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ABSTRACT 
 

In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well 
as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the 
curved beam element possesses seven degrees of freedom including the warping degree of freedom. The 
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The 
identification of damage is formulated as an optimization problem,  binary and continuous genetic algorithms 
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural fre-
quencies, Modal Assurance Criterion MAC). 

The results show the objective function based on change in natural frequency is the best objective and no 
error was recorded in prediction of location and small error in detecting damage value. Also the result show 
that the genetic algorithm method are efficient indicating and quantifying single and multiple damage with 
high precision, and the prediction error for the CGA are less than corresponding value for the BGA. 
 

 
 
 

  
 :الخلاصة  
  

 لمقوسةصياغة مصفوفتي الجساءة والكتلة لعنصر العتبة اتم  ،لعتبه المقوسهيم الضررفي ايارزميه الجينيه لتقتم استخدام الخو البحث هذا في    
تم .)warping(تحوي على سبع درجات من الحرية مع الاخذ بنظر الاعتبار الاعوجاج في العتبه المقوسه آل عقدة . باستعمال مبدأ هاملتون

  التشغيلنظاماستخدمت الاعداد الحقيقيه و.  الجدران الرقيقةات للعتبة المقوسة ذ  نظرية آانك وياوماد علىبالإعت  عنصر العتبة المقوسةاقأشتق
 objective function) (change in natural (استخدام دالتين من دوال الهدف الضرر وموقعه بالثنائي للخوارزميه الجينيه لتحديد آميه

frequencies( و)( Modal Assurance Criterion MAC  
 وخطأ صغير في  بموقع الضررعيه و ليس هناك خطأ مسجل في التنبؤاظهرت بأن الفرق في الترددات هي افضل داله موضوالنتائج        

نسبه الخطا ان و آفائتها في ايجاد آميه وموقع الضرر المفرد والمتعدد بدقه عاليه لك اثبتت الخوارزميه الجينيهذآو.تحديد آميه الضرر
                                    .                   الثنائيالتشغيل نظام استخدام  اقل نسبيا عند باستخدام الاعداد الحقيقيه
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INTRODUCTION 
 

At the recent years, genetic algorithms have 
been recognized as promising intelligent 
search techniques for difficult optimization 
problems. Genetic algorithm method is very 
attractive in comparison with classical meth-
ods because it does not require a solution 
search within the whole solution space. Instead 
the algorithm starts from a small initial popu-
lation of approximated solutions and con-
verges rapidly from thereon 
W.M.Ostachowicz et al.1996. Mares and 
Surace 1996 employed a GA to identify dam-
age in elastic structures. A modified version of 
residual force vectors in terms of the stiffness 
matrix of the damaged structure was chosen as 
an objective function to be minimized while 
stiffness reduction factors of all elements were 
chosen to be variables. M. I. Friswell et al. 
1998 developed a technique, which is based on 
combined use of eigensensitivity and genetic 
algorithms to identify the location and magni-
tude of damage from measured vibration data. 
They employ a genetic algorithm to minimize 
a square-value of the frequency error. Struc-
tural damage is modeled by a reduction in 
Young’s modulus, while the element number 
in the finite element model gives damage loca-
tion. The objective is to identify the position of 
one or more damage sites in a structure, and to 
estimate the extent of the damage at these 
sites. The GA is used to optimize the discrete 
damage location variables. For a given damage 
location site or sites, a standard eigensensitiv-
ity method is used to optimize the damage ex-
tent. This two-level approach incorporates the 
advantage of both the GA and the eigensensi-
tivity methods. Damage at one and two sites 
have been successfully located in the simu-
lated example of a cantilever beam, also suc-
cessfully location in an experimental cantile-
ver plate. J.H. Chou and J. Ghaboussi 2001 
used a GA to solve an optimization problem 
formulated for detection and identification of 
structural damage. The “output error” indicat-
ing the difference between the measured and 

computed responses under static loading and 
the equation error indicating the residual force 
in the system of equilibrium equations are 
used to formulate the objective function to be 
optimized. The method proposed is capable of 
successfully detecting the location and magni-
tude of the damage as well as correctly deter-
mining the unmeasured nodal displacement, 
while avoiding the complete finite element 
analyses.  E. S. Sazonov et al. 2002 used the 
GA to produce a sufficiently optimized ampli-
tude characteristic filter to extract damage in-
formation from the strain energy mode shapes. 
A finite element model was used to generate 
training data set with the known location. The 
filter amplitude characteristic was encoded as 
a GA string where the pass coefficient for each 
harmonic of the Discrete Fourier Transform 
representation was a number between 0 and 1 
in an 8 bit. The genetic optimization was per-
formed based on the minimization of the sig-
nal- to- distortion ratio. The results obtained 
from the GA has confirmed the theoretical 
predictions and allowed improvements in the 
method’s sensitivity to damages of lower 
magnitude. 

In this study, it had been used a binary and 
continuous genetic algorithm for damage de-
tection and location in (in and out-of-plane) 
curved beam by minimizing or maximizing the 
objective function which is based on frequency 
difference and modal assurance criterion 
MAC. 
 
I. MODELING THE DAMAGED BEAM. 
 

In this study the equation of motion for 
simply curved beam acquired from Kang and 
Yoo’s theory of thin- walled curved beams to 
drive the element stiffness and mass matrices 
respectively. The curved beam element is 
shown in Fig.1 in curvilinear coordinate sys-
tem. Each node of the curved beam element 
possesses seven degrees of freedom including 
the warping degree of freedom. Using Hamil-
ton’s principle, the dynamic equilibrium can 
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be expressed in the variation form as following 
K. Young Yoon et al. 2006. 

                     (1)                                                                                                              

                                    
 

Where  is the variation kinetic energy, 
 is the variation strain energy, and  is the 

variation potential energy loss due to applied 
loads. The symbol  means the first varia-
tion. For the linear elastic body, the variation 
of strain energy stored in the body is  
 

                               (2)                                                                                                                
 

Where  refers to the components of the 
stress tensor and  to those of the strain ten-
sor. The variation in kinetic energy of a thin-
walled curved beam is 

 

                            (3)                                                                                                             
 

Where  is the mass density,  is the dis-
placement components of the curved beam, 
and is time. The variation potential energy 
loss due to applied loads with body forces ne-
glected is 

 
                              (4)                                                                                                                 

 
Where  stands for distributed loads ap-

plied on the line of shear center and  is the 
length of the element.                                                                                                                                                 

A linear stiffness matrix and a consistent 
mass matrix are developed so that various ana-
lyses such as linear and free vibration analyses 
can be performed. Using shape functions, the 
dynamic equilibrium given in eq. (1) yields a 
set of simultaneous equations 

 
   (5)                                                                                       

From which one obtains. 

                                  (6)                                                                                                              
 

Where K, M, d, and f are the linear stiffness 
matrix, the consistent mass matrix, the nodal 

displacement vector, and the applied force 
vector of a global structural system, respec-
tively. The nodal forces and the corresponding 
nodal displacements are shown in Fig.1 in the 
positive senses. The nodal forces are seven 
components .The 
corresponding nodal displacements are   

where  and  are 
defined as 

 
                                         (7a)                          

                                          (7b)                           
 

, , and  describe the in-plane displace-
ments whereas , - , , and -  are the out-of-
plane displacements. These two parts of displace-
ment fields are not coupled with each other and 
can be formulated separately. Then, the displace-
ment fields can be expressed in terms of nodal dis-
placements as following K. Young Yoon et al. 
2005. 

 

             (8)                       

 

Where the shapes function, N is defined as. 

          (9a)                   

      (9b)                   
                                    (9c)                     

 
Where  
                                                                                       
Where the nodal displacement, d is repre-
sented 
 

                     (10a)                    

             (10b)                    

                                   (10c)                     

                    (10d)                     
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From the variation of strain energy pre-
sented in eq. (2) and the shape function in equ-
ations (9a), (9b), and (9c) the element stiffness 
matrix for curved beam is derived as shown 
K.Young Yoon et al. 2005. 

 

     (11)                                                                

Where: 

dz= 

,    

dz= 

 

dz= , 

dz= 

 

dz= 

 

     From the variation kinetic energy presented 

in eq. (3) and following the similar procedure 

as used for the element stiffness matrix for 

curved beam formulation, the mass matrix is 

derived. 

           (12)                   

Where: 

dz= 

, 

dz= 

,  

dz=  

dz= 

, 

dz= 
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II. APPLACATION OF A GENETIC AL-
GORITHM. 
 
     GA is a global probabilistic search algo-
rithm inspired by Darwin's survival-of-the fit-
test theory. In this optimization method, in-
formation about a problem, such as variable 
parameters, is coded into a genetic string 
known as an individual (chromosome). Each 
of these individuals has an associated fitness 
value, which is usually determined by the ob-
jective function to be maximized or mini-
mized. Genetic algorithms have been shown to 
be able to solve the optimization problem 
through mutation, crossover and selection op-
eration applied to individuals in the popula-
tion. 
 
II.I Population 
 
     The initial population are created randomly 
by generating the required number of 
individuals but a new population developed 
from this initial population and to do this must 
apply the genetic operator. The initial 
populations are generated by the following 
equation L. Randy  Haupt, S. Ellen Haupt 
2004: 
 
 P = XLB + rand (Npop , Nvar) (XUB – XLB )        (13)                                    
                   
Where: 
(XUB, XLB) means the range of maximum and 
minimum values allowed for each variable 
respectively. 
Npop = The number of population. 
Nvar = The number of variable. 
 
     In this population, there are several 
individuals carrying different “genetic 
information“ in their string or coding. When 
working with binary coded genetic algorithms 
each of the real parameters to be optimized is 
translated to binary codes. 

• To transform the real values (bi) to 
binary codes the following equation is 
used H. M. Gomes and N. R. S. Silva 
(2007) 

        (14)                     
 
Where binn indicates a binary traslation to a 
string s , and n bit means the number of bit. 

• To transform the binary codes to real 
values (decoding) the following 

equation is used. 

       (15)                 
 

 

     Where  bin-1(s) is the nonnegative integer 
decoded from the base 2 binary representation,            
From this equation it is obviouse that the 
precision by the binary coding is (XUB - XLB) / 
(2n bit -1) 
 
II.II Fitness Function 
 
     In order to determine the ability of an 
individual to search better solution, a fitness 
function is used to quantify how good the 
solution represented by a chromosome is. 
Depending on the problem characteristic, the 
fitness function can be any form of 
mathematical formulation, can be either a 
maximized or minimized function. This 
function generates an output from the set of 
input variables of a chromosome. The goal is 
to modify the output in some desirable fashion 
by finding the appropriate values of input 
variables. 
In this work the two objective functions are 
used to assess the presence of damage in 
beam. 

• Changes in Natural Frequencies. 
• Modal Assurance Criterion. 

Changes in Natural Frequencies 
 
     The natural frequency used as a diagnostic 
parameter in structural assessment procedures 
using vibration monitoring. One great 
advantage of using only eigenvalue in the 
damage assessment of structures is that they 
are cheaply acquired and the approach can 
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give an inexpensive structural assessment 
technique. The objective function to be 
minimized is defined as follows M. T. V. 
Baghmisheh et al 2008:  

 
∆ω =                                           (16)                                                           

Where: 
  i     = Mode Number (i=1,2,3,….,n) 

 = Test natural frequencies 
  = Calculated natural frequencies. 

The  are the natural frequencies which are 
applied to our damage detection system as 
inputs. An objective value of zero indicates an 
exact match between the values of frequencies.  
 
Modal Assurance Criterion. 
 
     The Modal Assurance Criterion MAC value 
indicates the degree of correlation between 
two modes and varies from 0 to 1, with 1 for 
full correlation, and 0 for no- correlation. The 
deviation from 1 can be interpreted as a dam-
age indicator in structures. This index is based 
on comparisons between the changes in the 
mode shapes obtained both from tests and 
from calculations, the MAC is defined by W. 
M. Ostachowicz et al. 1996: 

           

                       (17)                                                         

 = Test mode shape vector.  
= calculate mode shape vector. 

        
II.III Selection (reproduction) 
 
     Reproduction is the first operator applied 
on a population. The first step in the reproduc-
tion is fitness assignment. Each individual re-
ceives a reproduction probability depending on 

the own objective (fitness) value and the ob-
jective value of all other individuals in the 
population. The evaluation of this objective 
function indicates which individuals will have 
more chances to procreate and to generate a 
large offspring. 
     There are various selection processes that 
are utilized in genetic algorithms such as rou-
lette wheel selection, rank selection and tour-
nament selection. A common processes and 
used in this work are the roulette wheel selec-
tion. This selection method was used to copy 
individuals according to their fitness values, 
individuals with higher fitness have a higher 
probability of contributing one or more off-
spring in the next generation. For each popula-
tion individual a probability of being selected 
for copying is given by the following equation 
D. E. Goldberg 1989: 

  

∑
=

=
sizep

j
j

i
i

f

fP

1

       

   i,j = 1,2,……,Psize                                             (18)   

      Where ƒ j is the fitness of individual j, the 
sum is taken over all population members (Ps-

ize), and Pi is the probability of individual i 
with fitness fj receiving an additional copy.  

 

II.IV Recombination (Crossover) 

     Crossover is one of the recombination op-
erators that is used for information exchange 
between any two individuals to create two off-
spring. Each pair of parents have a probability, 
Pc ,of  producing offspring. Usually, a high 
crossover   probability is used. 

• Real value Recombination: The vari-
able values of the offspring are chosen 
somewhere around and between the 
variable values of the parents. Off-
spring are produced according to the 
rule H. Pohlheim 2007: 

 
 Vari

o =vari
p1 .αi + vari

p2. (1 – αi)    
   i  (1,2,…Nvar)                                    (19)      
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Where α is a scaling factor chosen uniformly a 
random over an interval [-0.25 , 1.25] for each 
a new. 

• Binary valued Recombination:  The 
some of the crossover operators avail-
able in GA are single point crossover, 
two-point crossover and uniform cros-
sover. In this work a single point cros-
sover is applied, where one crossover 
position (n) a long the string is se-
lected randomly between 1 and the 
string length less one. Two new 
strings are created by swapping all 
characters between the individuals 
about this point. 

 
II.V Mutation 
 
     Mutation means a random change in the 
information of a chromosome, to add diversity 
to the genetic characteristics of the population. 
It is applied at a certain probability, Pm, to 
each gene of the offspring, the mutation prob-
ability also called mutation rate, is usually a 
small value, to ensure that good solutions are 
not distorted too much. Mutation of real vari-
ables means, that randomly created values are 
added to the variables selected. The mutation 
rule is: 

 C = P + rand  (XUB - XLB)                         (20)                                                                                   
 
Where C is mean the child and P mean parent 
For binary mutation, randomly change a par-
ticular gene in a chromosome, thus, 1 may be 
changed to a 0 or vice versa. 
 
II.VI Elitism 
 
     In the process of the crossover and muta-
tion- taking place, there is high chance that the 
optimum solution could be lost. There is no 
guarantee that these operators will preserve the 
fittest string. To avoid this, the elitist models 
are often used. Elitism refers to the process of 
ensuring that the best chromosome (or few 
best chromosomes) of the current population 

survive to the next generation. The best indi-
viduals are copied to the new population with-
out being mutated. Elitism can rapidly increase 
the performance of GA, because it prevents a 
loss of the best found solution M. Obitko1998 
 
II.VII Termination 
 
     The GA may be terminated by using the 
convergence criterion in order to get an ac-
ceptable approximate solution, the terminate if 
there is no improvement over a number of 
consecutive generation, by monitoring the fit-
ness of the best individual if there is no sig-
nificant improvement over a time, GA is to 
stop. Or if the objective function value of the 
fittest individual is 0 or very small number, 
which means that the optimal solution has 
been found. 
 
      In the present work the chromosome has 
two variables, the damage location and the 
stiffness reduction. The objective function ge-
nerates an output from the set of input vari-
ables of a chromosome. The goal is to modify 
the output in some desirable fashion by finding 
the appropriate values of input variables. Fig.2 
shows the flowchart of the method of damage 
detection using genetic algorithms. 
 
 
III. NUMERICAL SIMULATION 
 
The processes of damage detection are demon-
strated using (in and out-of-plane) simply sup-
ported curved beam. The dimensions and material 
properties for the simply supported in and out-of-
plane curved beam are shown in Table 1 and Ta-
ble 2 respectively. 
                                           
     In and out-of-plane simply supported 
curved beam is divided into 30 finite elements 
of equal length, where the value of first natural 
frequency is used for convergent test for 
checking the stability of the results as shown 
in the Fig. 3 and Fig. 4 for in and out-of-plane 
respectively. 
 

              Six damage scenarios are investigated and 
are summarized in Table 3.In the first four 
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cases for single damage, the scenarios were 
simulate by reducing the stiffness of an ele-
ment near the beam’s end and near the beam’s 
mid-span. The remaining damage cases D5 
and D6 in the same table correspond to a mul-
tiple damage scenario and were simulated by 
reducing the stiffness of assumed elements at 
two different locations. The following parame-
ters of the GA have been used: size of the 
population is 40, probability of crossover Pc is 
0.9, probability of mutation Pm is 0.05, number 
of elitism is 2 and number of bit is 20. 
 
IV. RESULTS AND DISSCUSION 

     The frequency predictions from the FEM 
model of undamaged beam are validated by 
comparing with other researches as shown in 
Tables 4 and Table 5 for in and out-of-plane 
curved beam respectively.   

IV.I Objective Function Based on Change 

in Natural Frequency. 

     The input first five natural frequencies of 
damage scenarios are shown in Table 6 and 
Table 7 for out-of-plane and in-plane curved 
beam respectively. A population of individuals 
is generated randomly then the natural fre-
quencies and objective function are calculated 
for each individual. The GAs theory is used to 
find the optimal location and stiffness reduc-
tion by minimizing the eq. (16). For each sce-
nario the algorithm is run from five different 
initial random population  and the identified 
values for damage scenarios by using CGA 
and BGA are shown in Table 8 for out-of-
plane and Table 9 for in-plane curved beam. 
In all scenarios there are no error recorded in 
prediction of damage element and the errors 
for the CGA are less than corresponding val-
ues for the BGA, because in the CGA deals 
with real values without using any encoding 
method. 

     Fig. 5 show the typical objective function 
curve for out-of-plane at D4 by using CGA, it 
is see that the objective function value tends to 
zero with the increasing number of generations 
and reach zero at around 21 generations. The 

Fig. 6 shows the objective function curves at 
same damage scenario but using BGA, the 
convergence occurs at 28 generation. 

IV.II Objective Function Based on Modal 
Assurance Criterion (MAC) 

     The mode shapes are calculated numeri-
cally using finite element model for the dam-
aged scenarios, these used as test inputs for the 
GA operator. A population of individuals is 
generated randomly then the objective func-
tion is calculated for each individual and the 
GAs theory is applied.        For each scenario 
the algorithm is run in five different initial ran-
domly generated populations and the average 
results obtained by CGA and BGA listed in 
Table 10 for out-of-plane and Table 11 for in-
plane curved beam. The errors for CGA are 
less than corresponding values for the BGA.  

      For out-of-plane curved beam the objective 
function with multi damage for D5 using CGA 
is shown in Fig. 7 it can seen that convergence 
occurs at 15 generations.                                   

 
V. CONCLUSIONS 
 
The main conclusions from the present work 
may be stated as follows: 

• The study shows that the genetic algo-
rithm is effective in identifying posi-
tions and extents in single and multi 
damage. 

• The results obtained from continuous 
genetic algorithms are more accurate 
then those obtained from binary ge-
netic algorithms in damage assess-
ment. 

• The length of the run (in terms of gen-
eration number) and results depends 
on the initial randomly generated pop-
ulation and GA parameters and the 
test point. 

• The objective function based on 
change in natural frequency is the best 
objective function, because the stiff-
ness reduction has a relatively large 
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effect on the natural frequencies, as 
compared with mode shapes, it is in-
sensitive of the modes to the damage. 
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Notation  
 
A       Sectional area (m2) 

       Bimoment (N .m) 
        Young modulus (N/m 2 ) 
        Shear modulus (N/m 2 ) 

GA    Genetic Algorithm. 
       Area moment of inertia about y-axis (m4) 
       Area moment of inertia about x-axis (m4) 
       Warping moment of inertia (m6) 

         Area polar moment of inertia (m4) 
     St Venant constant of a straight member(m4) 

         Length of the finite element (m, cm) 
  Moment about x- and y-axis (N.m) 

MAC    Modal Assurance Criterion 
  Uniform distributed moments about  x-, y-, and z-axis 

      Uniform distributed bimoment 
NPOP     Number of population 
Nvar      Number of variable 
Psiz       Population size 

    Uniform distributed forces about  x-, y-, and z-directions 
R         Radius of initial curvature (m) 

         Kinetic energy (N.m) 
         Strain energy (N.m) 

 Displacement components of the shear center in x- and y- directions, respectively 
V    Volume of body (m3) 

   Transverse shear forces (N) 
    Average longitudinal displacement of cross-section 

XUB    Maximum value of variable 
XLB    Minimum value of variable 
 
Greek letters 

      Mass density (Kg/m 3 ) 
      Rotation of the cross-section about z-axis 
      Subtended angle (degree) 

    Components of strain tensor 
       Variation 

    Nodal displacements 
     Components of stress tensor 
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