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Abstract

A new model of bubble dynamics in acoustic field is constructed, including effect of
heat transfer at bubble wall. The temperature inside the bubble is calculated by solving the
energy equation of the gas inside the bubble (using finite difference method). The liquid
temperature at bubble wall is numerically calculated by assuming an exponential profile of
liquid temperature. It is including effect of thermal conduction at bubble wall. Calculations
are performed for adiabatic model.

The results reveal that the effect of heat transfer is considerable on bubble dynamics.
The calculated results fit with the experimental data of radius-time curve much more
satisfactorily than those by the adiabatic model (without heat transfer). It is clarified that the

effect of heat transfer stabilizes bubble oscillations.
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1. Introduction

The study of oscillations of gas bubbles in a liquid is of considerable practical interest
specifically in regard to the question of the possible use of bubble screens for damping shock
waves and the use of acoustic disturbances for intensification of technological processes.

In gas-liquid flows, the mass, force and energy interactions between phases originate on
the interface surface. These interactions can be significantly altering the flow velocity,
pressure and temperature fields. A correct specification of the inter-phase heat and mass
requires the knowledge of interaction of single inclusions with the carrier phase [1].

At present a number of publications are available in which different aspects of the
problem of oscillations of gas bubbles in a liquid are studied. It has been revealed that the gas
bubbles in a liquid are studies. It has been revealed [2] that in the case of small oscillations of
a bubble within a wide range of the equilibrium values of its radius the heat transfer
dominates over other dissipation mechanisms, i.e. velocity and compressibility of the liquid.
The problem of heat transfer in the course of nonlinear oscillations of a gas bubble was
studied experimentally [3]. The results of numerical solution for the nonlinear problem of
thermal and dynamic interactions of a gas bubble with the liquid induced by a sudden
pressure change in the liquid are presented in ref. [4]. A number of studies deal with the study
of growth and collapse of vapor bubbles in a liquid (see ref. [5]). The assumptions of the
temperature uniformity in the bubbles and of the thinness of a thermal boundary layer in the
liquid, adopted in the majority of these studies, considerably simplify the problem but hold
under certain restrictions only. The heat transfer effects on the vapour bubble dynamics with
account for the temperature nonuniformity in it is considered in ref. [6].

In this paper, we construct a mathematical formulation that enables us to study the
motion of a bubble in a liquid and the effects of heat conduction, shear viscosity,
compressibility, surface tension, temperature non-uniformity in the bubble, and variation of
liquid temperature at bubble wall on their dynamical behavior. The formulation is specifically
designed to describe the motion of a bubble that expands to some maximum radius and then
contracts violently. This formulation consists of a set of nonlinear equations that can be
solved numerically.

In section (2), the adiabatic case is described, which is frequently employed in the study
of bubble dynamics in liquids. Also, the new case is described in which effects of thermal
conduction inside the bubble and variation of liquid temperature at bubble wall. In section (3)
we present and discuss results and in section (4) a number of conclusions are presented.

Followings are the description of the cases.
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The author has already constructed a model of bubble dynamics in acoustic field

including effect of thermal conduction inside and outside a bubble [7]. In this paper, effect of
variation of liquid-temperature is newly included in the study of bubble dynamics. This paper
gives the results of investigation of the heat transfer effect on the dynamics of gas bubbles as
well as of the reverse effect of the dynamics of radial bubble motion on the enhancement of

heat transfer between the bubbles and liquid.

2.1 Case(1) Adiabatic Model

In this case, pressure and temperature are assumed to be spatially uniform in a bubble. It
is a good approximation only when R << Cg , Where R is the speed of the bubble wall and Cq
is the speed of sound in the bubble [8]. The liquid temperature on the external side of the
bubble wall is assumed to be constant (T,) during bubble oscillations. The temperature
discontinuity (AT) exists at the bubble wall (A T=T,-T.). In this case, it is assumed that no
heat exchange is taken into account between a bubble and the surrounding liquid.

As an equation of bubble radius (R), eq. (1) is employed in which the effect of
compressibility of liquid is taken into account (the derivation of eq. (1) was given by the

author in ref. [7]).
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Prr is the liquid pressure on the external side of the bubble wall and Py, is the sum of the
ambient static pressure (P,) and a nonconstant ambient pressure component such as a sound
field. When a bubble is irradiated by an acoustic wave [9],

P, ,=P —P_sinmt ...(3)

where P, is the pressure amplitude of the acoustic wave and @ its angular frequency. Prr is

related to the internal bubble pressure Py(t) by [10],
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26 4pR
P.=P (t)————""— ...(4
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The dynamics of a gas bubble in a liquid is strongly dependent on the pressure of the
gas contained in it. A situation where the bubble interior contains an incondensable gas can be

simply represented by a polytropic law of compression by [11]

3y
RO
Pg:Pg"(Rj ...(5)
where v is the polytropic exponent and
26
Pg0=P0+R_ (6)

o

is the internal pressure corresponding to the rest radius R,

2.2 Case(2) Heat Transfer Model
The difference between this case and the adiabatic case is the inclusion of the effects of
heat transfer inside the bubble and variation of liquid temperature at bubble wall. In this case,
pressure is assumed to be spatially uniform in a bubble as in the adiabatic case. The liquid
temperature on the external side of the bubble wall is assumed to be variable (TLr) during
bubble oscillations. Followings are the different points as compared with the adiabatic case,
but eq. (1) is used for the motion of bubble radius as in the previous case.

The internal pressure P, is found by integrating [12]

dp 3 oT
£ == |:('Y _l)kg a_i

dt R

~yP, R} (7

R

where vy is the ratio of the specific heats of the gas and k is the gas thermal conductivity. The
bubble interior is then described by an ordinary differential equation for the pressure and a
partial differential equation, the energy equation, which is written in the following form (the

gas temperature field T, (1,t)).

P, | 0T oT
e Tyt |=
y-1T,| ot or

dP 1 oT

8 — (kg r? arg)

..(8)

9
dt r° Or
with the following analytical expression for u(r, t):

0= | g-pk, e L Pl )
r,t)=—|(y- ——r—=.
! v P, ! £ or 3 dt
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R
where T (1) is the liquid temperature at radius r and ki is the thermal conductivity of liquid.

ki and k, depend on the liquid and gas temperature, respectively. The formulas of them are

T
reported as an Appendix in ref. [8]. In this case, oT, is calculated by eq. (10). The

8rR

temperature is continuous at the interface:
To (R,t) =Tg (R,b) .. (11)
The spatial distribution of the liquid temperature (T =TL (1)) should satisfy the

following boundary conditions.

TL(R) = TLR e (12)
OT, (r)] 0T, |

v | = arl .. (13)
T, (r »>») =T, ... (14)
0T, (r) _
—= =0 ... (15)

R

In the present case, the temperature profile in the liquid (T.=TL (r)) is assumed to be

exponential (egs. (16) and (17)) [14].

When (T, -T,) 0T, <0
or
R
86TL (r —R)
r
T, (r) = (T, T LA S
(1) = (T —T,) exp (T, -T,,)
+T, ..(16)
When (TLR—TOO)a—T >0
or |,
T ()=Aexp|-Br-C)*]+T, ...(17)
where
A=(T,,-T,)exp(Be)) ... (18)
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ot
0

B=— Otk (19

2(Tx -T,)e,

C=R +e, ... (20)
T T,

e, =e ... (21

1=€ T, (21)
or ®

where ¢ is a parameter with the numerical value (e)=1 x 107 ). Both egs. (16) and (17) satisfy
the boundary conditions given by (egs. (12)~(15)).
In the present case, a boundary layer is assumed in liquid phase near a bubble. The

thickness of the layer (81) is assumed as given in egs. (22) and (23).

T
When (TLR—TOO)a <0
R
T, -T
5 =—=—==~ .. (22
LT (22)
or |,
When (T, -T,) o1, >0
or
1
8, = te, .. (23)

VB

The variation of the liquid temperature at bubble wall (Trgr) is calculated by the

following equation:

T (t+A) =T, (t) +
4nR*Atq,—4n(R+8,)” At ¢, .24

4
gn [(R+6L)3 _R3]pLR -CPp

where q; (q}) is the energy flux at r = R (r=R+3.) per unit area and unit time, and cpy. is the

specific heat of liquid water at constant pressure. q; and q) are calculated by eqgs. (25) and

(26), where q|=—(k, ), BTL} ... (25)
r R
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The physical quantities of liquid at interface depend on the liquid temperature (Ty) and
the liquid pressure (Pr). Formulas of these quantities employed in the calculations are
described in the next section.

Egs. (1), (7), (8) and (24) are collectively dealt with in a single computer program and
solved numerically. Since eqgs. (1), (7), and (24) are ordinary differential equations, while eq.
(8) is a partial differential equation. A finite-difference, second-order method [15,16], were
employed to solve them numerically.

3. Results and Discussion

Calculations are performed under a condition of T,=20 °C and Ro=10.5 (us), where T,
and R, are the ambient liquid temperature and the initial bubble radius, respectively. The
frequency and the amplitude of the acoustic field are chosen to be 26.5 kHz and 1 bar,
respectively. The undisturbed pressure is taken to be P,=1 bar. Calculations start from the
time t=0 (us) with the initial conditions:

R=R,,R=0,T,=T, =T,,P, =P,
(A) case (1): Adiabatic Model

Under the physical conditions employed in the calculations described above, a periodic
solution is obtained by numerical calculations as is shown in Figs. (1~4) for one acoustic
cycle by the adiabatic model.

The pressure of the acoustic field applied on a bubble and employed in the calculation

is a function of time. The bubble radius (R) is shown in Fig. 1 as a function of time. The
bubble wall velocity (R) is shown in Fig. 2 as a function of time. Both the radius and the wall

velocity of the bubble change with time periodically.

In Fig. 3, the pressure inside the bubble (P,) is shown as a function of time with
logarithmic scale for vertical axis. In Fig. 4, the temperature inside the bubble (T,) is shown
as a function of time with linear vertical axis. Both the pressure and temperature change with
time periodically. At the slow expansion phase in a bubble oscillation, the pressure and the
temperature inside the bubble is slightly less than the ambient liquid pressure and
temperature, respectively. On the other hand, at collapse stage the bubble, P, and T, increase

suddenly, followed by oscillations due to the bounces of bubble radius (see Fig. 1).
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(B)  Case (2): Heat Transfer Model

The results of the calculation using the model with thermal conduction both inside and
outside the bubble (hereafter it is called” the model with HT’) stated in section 5 are shown in
Figs. 5~9. The results of the calculation shown in these figures indicate that the ratio of
specific heats of the gas (air) inside the bubble of order of 1.4, the specific heat at constant

pressure of liquid (water) is taken to be 4.2 kJ/kg.K.
As is shown in the figures 5~9, all the physical quantities of a bubble change with
time periodically with the frequency of the acoustic field applied on the bubble. In Fig. 5, the
bubble radius (R) is shown as a function of time. In Fig. 6, the bubble wall velocity (R) is

shown as a function of time.

In Figs. 7 and 8 the pressure (Py) and the temperature (T,) inside the bubble are shown
as a function of time, respectively. At the slow expansion phase in a bubble oscillation, Pg is
slightly less than the ambient liquid pressure (P,) and T, approaches (~ equal) liquid
temperature (T,) (isothermal process). On the other hand, at collapse stage of a bubble, P, and
T, increase drastically, followed by small oscillations due to the small bounces of bubble
radius (see Fig. 5). The liquid-temperature at the bubble wall (T.g) is shown in Fig. 9 as a
function of time. It is concluded from Fig. 9 that Ty is almost identical to T, during bubble
oscillations except at strong collapses. At strong collapse, Tir increases due to the thermal
conduction from the heated interior of the bubble to the surrounding liquid.

In Fig. 10, a comparison is given between the radius-time curve calculated by the
model with HT (line) and those calculated by the model without HT (dash) for one acoustic
cycle (~ 40 ms). The solid circles are the experimental data by Barber and Putterman [17]. It
can be seen from the figure that the radius-time curve calculated by the model with HT (line)
fits the experimental data (solid circles) more satisfactorily than that calculated by the model
without HT (dash).

Comparisons for the two cases of the temperature (Tg) and pressure (P,) inside the
bubble are shown in Fig. 11 and Fig. 12, respectively. It is concluded from the figures that the

effect of heat transfer is considerable on bubble dynamics.

4. Conclusion
A new model of bubble dynamics is proposed in which heat transfer (thermal
conduction both inside and outside the bubble) is included. The assumption of the spatial
uniformity of temperature in a bubble is no more a realistic one at the strong collapse of the

bubble, while in this study the temperature in the bubble is calculated by solving
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liquid temperature profile near bubble wall is assumed to be exponential.

From the calculations, it is concluded that the effect of heat transfer is considerable on
bubble dynamics in the acoustic field. The calculated results fit with the experimental data of
radius-time curve much more satisfactorily than those by a model without heat transfer. It is
concluded that the effect of heat transfer at bubble wall stabilizes bubble oscillations. It is also

concluded that a bubble transducers the energy of the acoustic wave into heat.

5. Nomenclature

Definition

Sound speed in the liquid at infinity

Heat capacity of liquid at constant pressure
Acoustic field frequency

Thermal conductivity

Pressure

Pressure of the static and acoustic pressure

Ambient liquid pressure

Acoustic pressure amplitude
Equilibrium pressure in the bubble
Radial distance from the bubble
Bubble radius

Bubble wall velocity

Second derivative of the bubble radius

Time

Temperature

Liquid temperature at bubble wall
Ambient liquid temperature

Velocity
Energy flux at r =R

Energy flux at r = R+93,

Ratio of specific heats for gas
Thickness of the liquid layer

Liquid viscosity

Liquid density

Ambient liquid density

Surface tension

Angular frequency (2rf)
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Subscripts
g : Refers to gas in the bubble

L : Refers to liquid

LR : Refers to liquid at bubble wall

o : Refers to the equilibrium value

oo : Refers to the condition at a great distance from the bubble.
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Fig. 1. The bubble radius (R) as a function of time.
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Fig. 2. The bubble wall velocity (R) as a function of time.
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Fig. 3. The pressure inside the bubble (Pg) as a function
of time with logarithmic vertical axis.
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Fig. 4. The temperature at the bubble center as
a function of time.
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Fig. 5. The bubble radius (R) as a function of time.
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Fig. 6. The bubble wall velocity (R) as a function of time.
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Fig. 7. The pressure inside the bubble (Pg) as a function
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Fig. 8. The temperature at the bubble center as
a function of time.
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Fig. 10. Comparison between the calculated results and the
experimental data[17] of radius-time curve for acoustic cycle.
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Fig. 11. The pressure inside the bubble (Pg) as a function
of time with logarithmic vertical axis for two cases.
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Fig. 12. The temperature at the bubble center as
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