Synthesis and spectroscopic studies of some new oxazepine derivatives throughout [2+5] cycloaddition reactions (IV)

Alaa J.Mahrath
Chemistry department-College of medicine Chemistry department-College of science
Babylon University- IRAQ
Babylon University - IRAQ

Sabah N Kamil

Department of Pharmacology -College of Pharmacy
Babylon University .IRAQ

Abstract

: The present work included Condensation reactions of O-tolidine with different aromatic aldehyde in absolute ethanol to give Schiff bases ($\mathbf{w}_{13}-\mathbf{w}_{\mathbf{1 6}}$) in high yield which on reaction with maleic and phthalic anhydride by $[2+5]$ cycloaddition reactions in presence of suitable solvents give the corresponding [1,3]oxazepine -4,7-dione $\left(\mathbf{w}_{\mathbf{1 3}} \mathbf{m}-\mathbf{w}_{\mathbf{1 6}} \mathbf{m}\right)$ and $[1,3]$ oxazepine -1,5-dione $\left(\mathbf{w}_{\mathbf{1 3}} \mathbf{p h}\right.$ $\mathbf{w}_{16} \mathbf{p h}$) respectively. The structure of new synthesized compounds were monitored by T.L.C and established on the basis of elemental analysis, FT-IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Key words: imines, o-Tolidine and[1, 3]-oxazepine-4,7-dione :

Introduction:

o-tolidine is the derivatives of benzidine which belong to an important group of aromatic compounds containing methyl group in 3-position of4,4'-diamino biphenyl ${ }^{(1)}$.o-tolidine was consider a new regent for a simple nephelometric determination of anionic surfactants and chlorine in greywater ${ }^{(2,3)}$. also used a semiconducting polymers and a precursor of liquid crystal properties ${ }^{(4,5,6)}$. In particular the formation of imine derivatives which have great interest due to its proceeding in several important path way reactions ${ }^{(7-9)}$. Moreover the reactions of imine throughout ring closing to generation a wide range of five, six and seven members ring of heterocyclic organic molecules such as 4-thiazolidinone derivatives ${ }^{(10)}$, 1,2-Dihydro-1-arylnaphtho $[1,2][1,3]$ oxazine-3-one derivatives ${ }^{(11-13)}$ and 1,3-oxazepinediones ${ }^{(14)}$. In recent years great attention have been reported toward the formation of oxazepine rings ${ }^{(15,16)}$.due to important of these compounds as pharmaceutical drugs and biological system Based on these papers .all of these derivatives have attracted considerable attention as in drug synthesis and a wide range of pharmaceutical activities. for these purpose indicate that the synthesis of these compounds is interesting.

Experimental

Materials and methods:

The chemicals used in this work were obtained from B.D.H. and they were all pure grade reagents. All melting points were determined in an open capillary and are uncorrected. The solvents, ethanol, methanol dichloromethane ,tetrahydrofurane , ether and acetone were purified according to the literature ${ }^{(17)}$. The characterizations of the prepared compounds were accomplished by FT-IR spectra Perkins Elmer with (KBr) disk and an interval ranging from $450-4400 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra was obtained using Bruker 300 MHz spectrometer in the Jordanian University and Glasgow university . The samples were in (DMSO d_{6}) and CDCl_{3} with tetramethylsilane (TMS) as internal reference .Elemental analysis was carried out using a EuroEA Elemental Analyzer / university of Kufa .

1:General procedure for synthesis of imines derivatives by Schotten-Baumann Reaction) ($\mathrm{w}_{13}-\mathrm{w}_{16}$).

The mixture of 1 mmole of o-tolidine $(0.21 \mathrm{gm})$ and 2 mmole of substituted aromatic aldehyde (p -chloro , p -methoy, o-bromo and p-hydroxy benzaldehyde) were heated in presence of approximately ($10-15 \mathrm{ml}$) of absolute ethanol with drops of glacial acetic acid in water bath at $70-80 \mathrm{C}^{\circ}$ for approximately $30-40 \mathrm{~min}$. The process of reaction was followed by TLC , then filtration or evaporation of the solvent under reduce pressure followed by recrystalization from suitable solvent ${ }^{(18)}$.

1.1. synthesis of bis (4-chloro benzylidene) 3,3'dimethyl biphenyl-4,4'-diamine

 (W_{13}).$2 \mathrm{mmole},(0.42 \mathrm{gm})$ of O-tolidine in absolute ethanol added to 4 mmole, $(0.56$ gm) of 4-chloro benzaldehyde in presence of drops of glacial acetic acid under refluxing for 20 min . an solid yellow mixture observed after work up with section filtration yielded 65% with m.p $=156-157 \mathrm{C}^{\circ}$,IR-spectra show stretching absorption broad band at $3312 \mathrm{~cm}^{-1}$ refer to OH group , $3154-2874 \mathrm{~cm}^{-1}(\mathrm{CH}$ aromatic and alphatic)respectively, while imine band appear in about $1622 \mathrm{~cm}^{-1},(\mathrm{C}=\mathrm{C})$ aromatic appear in the range of $1487-1589 \mathrm{~cm}^{-1}$, medium intensity of band appear at $1165 \mathrm{~cm}^{-1}$ refer to ($\mathrm{C}-\mathrm{O}$) and $1085 \mathrm{~cm}^{-1}$ refer to ($\mathrm{C}-\mathrm{N}$) and $1012 \mathrm{~cm}^{-1}$ belong to ($\mathrm{Ar}-\mathrm{Cl}$).On the other hand ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} as a solvent show the chemical shift of compound Y_{5} as follows: at $\delta=8.75-\mathrm{ppm}(\mathrm{s}, 2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{N}-), \delta=7.90-8.10 \mathrm{ppm}(\mathrm{dd}, 6 \mathrm{H}, \mathrm{Ar}), \delta=$ $7.71-7.80 \mathrm{ppm}(\mathrm{d}, 4 \mathrm{H}, \mathrm{Ar}), \delta=7.59-7.61 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}, \mathrm{Ar}), \delta=7.29-7.44 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}$,Ar)and sharp singlet peak close to DMSO at $\delta=2.45 \mathrm{ppm},\left(6 \mathrm{H}, 2 \mathrm{CH}_{3}-\mathrm{Ar}\right)$. On the other hand Elemental Analysis of the molecular formula $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ (calculated / found) :(C, 73.53/74.61; H, 4.85/ 5.26; N, 6.12/ 6.68).

1.2. synthesis of bis (4-methoxy benzylidene) 3,3'dimethyl biphenyl-4,4'diamine(W_{14})

2 moles (0.42 gm) of o-Tolidine in absolute ethanol was added to 4 mmole $(0.48 \mathrm{ml})$ of p-methoxy benzaldehyde then acidified by glacial acetic acid then refluxing for about 30 min . Direct yellow-greent precipitate observed. Workup of the product with percentage yield $=64 \%$, m.p $=177-178 \mathrm{C}^{\circ} . \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}$ data, of compound Y_{6}, shows approximately the same infrared of compound Y_{5}, such as $3010-2839 \mathrm{~cm}^{-1}$ refer to (C-H , Ar and alphatic), $1626 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}-), 1479-1605 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$), $1311 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C}) ,1161 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N}-) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} as a solvent showed sharp singlet at $\delta=8.518 \mathrm{ppm}(2 \mathrm{H}, \mathrm{s})$ benzylic, at δ $=7.82-7.79 \mathrm{ppm},(\mathrm{dd}, 6 \mathrm{H}, \mathrm{Ar})$ of , at $\delta=7.47-7.27 \mathrm{ppm}$, (d,4H, Ar) at $\delta=$ $7.22-7.05 \mathrm{ppm},(\mathrm{dd}, 2 \mathrm{H}, \mathrm{Ar})$ at $\delta=7.06-6.67 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}, \mathrm{Ar})$, at $\delta=3.86 \mathrm{ppm}$ (s , $6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{O}$) and at $\delta=3.23 \mathrm{ppm}$ (s , $6 \mathrm{H}, 2 \mathrm{CH}_{3}-\mathrm{Ar}$) Elemental analysis of the molecular formula $\mathbf{C}_{30} \mathbf{H}_{\mathbf{2 8}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ (calculated / found): (C, 80.33/ 80.91; H, 6.29/ 6.87; N, 6.25/6.65).

1.3. synthesis of bis (2-bromo benzylidene) 3,3'dimethyl biphenyl-4,4'diamine(W_{15})

2 mmole , 0.42 gm of o-Tolidine and 4mmole, (0.72 gm) of obromobenzaldehyde both dissolved in absolute ethanol with drops of glacial acetic acid and molecular sieves then refluxing for 30 min slightly yellow precipitate with m.p $=163-164 \mathrm{C}^{\circ}$, yield $=89.3 \%, \operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}$ data shows, weak absorption band at 3055-2914 $\mathrm{cm}^{-1}\left(\mathrm{C}-\mathrm{H}\right.$, aromatic, alphatic), $1616 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}-), 1433-1589 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}), 1024 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N})$, sharp peak at $762 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{Br}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO-d6 spectra showed $\delta=8.81 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{N}-)$ refer to azomethane proton, at $\delta=8.09-8.11 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}$, aromatic) ortho to azomethane, $\delta=7.66-7.33 \mathrm{ppm}(10 \mathrm{H}$,
$\mathrm{m}, \mathrm{Ar})$, at $\delta=7.29-7.19 \mathrm{ppm}(2 \mathrm{H}, \mathrm{d}, \mathrm{Ar})$, at $\delta=2.32 \mathrm{ppm}\left(\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}-\mathrm{Ar}\right)$. Elemental analysis of the molecular formula $\mathbf{C}_{\mathbf{2 8}} \mathbf{H}_{\mathbf{2}} \mathbf{B r}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}}$ (calculated /found) :(C , $61.56 / 62.12$; H, 4.06/ 4.67; N, 5.13/5.68.

1.4. synthesis of bis (4-bromo benzylidene) 3,3'dimethyl biphenyl-4,4'diamine(W_{16})

2 moles (0.42 gm) of o-Tolidine in absolute ethanol was added to 4 mmole (0.74 gm) of p-bromobenzaldehyde then acidified by glacial acetic acid then refluxing for about 20 min . Direct yellow light precipitate observed. Workup of the product with percentage yield $=91 \%$, m.p $=163-165 \mathrm{C}^{\circ} . \mathrm{IR}$ data, of compound W_{16}, shows approximately the same infrared of compound W_{14}, such as $3067-2918 \mathrm{~cm}^{-1}$ refer to ($\mathrm{C}-\mathrm{H}, \mathrm{Ar}$ and alphatic), $1624 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}-), 1485-1583 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$), 1166 cm^{-1} (C-N-) except stretching absorption at $1008 \mathrm{~cm}^{-1}$ which belong to ($\mathrm{Ar}-\mathrm{Br}$). Elemental analysis of the molecular formula $\mathbf{C}_{28} \mathbf{H}_{22} \mathbf{B r}_{2} \mathbf{N}_{2}$ (calculated / found) C, $61.56 / 62.21$; H, 4.06/4.59; N, 5.13/ 5.62).

Cycloaddition Reaction of the Imines Derivatives Derived From o-Tolidine With Maleic and Phthalic Anhydride:

- With Maleic Anhydride

General procedure :

1mmole of desired imine's $\left(\mathbf{W}_{13}-\mathbf{W}_{\mathbf{1 6}}\right)$ mentioned in part one was dissolved in suitable solvent under N_{2} flow, followed by addition with drop wise the cyclic anhydride (maleic anhydride) under refluxing conditions and monitored with TLC to determine the completion of the reaction.Filtration or evaporation under reduces pressure and yielded was dried and recrystilized by a proper solvent ${ }^{(8)}$. The equation in the scheme (5) represent the following general reactions .

2.1.Synthesis of 3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4-chlorophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione) ($\mathrm{W}_{13} \mathrm{M}$)

reaction of $1 \mathrm{mmole}(0.47 \mathrm{~g})$ of compound \mathbf{W}_{13} with 2 mmole (0.20 g) maleic anhydride in dry THF adding with drop wise within N_{2} flow and stirring under refluxing condition for about 3.5 hr , after cooling the reaction mixture an yellow precipitate observed, section filtration yielded 65% with m.p $=\mathbf{2 0 2 - 2 0 4} \mathrm{C}^{\circ}$. IR (KBr) cm^{-1} spectra shows the following bands; two stretching strong absorption bands at 1712 and $1627 \mathrm{~cm}^{-1}$ due to ($2 \mathrm{C}=\mathrm{O}$, ring) , $1450-1575 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}$, aromatic and alkene's), 3037-2993 cm^{-1} ($\mathrm{C}-\mathrm{H}$, aromatic and alphatic's) in addition to stretching frequency at $3250 \mathrm{~cm}^{-1}$ (CH , chiral) in addition to $1126 \mathrm{~cm}-1$ refer to ($\mathrm{Ar}-\mathrm{Cl}$) .Mass spectrum shown the molecular ion peak in intensity of $\left(\mathrm{M}^{+}\right)=653(70 \%)$ with $\mathrm{m} / \mathrm{z}=$ $623,584,407,362,246,133,90,69(100 \%)$. Elemental analysis of the molecular formula $\mathbf{C}_{36} \mathbf{H}_{26} \mathrm{Cl}_{2} \mathbf{N}_{2} \mathrm{O}_{6}$ of the compound $\mathrm{W}_{13} \mathrm{M}$ (calculated /found) $=\mathrm{C}, 66.16$ / 66.62; H, 4.01/ 4.59; N, 4.29 / 4.82.).

2.2. Synthesis of 3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4-methoxyphenyl) -

 2,3 -dihydro -1,3-oxazepine-4,7-dione) ($\mathbf{W}_{14} \mathbf{M}$)reaction of $1 \mathrm{mmole}(0.44 \mathrm{~g})$ of compound \mathbf{W}_{14} with 2 mmole (0.20 g) maleic anhydride in dry dichloromethane adding with drop wise within N_{2} flow and stirring under refluxing condition for about 4.0 hr ,after cooling the reaction mixture an yellow precipitate observed, section filtration yielded 60% with m.p $=212-214 \mathrm{C}^{\circ}$. IR $(\mathrm{KBr}) \mathrm{cm}^{-1}$ spectra shows the following bands ; two stretching strong absorption bands at 1712 and $1629 \mathrm{~cm}^{-1}$ due to ($2 \mathrm{C}=\mathrm{O}$,ring) , $1410-1580 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}$, aromatic and alkene's $), 3051-2910 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}$, aromatic and alphatic's $)$ in addition to stretching frequency at $3192 \mathrm{~cm}^{-1}$ (CH , chiral) in addition to (C-O-C) at $1307 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$-NMR-DMSO-d6 shown the following peaks at $\delta=9.57 \mathrm{ppm}$ (s, 2H, chiral , 2CH, oxazepine) , at $\delta=7.79-7.83 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}, \mathrm{Ar})$, at $\delta=7.50-7.70 \mathrm{ppm}(\mathrm{d}, 8 \mathrm{H}, \mathrm{Ar})$, at δ $=7.22-7.28 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}, \mathrm{Ar})$, at $\delta=6.76-6.84 \mathrm{ppm}(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar})$, at $\delta=6.59-6.71$ ppm ($\mathrm{d}, 4 \mathrm{H}, 2 \mathrm{CH}=\mathrm{CH}-$, alkene) at $\delta=6.33-6.36 \mathrm{ppm}(\mathrm{d}, 4 \mathrm{H}, 2 \mathrm{CH}=\mathrm{CH}-$,alkene $)$. Mass spectrum shown the molecular ion peak is not observed $\left(\mathrm{M}^{+}\right)$while $\mathrm{m} / \mathrm{z}=629$, $573,483,393,313,217,147,103,73(100 \%), 55$. Elemental analysis of the ,molecular formula $\mathbf{C}_{38} \mathbf{H}_{32} \mathbf{N}_{2} \mathbf{O}_{8}$ of the compound $\mathrm{Y}_{6} \mathrm{M}$ (calculated /found) $=\mathrm{C}, 70.80 / 71.49 ; \mathrm{H}$, 5.00/ 5.61; N, 4.35/4.65.
2.3. Synthesis of 3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(2-bromophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione) ($\mathrm{W}_{15} \mathrm{M}$).
reaction of $1 \mathrm{mmole}(0.51 \mathrm{~g})$ of compound \mathbf{W}_{15} with 2 mmole (0.20 g) maleic anhydride in dry dichloromethane adding with drop wise within N_{2} flow and stirring under refluxing condition for about 4.0 hr , after cooling the reaction mixture an yellow precipitate observed, section filtration yielded 50% with $\mathrm{m} . \mathrm{p}=>250 \mathrm{C}^{\circ}$ dec .. IR $(\mathrm{KBr}) \mathrm{cm}^{-1}$ spectra shows the following bands; two stretching strong absorption bands at 1717 and $1621 \mathrm{~cm}^{-1}$ due to ($2 \mathrm{C}=\mathrm{O}$, ring) , $1430-1589 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}$, aromatic and alkene's $), 3049-2908 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}$, aromatic and alphatic's $)$ in addition to stretching frequency at $3215 \mathrm{~cm}^{-1}$ (CH , chiral) in addition to (C-O-C) at $1327 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$-NMR-DMSO-d6 shown the following peaks at $\delta=9.27 \mathrm{ppm}$ (s, 2 H , chiral, 2 CH , oxazepine) , at $\delta=7.89-7.99 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}, \mathrm{Ar})$, at $\delta=7.52-7.61 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{Ar})$, at δ $=7.12-7.23 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{Ar})$, at $\delta=6.55-6.66 \mathrm{ppm}(\mathrm{d}, 4 \mathrm{H}, 2 \mathrm{CH}=\mathrm{CH}-$, alkene $)$ at $\delta=$ 6.29- $6.35 \mathrm{ppm}(\mathrm{d}, 4 \mathrm{H}, 2 \mathrm{CH}=\mathrm{CH}-$, alkene). Elemental analysis of the ,molecular formula $\mathbf{C}_{\mathbf{3 6}} \mathbf{H}_{\mathbf{2 6}} \mathbf{B r}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}} \mathrm{O}_{6}$ of the compound $\mathrm{W}_{15} \mathrm{M}$ (calculated /found) $=\mathrm{C}, 58.24$ /58.76; H, 3.53/4.21; N, 3.77 /4.31.

2.4. Synthesis of 3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4-bromophenyl)-2,3-

 dihydro-1,3-oxazepine-4,7-dione)($W_{16} M$).reaction of $1 \mathrm{mmole}(0.54 \mathrm{~g})$ of compound \mathbf{W}_{16} with 2 mmole (0.20 g) maleic anhydride in dry dichloromethane adding with drop wise within N_{2} flow and stirring under refluxing condition for about 3.0 hr , after cooling the reaction mixture an yellow precipitate observed, section filtration yielded 72% with m.p $=220-222 \mathrm{C}^{\circ}$. IR $(\mathrm{KBr}) \mathrm{cm}^{-1}$ spectra shows the following bands; two stretching strong absorption bands at 1701 and $1627 \mathrm{~cm}^{-1}$ due to ($2 \mathrm{C}=\mathrm{O}$, ring) , 1458-1587 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}$, aromatic and alkene's), $3049-2903 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}$, aromatic and alphatic's) in addition to stretching frequency at $3217 \mathrm{~cm}^{-1}$ (CH , chiral) in addition to $825 \mathrm{~cm}^{-1}$ refer to (Ar$\mathrm{Br})$. Mass spectrum shown the molecular ion peak is not observed $\left(\mathrm{M}^{+}\right)$, while $\mathrm{m} / \mathrm{z}=563,438,336,256,191,121(100 \%), 105,84$. Elemental analysis of the molecular formula $\mathbf{C}_{36} \mathbf{H}_{26} \mathrm{Br}_{2} \mathbf{N}_{2} \mathrm{O}_{6}$ of the compound $\mathrm{Y}_{5} \mathrm{M}$ (calculated /found) $=\mathrm{C}$, $58.24 / 58.81$; H, 3.53/4.12; N, 3.77/4.32).

- With Phthalic Anhydride :

General procedure :

1 mmole of desired imine's $\left(\mathbf{W}_{13}-\mathbf{W}_{16}\right)$ mentioned in part one were dissolved in suitable solvent under N_{2} flow, followed by addition with drop wise the cyclic anhydride (phthalic anhydride) under refluxing conditions and monitored with TLC to determine the completion of the reaction. Filtration or evaporation under reduces pressure and yielded was dried and recrystilized by a proper solvent ${ }^{(8)}$.
2.5. Synthesis of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-(4-chlorophenyl)3,4 -dihydro benzo [1,3]oxazepine-1,5-dione) ($\mathrm{W}_{13} \mathrm{Ph}$).
reaction of $1 \mathrm{mmole}(0.47 \mathrm{~g})$ of compound \mathbf{W}_{13} with 2 mmole (0.30 g$)$ phthalic anhydride in dry THF adding with drop wise within N_{2} flow and stirring under refluxing condition for about 4.5 hr , after cooling the reaction mixture an
yellow precipitate observed ,section filtration yielded 52% with $\mathrm{m} . \mathrm{p}=\mathbf{1 9 6}$-198 C°. IR $(\mathrm{KBr}) \mathrm{cm}^{-1}$ spectra shows the following bands ; two stretching strong absorption bands at 171207 and $1656 \mathrm{~cm}^{-1}$ due to ($2 \mathrm{C}=\mathrm{O}$, ring) , 1452-1590 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}$, aromatic and alkene's), 3012-2956 $\mathrm{cm}^{-1}(\mathrm{C}-\mathrm{H}$, aromatic and alphatic's) in addition to stretching frequency at $3252 \mathrm{~cm}^{-1}\left(\mathrm{CH}\right.$, chiral) in addition to $1072 \mathrm{~cm}^{-1}$ refer to ($\mathrm{Ar}-\mathrm{Cl}$) .Mass spectrum shown the molecular ion peak in low intensity of $\left(\mathrm{M}^{+}\right)=752$ with $\mathrm{m} / \mathrm{z}=694,629,564,492,377,261,171(100 \%), 131$ and 91 . Elemental analysis of the molecular formula $\mathbf{C}_{44} \mathbf{H}_{30} \mathrm{Cl}_{2} \mathbf{N}_{2} \mathrm{O}_{6}$ of the compound $\mathbf{W}_{13} \mathbf{P h}$ (calculated /found) $=\mathrm{C}, 70.12 / 70.69 ; \mathrm{H}, 4.01 / 4.76 ; \mathrm{N}, 3.72 / 4.32$.
2.6. Synthesis of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-(4-methoxyphenyl)-3,4-dihydro benzo [1,3]oxazepine-1,5-dione) ($\mathrm{W}_{14} \mathrm{Ph}$)
reaction of $1 \mathrm{mmole}(0.44 \mathrm{~g})$ of compound \mathbf{W}_{15} with 2 mmole (0.30 g)
phthalic anhydride in dry THF adding with drop wise within N_{2} flow and stirring under refluxing condition for about 6.0 hr ,after cooling the reaction mixture an oily .when work up hexane - petroleum ether a brown precipitate observed ,section filtration yielded 69% with $\mathrm{m} . \mathrm{p}=149-150 \mathrm{C}^{\circ}$. IR $(\mathrm{KBr}) \mathrm{cm}^{-1}$ spectra shows the following bands ; two stretching strong absorption bands at 1720 and $1680 \mathrm{~cm}^{-1}$ due to ($2 \mathrm{C}=\mathrm{O}$, ring) , $1444-1529 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$, aromatic and alkene's), 2960-2874 cm^{-1} (C-H , aromatic and alphatic's) at stretching frequency at $3092 \mathrm{~cm}^{-1}(\mathrm{CH}$, chiral) in addition to (C-O-C) at $1269 \mathrm{~cm}^{-1}$. Mass spectrum shown the molecular ion peak is not observed (M^{+}) while , $\mathrm{m} / \mathrm{z}=629,573,483,393,313,217,147,103,73(100 \%), 55$. Elemental analysis of the ,molecular formula $\mathbf{C}_{46} \mathbf{H}_{36} \mathbf{N}_{2} \mathrm{O}_{8}$ of the compound $\mathbf{W}_{14} \mathrm{Ph}$ (calculated /found) $=\mathrm{C}, 74.18 / 74.43 ; \mathrm{H}, 4.87 / 5.25 ; \mathrm{N}, 3.76 / 4.19$.

2.7. Synthesis of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-(2-bromophenyl)-3,4dihydro benzo[1,3]oxazepine-1,5-dione) ($\mathbf{W}_{15} \mathrm{Ph}$).

reaction of $1 \mathrm{mmole}(0.51 \mathrm{~g})$ of compound \mathbf{W}_{15} with 2 mmole (0.30 g) phthalic anhydride in dry dioxan adding with drop wise within N_{2} flow and stirring under refluxing condition for about 3.0 hr ,after cooling the reaction mixture an oily .when work up hexane an orange -yellow precipitate observed, section filtration yielded 68% with m.p $=245-246 \mathrm{C}^{\circ}$. $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}$ spectra shows the following bands ; two stretching strong absorption bands at 1702and $1664 \mathrm{~cm}^{-1}$ due to ($2 \mathrm{C}=\mathrm{O}$,ring) , 1504-1589 $\mathrm{cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$, aromatic), 2928-2956 $\mathrm{cm}^{-1}(\mathrm{C}-\mathrm{H}$, aromatic) at stretching frequency at $3061 \mathrm{~cm}^{-1}$ (CH , chiral) in addition to (C-Br,ortho) at $738 \mathrm{~cm}^{-1 .}$ ${ }^{1} \mathrm{H}-$ NMR-DMSO- d_{6} shown the following peaks at $\delta=9.16 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H}$, chiral, 2 CH , oxazepine) , at $\delta=8.20-8.24 \mathrm{ppm}$ (d, 2 H, Ar-phath.) , at $\delta=7.78-7.85 \mathrm{ppm}$ (d, $6 \mathrm{H}, \mathrm{Ar}$) , at $\delta=7.47-7.65 \mathrm{ppm}(\mathrm{m}, 10 \mathrm{H}, \mathrm{Ar})$, at $\delta=7.15-7.25 \mathrm{ppm}(\mathrm{t}, 4 \mathrm{H}, \mathrm{Ar})$.Elemental analysis of the ,molecular formula $\mathbf{C}_{44} \mathbf{H}_{30} \mathbf{B r}_{2} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{6}$ of the compound $\mathbf{W}_{15} \mathbf{P h}$ (calculated /found) $=\mathrm{C}, 62.72 / 63.21 ; \mathrm{H}, 3.593 .78 ; \mathrm{N}, 3.32 / 3.50$.

2.8. Synthesis of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-(4-bromophenyl)-3,4dihydro benzo $[1,3]$ oxazepine- 1,5 -dione). $\left(\mathrm{W}_{16} \mathrm{Ph}\right)$.

reaction of $1 \mathrm{mmole}(0.54 \mathrm{~g})$ of compound \mathbf{W}_{16} with 2 mmole $(0.30 \mathrm{~g})$ phthalic anhydride in dry THF adding with drop wise within N_{2} flow and stirring under refluxing condition for about 4.3 hr ,after evapouration of the reaction mixture an oily product observed ,after work up with petroleum ether $40-60 \mathrm{C}^{\circ}$ an yellow orange precipitate observed ,section filtration yielded 63% with m.p $=287-289 \mathrm{C}^{\circ}$. IR (KBr) cm^{-1} spectra shows the following bands; two stretching strong absorption bands at 1716 and $1653 \mathrm{~cm}^{-1}$ due to ($2 \mathrm{C}=\mathrm{O}$, ring) , 1442-1579 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}$, aromatic and alkene's), $3008-2916 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}$, aromatic and alphatic's) in addition to stretching frequency at $3271 \mathrm{~cm}^{-1}\left(\mathrm{CH}\right.$, chiral) in addition to $817 \mathrm{~cm}^{-1}$ refer to (Ar$\mathrm{Br})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}-\mathrm{DMSO}-\mathrm{d} 6$ shown at $\delta=9.82 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H}, 2 \mathrm{CH}$, oxazepine ring) , at $\delta=$

Discussion :

It's well known that [1,3] oxazepine -4,7-dione or 1,5 - dione figure (1) are a heterocyclic seven membered ring containing nitrogen, oxygen and two carbonyl groups.when R1 and R2 $=\mathrm{H}$ the component (A) known 2,3-dihydro-1,3- oxazepine -4,7-dione whilst (B) known 3,4-dihydrobenzo1,3-oxazepine-1,5-dione .many researchers have investigated these types of Heterocyclic compounds due to their important

A= 1,3-oxazepine-4,7-dione

$B=$ benzo $[1,3]$ oxazepine-1,5-dione

Figure (1): Two types A and B of $[1,3]$ oxazepine - dione . class which have varieties of biological applications ${ }^{(19-21)}$. Our interesting were to modification of oxazepine rings throughout changing the R_{1} and R_{2} in 2 and 3 positions and these changing might be make variation in their biological applications. Therefore we starting to create an imine derivatives by using selective aldehyde with O-tolidine under Schotten-Baumann reaction scheme (1). All the imines derivatives were monitored by TLC and identified by FT-IR , ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and Elemental Analysis. Recall to FT-IR in (KBr) disk .In the first step: the imines derivatives $\left(\mathrm{w}_{13}-\mathrm{w}_{16}\right)$ which formed by condensation reaction were proved according to disappearance of ($\mathbf{N H}_{\mathbf{2}}$) absorption bands in the range $3462-3255 \mathrm{~cm}^{-1}$ which were belonging to asymmetric and symmetric stretching frequency and appearance sharp (strong -medium) intense of azomethane ($\mathrm{C}=\mathrm{N}-$) group in the stretching frequency range at $1608-1626 \mathrm{~cm}^{-1}$. For instance figure (2a to 2d) scheme (1). On the other hand ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} as a solvent confirmed the generation of these compounds, For compound \mathbf{W}_{13} its obvious sharp singlet peak appear at $\delta=8.32 \mathrm{ppm}$ which belong to 2 CH of azomethane groups ,this proton was deshilded due to the effect of nitrogen azomethane and aromatic ring ${ }^{(9)}$. Also, Elemental analysis gave matching values for calculated and found molecular formula of each compound of ($\mathbf{W}_{13}-\mathbf{W}_{16}$). The second step involved coupling reaction between azomethane group(imines' derivatives)and two carbonyl groups throughout [2+5] cycloaddition reaction (concerted reaction) scheme (2\&3). This type of reaction afforded a seven membered ring of 1,3oxazepine $\mathbf{- 4 , 7}$-dione and $\mathbf{1 , 3 - o x a z e p i n e} \mathbf{- 1 , 5}$-dione derivatives, figure (1). These molecules identified easily by two major important things : firstly in FT-IR data: two different stretching frequency of ($\mathrm{C}=\mathrm{O}$,lacton and lactam) groups in oxazepine ring which appear approximately at 1716 and $1642 \mathrm{~cm}^{-1}$ respectively, and CH , chiral) appear at $\geq 3200 \mathrm{~cm}^{-1}$, figure (3a,3band 4a), secondly: In ${ }^{1} \mathrm{H}-\mathrm{NMR}$ - in DMSO- d_{6}
there are more than one proton can be distinguished, highly deshielding protons of charily ring figure ($\mathbf{1}, \mathbf{H}_{\mathbf{a}}$) observed singlet peak at chemical shift $\delta \geq 8.50 \mathrm{ppm}$. and alkene's protons in the same figure $1\left(\mathbf{H}_{b}\right.$, and $\left.\mathbf{H}_{\mathbf{c}}\right)$ in 1,3-oxazepine 4,7-dione observed in lower chemical shift than aromatic protons (as doublet to doublet signal at approximately $\delta=6.34-6.53 \mathrm{ppm})$ figure (5a,5b) ${ }^{(22)}$. Also in compounds $\left(\mathbf{W}_{\mathbf{1 5}} \mathbf{P h}\right.$ and $\mathbf{W}_{\mathbf{1 6}} \mathbf{P h}$) the $\mathbf{C H}$ chiral of oxazepine rings appear at at $\delta=9.16$ and 9.82 ppm as sharp signal and highly deshielded due to the effect of oxygen , nitrogen and aromatic ring on it.Elemental analysis of the prepared compounds $\left(\mathbf{W}_{\mathbf{1 3}} \mathbf{M}-\mathbf{W}_{\mathbf{1 6}} \mathbf{M}\right)$ and $\left(\mathbf{W}_{13} \mathbf{P h}-\mathbf{W}_{16} \mathbf{P h}\right)$ were agreement relatively with calculated value. On the other hand mass spectra confirm the formation of the compounds ($\mathbf{W}_{13} \mathbf{M}, \mathbf{W}_{16} \mathbf{M}, \mathbf{W}_{13} \mathbf{P h}$ and $\mathbf{W}_{\mathbf{1 4}} \mathbf{P h}$) by presence of molecular ion peak (\mathbf{m} / \mathbf{z}), figure ($\mathbf{7 a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}).all the oxazepine derivatives are new molecules ${ }^{(23)}$ and they tested now infield of biological applications.

Scheme (1): condensation reaction of o-tolidine via aromatic aldehyde in presence of absolute ethanol and glacial acetic acid under refluxing condition to afforded ($\mathbf{W}_{13^{-}}$ W_{16}).

Scheme (2): :[2+5] Cycloaddition Reactions of Imine Derivative $\left(\mathbf{W}_{13}, \mathbf{W}_{14}\right)$ with Maleic and Phthalic anhydride to afforded ($\mathbf{W}_{13} \mathbf{M}, \mathbf{W}_{13} \mathbf{P h}, \mathbf{W}_{14} \mathbf{M}$ and $\mathbf{W}_{14} \mathbf{P h}$).

Scheme (3): [2+5] Cycloadditin Reaction of Imine Derivatives ($\mathbf{W}_{14}, \mathbf{W}_{15}$)with Maleic and Phthalic anhydride to afforded ($\mathbf{W}_{14 \mathrm{M}}, \mathbf{W}_{14} \mathbf{P h}, \mathbf{W}_{15} \mathbf{M}$, and $\left.\mathbf{W}_{15} \mathbf{P h}\right)$.

Figure (2a): FT-IR spectra of bis (p-chloro benzylidene) 3,3'dimethyl biphenyl-4,4'-diamine (\boldsymbol{W}_{13})

Figure ($2 \boldsymbol{b}$): FT-IR spectra of bis (p-methoxy benzylidene) 3,3'dimethyl biphenyl-4,4'-diamine (W_{14}).

Figure (2c): FT-IR spectra of bis (2-bromo benzylidene) 3,3'dimethyl biphenyl-4,4'-diamine (\boldsymbol{W}_{15}).

Figure (2d): FT-IR spectra of bis (p-bromo benzylidene) 3,3'dimethyl biphenyl-4,4'-diamine (\mathbf{W}_{16})

Figure (3a) : FT-IR spectra of 3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4methoxy phenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione.($\mathbf{W}_{14} \mathbf{M}$).

Figure (3b) : FT-IR spectra of 3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4-bromophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione ($\mathbf{W}_{\mathbf{1 6}} \mathbf{M}$).

Figure (4a) : FT-IR spectra of of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-(4bromophenyl) -3,4-dihydro benzo[1,3]oxazepine-1,5-dione)($\mathbf{W}_{16} \mathbf{P h}$).

Figure (5a): ${ }^{1}$ H-NMR spectra of3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(2-bromophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione) ($\mathbf{W}_{15} \mathbf{M}$).

Figure (5b): ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $3,3^{\prime}-\left(3,3^{\prime}-\right.$ dimethylbiphenyl-4,4'-diyl)bis(2-(pmethoxy phenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione)($\mathbf{W}_{14} \mathbf{M}$).

Figure (6a) : ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-(2bromo phenyl) -3,4-dihydro benzo[1,3]oxazepine-1,5-dione.($\mathbf{W}_{15} \mathrm{Ph}$).

Figure ($\mathbf{6 b}$) : ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-(pbromo phenyl) -3,4-dihydro benzo[1,3]oxazepine-1,5-dione. $\left(\mathrm{W}_{16} \mathrm{Ph}\right)$.

Figure (7a) : Mass spectra of 3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4-chlorophenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione.($\mathbf{W}_{\mathbf{1 3}} \mathbf{M}$).

Figure (7b): Mass spectra of 3,3'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(2-(4-bromophenyl)-2,3-dihydro -1,3-oxazepine-4,7-dione ($\mathbf{W}_{\mathbf{1 6}} \mathbf{M}$).

Figure (7c): Mass spectra of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-(p-chloro phenyl)-3,4-dihydro benzo[1,3]oxazepine-1,5-dione.($\left.\mathbf{W}_{13} \mathbf{P h}\right)$.

Figure (7d): Mass spectra of 4,4'-(3,3'-dimethylbiphenyl-4,4'-diyl)bis(3-(pmethoxyphenyl) -3,4-dihydro benzo[1,3]oxazepine-1,5-dione ($\mathbf{W}_{14} \mathbf{P h}$).
References:
1-K. H. Park, J. S. Kang, J. Org. Chem. (1997),62, 3794.
2- J.G. March, M. Gual, A.D. Frontera ; Analytica Chimica Acta 539 (2005) 305.

3- J.G. March, M. Gual, B.M. Simonet ; Talanta 58 (2002) 995.
4- R.K. Gupta and R.A. Singh ; Journal of Applied Sciences 5, (2005), 28.
5- Ahmed Mohammed Issam, Govindarajan Sankar, Melati Khairuddean and Abu Bakar Mohamad; Molecules (2010), 15, 3260.
6- Rajendra N. Jadeja, Narsidas J. Parmar, and Jayant R. Shah ; Iranian Polymer Journal 14 , (2005), 1008.
7-Ahmed A., Salima. A. BenGuzzi, Journal of Science and Its Applications: (2008), 2, 83.

8-Alaa J.Mahrath, Saadon A. Aowda Sabah N Kamil,Journal of Babylon university : (2012),20,8.

9- Alaa J.Mahrath, Saadon A. Aowda Sabah N Kamil,Journal of Babylon univrsity, (2012),21,11,.

10- Sharma, M. C.; Kohli, D. V.; Smita Sharma and Kohli, A. D., Der Pharmacia Sinica, (2010), $1,1,58$.
11- Ahangar A. H., Mahdavinia G.H, Marjani K and. Hafezian A. J. Iran. Chem. Soc., , (2010), 7, 3, 770.
12- Kategaonkar A. H., Sonar S. S., Shelke K. F, Shingate B. B. and Shingare M. S. Org. Commun.,(2010), 13,1.
13- Tumtin S., Phucho I. T., Nongpiur A. Nongrum R., Vishwakarma J. N., Myrboh B., and. Nongkhlaw R. L J. Heterocyclic Chem., (2010), 47, 125.

14- Yeap, Y.G., A.T. Mohammad, H. Osman,. J. Mol. Struc., (2010), 982: 33.
15- Bajaja,K.,Archana, A.Kumar,Eur. J. Med. Chem.,(2004), 39: 369 .
16- Kamal, A., V. Tekumalla,P.Raju, V.G.M.Naidu,P.V.Dawin,R. Sistla, ,Bioorganic Med.Chem. Lett. (2008), 18:3769.
17- Wilfred L.F.Armarego Christina L.L.Chai:"Purfication of Laboratory chemicals" $5^{\text {th }}$ ed. Elsevier Science (USA).(2003).
18- Santosh K, Niranjan ,Chaluvaraju K C, Jamakhandi C M ,And Dayanand Kadadevar, JCPR, (2010), 01,39.
19-Aiello ,F.,A.Garofalo, F.Grande G. Ragno, R.Dayan, N. Neamati, Bio. Med.chem. (2004), 12:4459.

20- Audouze ,K. , E.Q. Nielsen ,D. Peters ,. J. Med. Chem. (2004),47:3089.
21- Dols ,P.P.M.A., B.J.B. Flomer, H., Kuil,C.W.Hamersma ,H.Lucas, L.Ollero, J.B.M.. Bioorganic Med.Chem.Lett. (2008) ,18:1461.

22-Mohammad A.T.,Osman H.,Yeap G.Y.Australian Journal of Basic and Applied Sciences;(2011),5,192.
23- these molecules check by sciFinder ${ }^{R}$ with cooperation of Luiz Cláudio Almeida Barbosa
Department of Chemistry, Federal University of Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil;

