \{2\}$. Then h is IGSIr, because $\forall \widetilde{M}$ be IGSCS in W, $h^{-1}(\widetilde{M})$ is IGSCS in Q. But h is not IG α Ir, because $h^{-1}(\{2,6\}) = \{t,r,e\}$ is not IG α CS in Q.

Example 4.5. Let $Q = \{u, o\}$ with topology $\mu = \{\dot{Q}, \dot{\emptyset}, \tilde{J}, \tilde{L}\}$, where $\tilde{J} = \langle q, \{u\}, \{o\}\rangle$, $\tilde{L} = \langle q, \{u\}, \emptyset\rangle$, $W = \{1,2\}$ with topology $\gamma = \{\dot{Y}, \dot{\emptyset}, \widetilde{N}, \widetilde{T}\}$, where $\tilde{N} = \langle w, \emptyset, \{1\}\rangle$, $\tilde{T} = \langle w, \emptyset, \emptyset\rangle$. Define a mapping $h : (Q, \mu) \to (W, \gamma)$ as $h(\{u\}) = \{1\}$, $h(\{o\}) = \{2\}$. Then h is $IG\alpha Ir$, because $\forall \widetilde{M}$ be $IG\alpha CS$ in W, $f^{-1}(\widetilde{M})$ is $IG\alpha CS$ in Q. But h is not IGIr, because $h^{-1}(\{2\}) = \{o\}$ is not IGCS in Q.

Remark 4.6. IGPIr and IG β Ir is independent notions .The following two examples show these two cases .

Example 4.7. Let $Q = \{d, e, f\}$ with topology $\mu = \{\dot{Q}, \dot{\emptyset}, \tilde{S}, \tilde{L}, \tilde{M}, \tilde{N}, \tilde{P}\}$, where $\tilde{S} = \langle q, \{f\}, \{e, d\} \rangle$, $\tilde{L} = \langle q, \{f\}, \emptyset \rangle$, $\tilde{M} = \langle q, \{f, d\}, \{e\} \rangle$, $\tilde{N} = \langle q, \{f\}, \{e\} \rangle$, $\tilde{P} = \langle q, \{f, d\}, \emptyset \rangle$ and $W = \{7,8,9\}$ with topology $\gamma = \{\dot{W}, \dot{\emptyset}, \tilde{K}, \tilde{Y}, \tilde{T}, V, \tilde{O}\}$, where $\tilde{K} = \langle w, \{7\}, \{8,9\} \rangle$, $\tilde{Y} = \langle w, \{7\}, \emptyset \rangle$, $\tilde{T} = \langle w, \{7,8\}, \{9\} \rangle$, $\tilde{V} = \langle w, \{7\}, \{9\} \rangle$, $\tilde{O} = \langle w, \{7,8\}, \emptyset \rangle$. Define a mapping $h: (Q, \mu) \to (W, \gamma)$ as $h(\{d\}) = \{8\}$, $h(\{e\}) = \{7\}$, $h(\{f\}) = \{9\}$. Then h is IGPIr, because $\forall \tilde{M}$ be IGPCS in W, $h^{-1}(\tilde{M})$ is IGPCS in Q. But h is not IGSIr, because $h^{-1}(\{8,9\}) = \{d,f\}$ is not IGSCS in Q.

Example 4.8. Let $Q = \{m, n, l\}$ with topology $\mu = \{\dot{Q}, \dot{\emptyset}, \widetilde{A}, \widetilde{U}, \widetilde{S}, \widetilde{V}, \widetilde{Z}, \widetilde{K}, \widetilde{N}\}$, where $\widetilde{A} = \langle q, \{m\}, \{n, l\} \rangle$, $\widetilde{U} = \langle q, \{m\}, \{n\} \rangle$, $\widetilde{S} = \langle q, \{m\}, \emptyset \rangle$, $\widetilde{V} = \langle q, \{m, n\}, \emptyset \rangle$, $\widetilde{Z} = \langle q, \emptyset, \emptyset \rangle$, $\widetilde{K} = \langle q, \emptyset, \{n, l\} \rangle$, $\widetilde{N} = \langle q, \emptyset, \{n\} \rangle$ and $W = \{5,6,8\}$ with topology $\gamma = \{\dot{W}, \dot{\emptyset}, \widetilde{E}, \widetilde{F}, \widetilde{R}\}$, where $\widetilde{E} = \langle w, \{5\}, \{6,8\} \rangle$, $\widetilde{F} = \langle w, \{5,8\}, \emptyset \rangle$, $\widetilde{R} = \langle w, \{5\}, \emptyset \rangle$. Define a mapping $h : (Q, \mu) \to (W, \gamma)$ as $h(\{m\}) = \{5\}$, $h(\{n\}) = \{6\}$, $h(\{l\}) = \{8\}$. Then h is IGSIr, because $\forall \widetilde{M}$ be IGSCS in W, $h^{-1}(\widetilde{M})$ is IGSCS in Q. But h is not IGPIr, because $h^{-1}(\{6,8\}) = \{n,l\}$ is not IGPCS in Q.

Volume 13, Issue 4, December 2018, pp. (34-44) ISSN: 1992-0849 (Print), 2616-6801 (Online)

References

- [1] K. Atanassov., "*Intuitionistic fuzzy sets*", VII ITKR's Session, Sofia deposed in Central Technical Library of Blug. Academy of Sciences (1983).
- [2] K. Atanassov, "Intuitionistic fuzzy sets, Fuzzy Sets and Systems", Blug, Academy of Sciences, Sofia, 20, 87 (1986).
- [3] C. Chang., "Fuzzy topological space", Journal of mathematical Analysis and Applications, 24,182 (1968).
- [4] D. Coker., "A note on intuitionistic sets and intuitionistic points", Turkish Journal of Mathematics, 20, 343 (1996).
- [5] D. Coker., "An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems", Elsevier Journal, 88, 81 (1997).
- [6] D. Coker, "An introduction to intuitionistic topological spaces", Elsevier Journal 81, 51 (2000).
- [7] J. K. Jeon, J. K., Jun, Y. B. and J.H. Park, "Intuitionistic fuzzy alpha-continuity and Intuitionistic fuzzy pre-continuity", International Journal of Mathematics Science, 19, 3091 (2005).
- [8] L. A. Zadeh,. " *Fuzzy sets, Information control*", The Journal of Symbolic Logic, 8, 338 (1965).