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Abstract 

Modeling count variables is a common task in many application 

areas such as economics, social sciences, and medicine. The classical 

Poisson regression model for count data is often used and it is limited in 

these disciplines since count data sets typically exhibit overdispersion, so 

negative binomial regression can be used. We use a jackknife- after- 

bootstrap procedure to assess the error in the bootstrap estimated 

parameters. The method is illustrated through two real examples. The 

results suggest that the jackknife- after- bootstrap method provides a 

reliable alternative to traditional methods particularly in small to 

moderate samples.      
Keywords: Poisson regression, Overdispersion, Negative binomial regression, 

Bootstrap, Jackknife- after- Bootstrap 
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 الذي الخطألتقييم ) Jackknife- after- Bootstrap (أسلوبفي هذا البحث استخدمنا وقد 

 استخدمنا مجموعتين من إذواسون ، في انحدار ب) Bootstrap( عند تقدير المعلمات باستخدام الـ يحصل
 -Jackknife (أسلوبالبيانات الحقيقية لتوضيح الأسلوب المستخدم وقد وضحت النتائج بان استخدام 

after- Bootstrap ( العينات الصغيرة حجامأيمكن التعويل عليه مقارنة بالطرائق التقليدية وخاصة عند 
  .والمتوسطة 

1- Introduction  

Researchers spend much of their time counting things, numbers of 

symptoms, placements, and so on. Count variables indicate the number of 

times a particular event occurs to each case such as number of hospital 

visits per year , number of divorces per city (Orme & Combs-Orme, 

2009). Count variable is an integer and can range from 0 through ∞+  . 

Two common distributions are used often to model the count variable; 

they are Poisson and negative binomial distributions. 

When the response variable (y) is a count variable and we fit the 

linear regression model using ordinary least squares (OLS) method, then 

we may have several problems. First, the usual assumption that the errors 

are normally distributed fails, since (y) is typically non normal. Second, 

OLS estimators also assume a homoscedastic error structure, this is 

problematic if (y) is a count variable. Third, if the errors are really 

hetroscedastic, the standard error estimates produced by OLS are biased 

(Demairs, 2004). Jackknife and bootstrap re-sampling techniques are 

designed to estimate standard errors, bias, confidence intervals, and 

prediction error. The bootstrap is a re-sampling method that draws a large 

collection of samples from the original data. It is used to select the 

observation randomly with replacement from the original data sample, 

and jackknife is generated by sequentially deleting single datum from the 

original sample (Efron and Tibshirani, 1993). We use a jackknife- after- 

bootstrap procedure to assess the error in the bootstrap estimated 

parameters. The method is illustrated through two real examples. In 
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sections 2, 3, and 4 we described the Poisson regression model, 

negative binomial regression model, and overdispersion, respectively. In 

section 5, the use of the jackknife-after-bootstrap was discussed. The 

analytical examples are given in section 6 where two real data sets were 

used. Finally, section 7 shows the conclusions. 

2- Poisson Regression Model 

 Poisson Regression Model (PRM) is a technique which allows to 

model response variable that describs count data. It is often applied to 

study the occurrence of small number of counts as a function of a set of 

explanatory variables (Cameron & Trivedi, 1998). The PRM relates the 

probability function of a response variable (y) to a vector of explanatory 

variables (x) (Winkelmann , 2008) , more formally , the PRM assumes 

that the response variable (y) drawn from a Poisson distribution with 

mean and variance (µ ) . The p.d.f of (y) is : 

)1(...,....2,1,0iy,
!iy

iye)|iy(f =
µµ−

=µ  

The Poisson distribution is unimodal and skewed to the right over the 

possible values 0,1,2,… . It has a single parameter 0>µ  , which is both 

its mean and its variance , that is (known as equidispersion ) 

(Agersti,2006) : 

µ==
µ==

)y(Var)y(Eor
)2(....)x|iy(Var)x|iy(E   

With PRM the mean µ  is explained in terms of explanatory variables (x) 

via an appropriate link function. The popular choice for the link function 

is the log link, that is: 
)3(...)x(Exp)x|iy(E β′==µ  

Where (β ) is a ( 1k ∗ ) vector of parameters, and ( x ) is a ( 1k ∗ ) vector of 

explanatory variables. Taking the exponential of ( βx ) forces (µ ) to be 

positive which is necessary since count only ( 00 =β ) or positive (Long & 
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Freese, 2001) (De Jong & Heller, 2008). So, the multiple PRM can be 

written as: 

)4(...)kxkˆ....2x2ˆ1x1ˆ0ˆ(Expˆ β++β+β+β=µ    

or equivalently: 

)5(...kxkˆ....2x2ˆ1x1ˆ0ˆˆln β++β+β+β=µ  

The parameters (β ) can be estimated by using the maximum likelihood 

method (m.l.). The standard error of the estimated parameters is: 

∑
=

−′β′σ=β
n

1i
)6(...2/1}1]ixix)ˆx(Exp[2ˆ{)PRMˆ(Se   

3- Overdispersion and Underdispersion 

The key assumption of the PRM is that the conditional mean equals 

the conditional variance i.e. )x|iy(Var)x|iy(E = .In many applications this 

assumption has not met. If )x|iy(Var)x|iy(E <  , respectively 

)x|iy(Var)x|iy(E > ,then we speak about overdispersion,  respectively 

underdispersion. The PRM does not allow for overdispersion  

(Cameron & Trivedi , 1998)  

 

4- Negative Binomial Regression Model  

   The negative binomial regression model (NBRM) is the most 

commonly used alternative to the (PRM) when it has overdispersion 

problem (Winkelmann, 2008). 

Under the Poisson distribution, the mean, iµ  , is assumed to be constant 

or homogeneous within the class . By assuming the specific distribution 

for ( iµ ) to be a gamma with mean i)i(E θ=µ  and variance 1
iv2

i)i(Var −θ=µ  , 

and i| iy µ  to be a poisson with conditional mean i)i| iy(E µ=µ  , it can be 

shown that the marginal distribution of iy  follows a negative binomial 

distribution with p.d.f : 
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)7(...iy)
iiv

i(iv)
iiv

iv(
iv)1iy(

)iviy()iy(f
θ+

θ
θ+Γ+Γ

+Γ
=  

where the mean is θ=)y(E i  and the variance is 1
iv2

ii)iy(Var −θ+θ= , This is 

called the negative binomial I . 

 From regression analysis of count data the most common implementation 

of the negative binomial is called negative binomial II model (NB2). By 

letting 1aiiv −θ= , this time with mean i)iy(E θ=  and variance 

)a1(i)iy(Var +θ= . If a equals zero , then the mean and variance will be equal 

, resulting the distribution to be a poisson . If )0a( >  , the variance will 

exceed the mean and the distribution allows for overdispersion as well . 

So, the p.d.f. is: 

)8(...iy)1a1

1(
1ai)1a1

1a(
)1ai()1iy(

)1aiiy()iy(f
−+

−θ
−+

−

−θΓ+Γ

−θ+Γ
=  

or 

)9(...iy)1a1

1(
1ai)

1a
1(

)1ai()1iy(

)1aiiy()iy(f
−+

−θ
+−θΓ+Γ

−θ+Γ
=  

where )ix(Expi β′=θ (Cameron & Trivedi, 1998),(Greene, 2008).  

 

5- Jackknife after Bootstrap Procedure  

The use of the bootstrap and the jackknife re-sampling methods is 

gradually increasing nowadays, due to increasing computer power. The 

basic idea of bootstrapping is to generate a large number of samples by 

randomly drawing observations with replacement from the original data 

set , and to recalculate a statistic for each bootstrap sample , whereas the 

jackknife is generated by sequentially deleting single datum from the 

original sample (Efron & Tibshirani , 1993) . 

Jackknife After Bootstrap (JAB) method was proposed by ( Efron,1992) 

to investigate the effect of a single observation in bootstrap, where Efron 

pointed out that the bootstrap estimates have two distinct sources of 
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variance, they are: sampling variability, due to the fact that we have only 

a sample of size n rather than the entire population, and bootstrap 

resampling variability, due to the fact that we take only B bootstrap 

samples rather than an infinite number. Suppose we have drawn (B) 

bootstrap samples and calculate the standard error of the regression 

parameter , )ˆ(BSe β  , we would like to have a measure of the uncertainty in  

)ˆ(BSe β  . The JAB method provides a way of estimating the standard error 

of  )ˆ(BSe β  , ))ˆ(BSe(JABSe β  , using only information in our B bootstrap 

samples . The jackknife estimate of standard error of )ˆ(BSe β  involves two 

steps : 

For n,...,2,1i =  , leave out data point i and re-compute )ˆ(BSe β  and called the 

results )ˆ()i(BSe β . 

Define  

    )10(...2/1]
n

1i

2))ˆ((.)BSe)ˆ()i(BSe(
n

1n[))ˆ(BSe(JABSe ∑
=

β−β
−

=β   

Where   
n

n

1i
)ˆ()i(BSe

)ˆ((.)BSe
∑
=

β

=β       (Efron & Tibshirani , 1993)   

In each i , there are some bootstrap samples in which that the data point , 

say iX  , does not appear , and we can use those samples to estimate 

)ˆ()i(BSe β . Let iC  denote the indices of the bootstrap samples that don’t 

contain data points  iX  , and there are iB  such samples , then : 

)11(...2/1]
iB

iCB

2)BˆBˆ(

[)ˆ()i(BSe

∑
∈

β−β

=β  

iB
iCB
Bˆ

Bˆ
∑
∈

β

=β  
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6- Analytical Examples  

In order to use the PRM and NBRM we deal with two real data sets . All 

the results done using S-plus 6.1 program. 

6-1- Example 1   

In this example we fit the PRM. The response variable represents the 

number of dead cocks. Three explanatory variables are considered , they 

are : age of the cocks in days , the quantity of the feed in kilogram (kg) 

and the temperature (AL-Suliaman, 1995). The sample size was (62), the 

results are shown in table (1).  

 

Table(1):The results of PRM of the number of dead cocks . 

parameters )PR(β̂  )ˆ(e.S β  

0β̂  0.84865017 0.8317 

1β̂  -0.0325 0.01139 

2β̂  0.4558 0.133 

3β̂  0.0236 0.0236 

The fitted PRM is : 
])temp(032.0)feed(455.0)age(032.0848.0[Expiŷ ++−=   

The bootstrap (B) and the jackknife-after-bootstrap (JAB) results are 

shown in table (2). 

Table (2): The Bootstrap and JAB results of example (1) (B=10,000)  

B JAB 
Parameters 

)B(β̂  bias ))B(ˆ(e.S β  ))JAB(ˆ(e.S β  

0β̂  0.69375 -0.1549 1.09784 0.4005 

1β̂  -0.0311 0.00137 0.01352 0.00498 

2β̂  0.4459 -0.0099 0.13276 0.0499 

3β̂  0.03624 0.0039 0.03021 0.01089 
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Figure (1) shows the observations with large influence on ))B(ˆ(e.S β , where 

observations (17 and 25) have large influence on the intercept , 

observations (35 , 47) on 1X)age(1ˆ =β , observations (47 , 62) on 

2X)feed(2ˆ =β , and observations (17 , 25) on 3X)temp(3ˆ =β   

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): JAB influence of the number of dead cocks parameters. 

6-2- Example 2 

In this example we use gala data from faraway package (Faraway , 2006) 

The data describe the relationship between the number of plant  species 

and several geographic variables is of interest, where n is 30. Species: 

The number of plant species found on the island, Endemics: The number 

of endemic species, Area: The area of the island (km $^ 2$), Elevation: 

The highest elevation of the island (m), Nearest: The distance from the 

nearest island (km), Scrnz: The distance from Santa Cruz island (km), and 

Adjacent: The area of the adjacent island (km2). In this example we can’t 
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fit the PRM because we have overdispersion problem. So the best 

alternative model is NBRM, table (3) shows the results of NBRM. 

Table (3): The results of NBRM of the Gala example 

parameters )NB(β̂  )ˆ(e.S β  

0β̂  2.5093 0.2058 

1β̂  0.0475 0.01 

2β̂  -0.0003 0.00023 

3β̂  0.00022 0.00099 

4β̂  -0.00312 0.0087 

5β̂  0.00063 0.002 

6β̂  0.0000022 0.0002 
 

The fitted NBRM is: 

])Adjacent(0000022.0)Scrnz(00063.0)Nearest(00312.0
)Elevation(00022.0)Area(0003.0)Endemics(0475.0509.2[Expiŷ

++−
+−+=   

The bootstrap (B) and the jackknife-after-bootstrap (JAB) results are 

shown in table (4). 

Table (4): The Bootstrap and JAB results of example (2) (B=10,000) 

B JAB 
parameters 

)B(β̂  Bias: B̂)B(B̂ −  ))B(ˆ(e.S β  ))JAB(ˆ(e.S β  

0β̂  2.4024 -0.106 0.3206 0.111 

1β̂  0.05762 0.01 0.0204 0.0084 

2β̂  -0.0011 -0.00083 0.0015 0.0024 

3β̂  0.00002273 -0.00019 0.00126 0.00045 

4β̂  -0.0027 0.000357 0.013 0.0047 

5β̂  0.00077 0.00013 0.003129 0.0015 

6β̂  0.000018 -0.000003 0.001321 0.00175 
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Figure (2) shows the cases with large influence on ))B(ˆ(e.S β , where cases 

(18 and 27) have large influence on the intercept , case (27) has large 

influence on )Endemics(1β̂ , )Elevation(3β̂ , )Nearest(4β̂  , and )Scruz(5β̂  are 

influenced by cases (19) , (15) , and (30) , respectively . 

    
 

 

 

 

 

 

 

 

 

 

 

Figure (2): JAB influence of the Gala example parameters. 

 

7- Conclusion  

As a result, we conclude that the )ˆ(e.S )JAB(β  is less than the )ˆ(e.S )B(β  

for all PRM and NBRM parameters. The results suggest that the bootstrap  

re-sampling provides a reliable alternative to traditional methods and JAB 

procedure provides a good measure of diagnosis for bootstrap. We see 

that from figure (1) that cases (17 and 25) have large influence on both 

intercept and temp., whereas the case (47) has large influence on the age 

and feed. The cases (35) and (62) have large influence on age and feed 

respectively. From figure (2), no case has large influence on the Area and 

Adjacent. One case has influence, 27, 19, 15, and 30 on the Endemics, 
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Elevation, Nearest, and Scruz, respectively. Finally, the cases (27 and 18) 

have influence on the intercept. 
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