The Strong Approximation by Linear Positive Operator In terms of the Averaged Modulus of Order One

Zainab Esa Abdul Naby
Al - Mustansiriya University-College of Science

Abstract

In this work, we introduce Bernst- ein linear positive operators $B_{n, k}(f, x)$ in the space of all continuous functions C_{I} where $I=[0,1]$ with some properties of this operator so to find the strong approximation of continuous functions with the averaged modulus of order one.

Keywords : Strong Approximation ,Linear Positive Operator, Averaged Modulus ,Order One

1-Introduction

The strong approximation of function connected with Fourier series was examined in many papers published in last 40 years. The problem of strong approxim- mation with power $q>0$ is well known for 2π - periodic functions and their Fourier series [1], [2]. For example [3], if $S_{n}(f, x)$ is the n-th partial sum of trigonometric Fourier series of f, then the n -th $(C, 1)$-mean of this series is defined by the formula :

$$
\sigma_{n}(f, x)=\frac{1}{n+1} \sum_{k=0}^{n} S_{n}(f, x), \quad n \in N_{0}
$$

where $N_{0}=\{0,1, \ldots\}$. The n-th strong $(C, 1)-$ mean of this series is defined as follows:
$H_{n}^{q}(f, x)=\left\{\frac{1}{n+1} \sum_{k=0}^{n}\left|S_{n}(f, x)-f(x)\right|^{q^{q}}\right\}^{\frac{1}{q}} \quad$, $n \in N_{0}$. Where q is a fixed positive number, It is clear that: $\left.\left.\quad \mid \sigma_{n}(f, x)-f\right) x\right) \mid \leq H_{n}^{1}(f, x)$
And $\quad H_{n}^{q}(f, x) \leq H_{n}^{p}(f, x), 0<q<p<$
∞.
(1.1) In [4] is
investigated the strong approxi- imation of functions $f \in C_{I}$ some linear operators.

Definitions and Lemmas:

In this paper we examine this problem for $f \in C_{I}(I=[0,1])$ and introduced $B_{n, k}(f, A, x)$ linear positive operators. Let C_{I} be the space of all functions, continuous and bounded on $f: I \rightarrow R$ with the norm: $\quad\|f\|=\sup \{|f(x)|: x \in I\}$ $\ldots \ldots \ldots \ldots$. (1.2) Let $r \in N_{0}$ be a fixed number and let $C_{I}^{r}=\left\{f \in C_{I}: f^{(r)} \in C_{I}\right\}$ and the norm C_{I}^{r}
is defined by (1.2), where $C_{I}^{0} \equiv C_{I}$. Let $A \in \mathcal{M}$ and $n \in N$. Where \mathcal{M} the set of all infinite matrices $A=\left[a_{n, k}(x)\right]$. The Bernstein operators
[5]: $B_{n, k}(f, A, x)=\sum_{k=0}^{n} a_{n, k}(x) f\left(\frac{k}{n}\right)$
Defined for continuous f on the interval $I=[0,1]$
with the matrix $A=\left[a_{n, k}(x)\right]$ where:
$a_{n, k}(x)=\left\{\binom{n}{k} x^{k}(1-x)^{n-k}\right\}$.
Lemma (1.1): [3]
Let $A=\left[a_{n, k}(x)\right], n \in N, k \in N_{0}$ then $a_{n, k}(x) \leq 0$, for $x \in R, n \in N, k \in N_{0}$.
$a_{n, k}(x)=\left\{\begin{array}{cc}\binom{n}{k} x^{k}(1-x)^{n-k}=1 & \text { if } k=n \\ \left(\begin{array}{c}n \\ k\end{array} x^{k}(1-x)^{n-k}=0\right. & \text { if } k>n\end{array}\right\} \ldots$.

Lemma (1.2): [3]

Let $A=\left[a_{n, k}(x)\right], n \in N, k \in N_{0}, x \in[0, \infty)$ as in (1.4) then:
$1-B_{n, k}(1, A, x)=1$

$$
2-B_{n, k}\left(\frac{k}{n} 1, A, x\right)=x
$$

3- $B_{n, k}\left(\left(\frac{k}{n}\right)^{2}, A, x\right)=x^{2}\left(\frac{n-1}{n}\right)+\frac{x}{n}$
For every matrix $A \in \mathcal{M}, p \in N_{0}$ and $B_{n, k}(f, A, x)$. Then strong deference $H_{n}^{q}(f, x)$ is well - defined for every $f \in C_{q}, x \in I=[0,1]$, $n \in N$ with power $q>0$ as follows [6]: $H_{n}^{q}(f, x)=\left\{\sum_{k=0}^{n} a_{n, k}(x)\left|f\left(\frac{k}{n}\right)-f(x)\right|^{q}\right\}^{\frac{1}{q}} \cdots \cdots$ (1.6)

Let the function f be defined and bounded in the interval $[a, b]$ then $[4]: \omega(f, \delta)=\{\sup (\mid f(x)-$ $f(y) \mid): x, y \in[a, b],|x-y| \leq t\}, t \geq$ $0 .$. \qquad .. (1.7)
In [5] if $f \in R_{0=}[0, \infty)$, then:

$$
\begin{equation*}
\omega(f, \lambda t) \leq(\lambda+1) \omega(f, t), \text { for } \lambda, t \in R_{0} \tag{1.8}
\end{equation*}
$$

And if $f \in R_{0}$ are uniformly continuous functions then $\lim _{n \rightarrow 0^{+}} \omega(f, t)=0$.The $k^{\text {th }}$ averaged modulus of smoothness for $f \in R_{0}$ is defined by [7]: $\quad \tau_{k}(f, \delta)_{p}=\left\|\omega_{k}(f, \delta)\right\|_{p}$ The averaged modulus of order one defined by:
$\tau_{1}(f, \delta)_{p}=\left\|\omega_{1}(f, \delta)\right\|_{p}$ \qquad (1.9) in [7] 1if f is measurable bounded function on $[a, b]$, $p \geq 1$ then

$$
\omega_{k}(f, \delta)_{p} \leq \tau_{k}(f, \delta)_{p}
$$

2- If $\delta \geq \delta^{\prime}$ then
$\omega_{k}(f, x, \delta) \geq \omega_{k}\left(f, x, \delta^{\prime}\right), \quad$ and $\quad \tau_{k}(f, x, \delta) \geq$ $\tau_{k}\left(f, x, \delta^{\prime}\right) \ldots \ldots \ldots \ldots(1.10)$
where $\quad \omega_{k}(f, x, \delta)=\left\{\sup \left|\Delta_{h} f(t)\right|: t \in\right.$ $\left.\left[x-\frac{h}{2}, x+\frac{h}{2}\right], x \in[0, \infty)\right\}, k \in N, \delta \in[0, \infty]$.

2- Main results

First we prove some properties of $B_{n, k}(f, A, x)$ and Lemma to using them in the proof of our theorems.

Lemma (2.1):

Let $A=\left[a_{n, k}(x)\right], n \in N, k \in N_{0}$ as in (1.4),
$x \in I=[0,1]$ then:
$B_{n, k}\left(\left(\frac{k}{n}\right)^{3}, A, x\right)=x^{3}\left(\frac{(n-1)(n-2)}{n^{2}}\right)+3 x^{2}+\frac{x}{n^{2}}$
Proof:
From (1.3), (1.4) and lemma (1.2), we have:
$B_{n, k}\left(\left(\frac{k}{n}\right)^{3}, A, x\right)=\sum_{k=0}^{n} a_{n, k}(x) \cdot\left(\frac{k}{n}\right)^{3}$
$=x \sum_{k=0}^{n}\left(\frac{k}{n}\right)^{2}\binom{n}{k} x^{k}(1-x)^{n-k}$
$=x \sum_{k=1}^{n-1}\left(\frac{k}{n}\right)^{2}\binom{n}{k} x^{k-1}(1-\quad x)^{(n-1)-(k-1)}$
Let $j=k-1$
$=x \sum_{j=0}^{n-1}\left(\frac{j+1}{n}\right)^{2}\binom{n-1}{j} x^{j}(1-x)^{(n-1)-j}=$
$x \sum_{j=0}^{n-1}\left(\frac{j}{n}\right)^{2}\binom{n-1}{j} x^{j}(1-x)^{(n-1)-j}+$
$2 x \sum_{j=0}^{n-1} \frac{j}{n^{2}}\binom{n-1}{j} x^{j}(1-x)^{(n-1)-j}+$
$x \sum_{j=0}^{n-1} \frac{1}{n^{2}}\binom{n-1}{j} x^{j}(1-x)^{(n-1)-j}=$
$x^{2} \frac{(n-1)}{n} \sum_{j=1}^{n-2} \frac{j}{n}\binom{n-2}{j} x^{j-1}(1-$
x) ${ }^{(n-2)-j+1}+$
$2 x \frac{(n-1)}{n^{2}} \sum_{j=1}^{n-2} \frac{j-1}{n}\binom{n-1}{j-1} x^{j-1}(1-$
$x)^{(n-1)-j+1}+x \frac{1}{n^{2}}$
Let $v=j-1$
$=x^{2} \frac{(n-1)}{n} \sum_{v=0}^{n-2} \frac{v+1}{n}\binom{n-2}{v} x^{v}(1-x)^{(n-2)-v}+$
$2 x^{2} \frac{(n-1)}{n^{2}}$
$\sum_{v=0}^{n-2} \frac{v+1}{n}\binom{n-2}{v} x^{v}(1-x)^{(n-2)-v}+x \frac{1}{n^{2}}$.
$=x^{2} \frac{n-1}{n} \sum_{v=0}^{n-2} \frac{v+1}{n}\binom{n-2}{v} x^{v}(1-x)^{(n-2)-v}+$
$2 x^{2} \frac{(n-1)}{n^{2}}+x \frac{1}{n^{2}}=x^{2} \frac{n-1}{n} \sum_{v=0}^{n-2} \frac{v}{n}\binom{n-2}{v} x^{v}(1-$
$x)^{(n-2)-v}+x^{2} \frac{(n-1)}{n^{2}} \sum_{v=0}^{n-2}\binom{n-2}{v} x^{v}(1-$
$x)^{(n-2)-v}+2 x^{2} \frac{(n-1)}{n^{2}}+x \frac{1}{n^{2}}$
$=x^{3} \frac{(n-1)}{n} \sum_{v=1}^{n-3} \frac{v}{n}\binom{n-2}{v} x^{v-1}(1-x)^{(n-2)-v+1}+$
$3 x^{2} \frac{(n-1)}{n^{2}}+x \frac{1}{n^{2}}=x^{3} \frac{(n-2)(n-1)}{n^{2}}+3 x^{2} \frac{2(n-1)}{n^{2}}+$ $x \frac{1}{n^{2}}$
Lemma (2.2):
Let $A=\left[a_{n, k}(x)\right], n \in N, k \in N_{0}$ as in (1.4),
$x \in I=[0,1]$ then:
$B_{n, k}\left(\left(\frac{k}{n}\right)^{4}, A, x\right)=x^{4}\left(\frac{(n-1)(n-2)(n-3)}{n^{3}}\right)+$
$3 x^{2} \frac{(n-1)(n-2)}{n^{3}}+2 x^{2} \frac{(n-1)(n-2)}{n^{3}}+7 x^{2} \frac{(n-1)}{n^{3}}+x \frac{1}{n^{3}}$
Proof:
By (1.3), (1.4) and lemma (1.2) we get
$B_{n, k}\left(\left(\frac{k}{n}\right)^{4}, A, x\right)=\sum_{k=0}^{n} a_{n, k}(x) \cdot\left(\frac{k}{n}\right)^{4}$
$=x \sum_{k=0}^{n}\left(\frac{k}{n}\right)^{3}\binom{n}{k} x^{k}(1-x)^{n-k}=$
$x \sum_{k=1}^{n-1}\left(\frac{k}{n}\right)^{3}\binom{n-1}{k-1} x^{k-}(1-\quad x)^{(n-1)-(k-1)}$
As in the proof of the lemma (1.2) and (2.1) we have the following $=x^{4}\left(\frac{(n-1)(n-2)(n-3)}{n^{3}}\right)+$
$3 \mathrm{x}^{2} \frac{(\mathrm{n}-1)(\mathrm{n}-2)}{\mathrm{n}^{3}}+2 \mathrm{x}^{2} \frac{(\mathrm{n}-1)(\mathrm{n}-2)}{\mathrm{n}^{3}}+7 \mathrm{x}^{2} \frac{(\mathrm{n}-1)}{\mathrm{n}^{3}}+$ $\mathrm{x} \frac{1}{\mathrm{n}^{3}}$

Lemma (2.3):

Let $k, n, x \in[0, b]$, and $\in \lambda \geq 0$ then $\left\lvert\, f\left(\frac{k}{n}\right)-\right.$
$f(x) \left\lvert\, \leq\left(1+\left(\frac{k}{n}-x\right)^{2} \lambda^{-1}\right) \omega(f, \lambda)\right.$
Proof:
If $\left|\frac{k}{n}-x\right| \leq \lambda$, by (1.10) we have $\omega\left(f,\left|\frac{k}{n}-x\right|\right) \leq$ $\omega(f, \lambda)$
If $\left|\frac{k}{n}-x\right| \geq \lambda$ then $\omega\left(f,\left|\frac{k}{n}-x\right|\right) \leq \omega\left(f, \frac{\left|\frac{k}{n}-x\right|^{2}}{\lambda}\right.$
Let $\frac{k}{n}, x \in[0, b]$, from (1.10), (1.8) we have
$\left|f\left(\frac{k}{n}\right)-f(x)\right| \leq \omega\left(f,\left|\frac{k}{n}-x\right|\right) \leq \omega\left(f, \frac{\left|\frac{k}{n}-x\right|^{2}}{\lambda} \leq\right.$
$\left.1+\left(\frac{k}{n}-x\right)^{2} \lambda^{-1}\right) \omega(f, \lambda)$

Theorem (2.1):

For every matrix $A \in \mathcal{M}$, and $s \in N$ there exists a positive constant $M_{1}(A, x, 2 s)$ independent on $x \in[0,1]$ and $n \in N$ such that : $B_{n, k}(A, x, 2 s)=$ $\sum_{k=0}^{n} a_{n, k}(x) .\left(\frac{k}{n}-\right.$
$x)^{2 s}$.
Then
$\left\|B_{n, k}(A, x, 2 s)\right\| \leq \frac{M_{1}(A, x, 2 s)}{n^{s}}, n \in N$
Proof:
By (2.2) and (2.1), we get
$\left\|B_{n, k}(A, x, 2 s)\right\|=\left|\sum_{k=0}^{n} a_{n, k}(x) \cdot\left(\frac{k}{n}-x\right)^{2 s}\right|$
$=\sum_{k=0}^{n}\left|\frac{k}{n}-x\right|^{2 s}\binom{n}{k} x^{k}(1-x)^{n-k}$
If $s=1$ from lemma (2.1), (2.3) and (1.2), weget $B_{n, k}(A, x, 2 s)=\sum_{k=0}^{n}\left(\frac{k}{n}-x\right)^{2}\binom{n}{k} x^{k}(1-x)^{n-k}$
$=\sum_{k=0}^{n}\left(\left(\frac{k}{n}\right)^{2}-2 x \frac{k}{n}+x^{2}\right)\binom{n}{k} x^{k}(1-x)^{n-k}=$
$\sum_{k=0}^{n}\left(\frac{k}{n}\right)^{2}\binom{n}{k} x^{k}(1-x)^{n-k}-2 x \sum_{k=0}^{n} \frac{k}{n}\binom{n}{k} x^{k}(1-$
$x)^{n-k}+x^{2} \sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}$
$\frac{x^{2}(n-1)}{n}+\frac{x}{n}-2 x^{2}+x$
$=\frac{M_{1}(A, x, 2 s)}{} \quad 0 \leq x \leq 1$
$=\frac{M_{1}(A, x, 2 s)}{n^{s}} \quad 0 \leq x \leq 1$
Now we prove the strong approximation of the functions by using the linear positive operators $B_{n, k}(f, A, x)$.
Theorem (2.2):
Suppose that $A \in \mathcal{M}$, then for $n \in N, x \in$
[0,1], $p>0$ we have:
$\left|B_{n, k}(f, A, x)-f(x)\right| \leq H_{n}^{1}(f, x) \ldots$
And
$H_{n}^{p}(f, x) \leq H_{n}^{q}(f, x)$ If $0<p<q<0$

Proof:

By using (1.3) and (1.6) we get
$\left|B_{n, k}(f, A, x)-f(x)\right| \leq \left\lvert\, \sum_{k=0}^{n} a_{n, k}(x)\left(f\left(\frac{k}{n}\right)-\right.\right.$
$f(x)) \left.\left|\leq \sum_{k=0}^{n} a_{n, k}(x)\right| f\left(\frac{k}{n}\right)-f(x) \right\rvert\,$
For $0 \leq x \leq 1$ and lemma (1.2) ($B_{n, k}(1, A, x)-$
$1=0$), which by (1.6) yield (2.3) let $g_{x}\left(\frac{k}{n}\right)=$
$f\left(\frac{k}{n}\right)-f(x)$. Applying by the holder inequality
and lemma (1.1), we get
$\left(B_{n, k}\left(\left|\mathscr{g}_{x}\left(\frac{k}{n}\right)\right|^{p}, A, x\right)\right)^{\frac{1}{p}} \leq$
$\left(B_{n, k}\left(\left|g_{x}\left(\frac{k}{n}\right)\right|^{q}, A, x\right)\right)^{\frac{1}{q}}, x \in[0,1], n \in N$

For every $g \in C_{I}, 0<p<q<\infty$ and from (1.6), (2.5) immediately follows (2.4).

Theorem (2.3):

Let $A \in \mathcal{M}, f \in C_{I}^{1}$ and $p>0$, then there exists $M_{2}(A, x, 2 s)$ such that:
$\left\|H_{n}^{p}(f, A, x)\right\| \leq \frac{M_{2}(A, x, 2 s)\left\|f^{\prime}(x)\right\|}{n^{2 s}}$ for all $x \in[0,1]$
and $n \in N$.
Proof:
For $f \in C_{I}^{1}$ and $t, x \in[0,1]$ we have
$|f(t)-f(x)| \leq\left\|f^{\prime}(x)\right\||t-x|$
From this we get
$\left\|H_{n}^{p}(f, A, x)\right\| \leq$
$\left\{\sum_{k=0}^{n} a_{n, k}(x)\left|f\left(\frac{k}{n}\right)-f(x)\right|^{p}\right\}^{\frac{1}{p}}, x \in[0,1], n \in$ N.

$$
\leq\left\|f^{\prime}(x)\right\|\left(B_{n, k}\left(\left|f\left(\frac{k}{n}\right)-f(x)\right|^{p}\right)^{\frac{1}{p}}\right.
$$

For all $x \in[0,1]$ and $n \in N$.
Which by (2.2), (2.1) and from inequality:
$\left\{L_{n}\left(\left|\frac{k}{n}-x\right|^{p}, A, x\right\}^{\frac{1}{p}} \leq\left\{L_{n}\left(\left|\frac{k}{n}-x\right|^{s}, A, x\right\}^{\frac{1}{s}}\right.\right.$
$x \in[0,1], n \in N, 0<p<s<\infty$
Then obtain $p \leq 2 s$ we have
$\left\|H_{n}^{p}(f, A, x)\right\| \leq$

$$
\begin{aligned}
& \left\{\sum_{k=0}^{n} a_{n, k}(x)\left|f\left(\frac{k}{n}\right)-f(x)\right|^{p}\right\}^{\frac{1}{p}}, x \in[0,1], n \in N \\
& \quad \leq\left\|f^{\prime}(x)\right\|\left(B_{n, k}\left(\left|f\left(\frac{k}{n}\right)-f(x)\right|^{2 s}, A, x\right)\right)^{\frac{1}{2 s}} \\
& \quad \leq\left\|f^{\prime}(x)\right\|\left(B_{n, k}\left(\left|g_{x}\left(\frac{k}{n}\right)\right|^{2 s}, A, x\right)\right)^{\frac{1}{2 s}}
\end{aligned}
$$

By (2.3), (2.5) and (2.2) we get
$\left\|H_{n}^{p}(f, A, x)\right\| \leq \frac{M_{2}(A, x, 2 s)\left\|f^{\prime}(x)\right\|}{n^{2 s}}$

Theorem (2.4):

Let $A \in \mathcal{M}, f \in C_{I}$ and $p>0$, then there exists $M_{3}(A, p, 2)>0$ for all $x \in[0,1]$ and
$n \in N$ such that :

$$
\left\|H_{n}^{p}(f, A, x)\right\| \leq \frac{M_{3}(A, p, 2)}{\sqrt{n}} \tau\left(f, \frac{1}{\sqrt{n}}\right)
$$

Proof:
For all $f \in C_{I}$ and $n \in N, p>0$ we get from (1.5) $\left\|H_{n}^{p}(f, A, x)\right\| \leq\left\{\sum_{k=0}^{n} a_{n, k}(x) \left\lvert\, f\left(\frac{k}{n}\right)-\right.\right.$
$\left.\left.f(x)\right|^{p}\right\}^{\frac{1}{p}}$ by (1.6), (1.7), lemma (2.3) we get
$\left|f\left(\frac{k}{n}\right)-f(x)\right| \leq \omega\left(f,\left|\frac{k}{n}-x\right|\right) \leq\left(\sqrt{n} \left\lvert\, \frac{k}{n}-\right.\right.$
$\left.\left.x\right|^{2}+1\right) \leq \omega\left(f, \frac{1}{\sqrt{n}}\right)$
for all $x \in[0,1], n \in N$. Consequently
$\left\|H_{n}^{p}(f, A, x)\right\| \leq \omega\left(f, \frac{1}{\sqrt{n}}\right)\left\{\sum_{k=0}^{n} a_{n, k}(x)|\sqrt{n}| \frac{k}{n}-\right.$
$\left.\left.x\right|^{2}+\left.1\right|^{p}\right\}^{\frac{1}{p}}$
Applying the Minkowski inequality for sum we get $\left\|H_{n}^{p}(f, A, x)\right\| \leq \omega\left(f, \frac{1}{\sqrt{n}}\right)\left\{\sum_{k=0}^{n} a_{n, k}(x)|\sqrt{n}| \frac{k}{n}-\right.$ $\left.\left.x\right|^{2}+\left.1\right|^{p}\right\}^{\frac{1}{p}}$
$\leq \omega\left(f, \frac{1}{\sqrt{n}}\right)\left\{\sum_{k=0}^{n} a_{n, k}(x)|\sqrt{n}|_{\frac{k}{n}}^{k}-\left.\left.x\right|^{2}\right|^{p}\right\}^{\frac{1}{p}}+1$
From (1.10) and theorems (2.3), (2.1) we have:

$$
\begin{aligned}
& \left\|H_{n}^{p}(f, A, x)\right\| \leq \omega\left(f, \frac{1}{\sqrt{n}}\right) \sqrt{n} \frac{M_{2}(A, p, 2)}{n} \\
& \leq \frac{M_{3}(A, p, 2)}{\sqrt{n}} \omega\left(f, \frac{1}{\sqrt{n}}\right) \\
& \leq \frac{M_{3}(A, p, 2)}{\sqrt{n}} \tau\left(f, \frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

Corollary (1):
For all $f \in C_{I}$ and $n \in N, p>0$ we have $\operatorname{Lim}_{x \rightarrow \infty}\left\|H_{n}^{p}(f, A,).\right\|=0$
Implies that $\lim _{x \rightarrow \infty} H_{n}^{p}(f, A, x)=0$ at every $x \in$ $[0,1]$.
Corollary (2):
Let $A \in \mathcal{M}, n \in N$ and $p>0$, then there exists $M_{4}(A, x, 2)$ such that for every $f \in C_{I}$
$\left\|B_{n, k}(f, A,)-.f().\right\| \leq\left\|H_{n}^{1}(f, A,).\right\| \leq$ $\frac{M_{4}(A,)}{\sqrt{n}} \tau\left(f, \frac{1}{\sqrt{n}}\right)$.

Conclusions:

1-We prove lemma (2.1), (2.2) about the linear positive operate.
2- We fined the strong approximations by using the linear positive operators in terms of the averaged modulus of order one.

References:

1- B. S. (2009).On The Degree of Strong Approximation of Continuous Functions by Special Matrix . J. Inequal. Pure and Appl. Math. V .10: N. 4,132-139.
2- S.M. (2003).Strong Approximation by Fourier Series. International J. of pure and Appl. Math. V. 7 : N.1, 59-66.
3- L. R. \& M. S. (2004). On The Strong Approximation of Functions by Certain Operators. Math. J. Okayama Univ. V. 46 :N.1, 153-161.

4- L. R. \& M. S. (2006).On Strong Approximation by Modified MeyerKonig and Zeller Operators. Tamkang J. of Math. V. 37 : N. $2,123-130$.
5- S. B. \& P. V. A. (1983). The Averaged Moduli of Smoothness.1-20,series 519.4 , A Wiley-Interscience Publication,USA.
L.R.\&M.S.(2006).The strong approximation of functions of two variables by certain operators .Soochow J. of. Math. V. 32 :N.1 ,37-49.

7- L. A. \& D. D. (1989). One sided Multidimensional Approximation by Entire Functions and Trigonometric Polynomials in L_{p} - Metric, $0<\mathrm{p} \leq \infty$. Math. Balkanica V.3, 215-224.

زينب عيسى عبد النبي
E-mail: esazainab@yahoo.com

$$
\begin{aligned}
& \text { الخلاصة: }
\end{aligned}
$$

المؤثر وذلك لإيجاد أقوى الفروق للاوال معتمدين في ذلك على معدلات القياس من الرتبة الاولى .

