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 Abstract:In this work, we introduce Bernst- ein linear positive operators      (   )  in the space of all 

continuous functions     where   ,   -  with some properties of this operator so to find the strong approxi- 

mation of continuous functions with the averaged modulus of order one. 
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 1-Introduction 
    The strong approximation of function connected 

with Fourier series was examined in many papers 

published in last 40 years. The problem of strong 

approxim- mation with power      is well known 

for    - periodic functions and their Fourier series 

[1], [2]. For example [3], if   (   ) is the n-th 

partial sum of trigonometric Fourier series of f , 

then the n-th  (   ) -mean of this series is defined 

by the formula : 

   (   )  
 

   
∑   (   )         

 
    

where     *     +. The n-th strong   (   ) - 

mean of this series is defined as follows: 
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 ,   

      .   Where    is a fixed positive number, It is 

clear that:        |  (   )   ) )|    
 (   )   

And       
 (   )    

 (   ) ,       
  ….…………………….……. (1.1) In [4] is 

investigated the strong approxi- imation of 

functions      some linear operators. 

 Definitions and Lemmas: 
   In this paper we examine this problem for 

    (  ,   -)  and introduced     (     )  

linear positive operators.  Let    be the space of all 

functions, continuous and bounded on       

with the norm:   ‖ ‖=sup*| ( )|     + 
……….…. (1.2)   Let       be a fixed number 

and let   
  {      

( )    }  and the norm    
  

is defined by (1.2), where    
     . Let     

and    . Where     the set of all infinite 

matrices   ,    ( )-.  The Bernstein operators 

[5]:    (     )  ∑     ( ) .
 

 
/ 

    …..… (1.3)     

Defined for continuous  on the interval   ,   -  

with the matrix   [    ( )] where:  

     ( )  {( 
 
)  (   )    }…… (1.4)  

 Lemma (1.1): [3] 

Let    [    ( )]           then 

    ( )   , for             . 

     ( )  {
(  ) 

 (   )                  

(  ) 
 (   )                      

} .… (1.5) 

Lemma (1.2): [3] 

  Let   [    ( )]         ,   ,   ) as in 

(1.4) then: 

1-    (     )    

2-    .
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3-    .(
 

 
)     /    .
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  For every matrix     ,         

and      (     ).  Then strong deference    
 (   ) 

is well – defined for every     ,    ,   -, 

     with power      as follows [6]: 

  
 (   )  2∑      ( ) | .

 

 
/  ( )|

 
 
   3

 

 
…… 

(1.6) 

     Let the function   be defined and bounded in the 

interval ,   - then [4]:  (   )  *   (| ( )  
 ( )|)      ,   - |   |   +   
 ................... (1.7) 

In [5] if       ,   ) , then: 

  (    )  (   ) (   )  for           

………………………………………. (1.8) 
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  And if       are uniformly continuous functions 

then         (   )   .The      averaged 

modulus of smoothness for       is defined by 

[7]:                                      (   )  ‖  (   )‖    

The averaged modulus of order one defined by:            

   
 
(   )  ‖ 

 
(   )‖

 
 ..….…….. (1.9) in [7] 1- 

if   is measurable bounded function on,   -, 
     then  

              (   )    (   )  

2- If     then 

   (     )    (     
 )  , and   (     )  

  (     
 )  …….…. (1.10) 

where    (     )  *   |   ( )|   

0  
 

 
   

 

 
 1    ,   )+       ,   -   

2- Main results 
 First we prove some properties of     (     ) and 

Lemma to using them in the proof of our theorems. 

Lemma (2.1): 

Let    [    ( )]           as in (1.4),  

    ,   - then:    
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 Proof: 

 From (1.3), (1.4) and lemma (1.2), we have: 
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Lemma (2.2): 

  Let    [    ( )]           as in (1.4),  

    ,   - then: 
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 Proof: 

 By (1.3), (1.4) and lemma (1.2) we get  
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As in the proof of the lemma (1.2) and (2.1) we 

have the following     .
(   )(   )(   )
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Lemma (2.3): 
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Proof: 

If |
 

 
  |    , by (1.10) we have  (  |
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   ,   -, from (1.10), (1.8) we have  

  | .
 

 
/   ( )|   (  |

 

 
  |)    (  

|
 

 
  |

 

 
  

  .
 

 
  /

 

   ) (   ) 

Theorem (2.1): 

 For every matrix     , and     there exists a 

positive constant   (      ) independent on 

  ,   - and     such that :     (      )   

∑     ( ) .
 

 
  

   

 /
  

……………………………….... (2.1) 

Then  

‖    (      )‖  
  (      )

        . (2.2) 

Proof: 

By (2.2) and (2.1), we get  

 ‖    (      )‖  | ∑     ( ) .
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If     from lemma (2.1), (2.3) and (1.2), weget  
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  Now we prove the strong approximation of the 

functions by using the linear positive 

operators    (     ). 

 Theorem (2.2): 

  Suppose that    , then for        
,   -     we have:   

  |    (     )   ( )|    
 (   )...  (2.3) 

And  

   
 (   )    

 (   )  If         
…………………………………..….. (2.4) 

Proof: 

By using (1.3) and (1.6) we get 
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  For       and lemma (1.2) (    (     )  

   ), which by (1.6) yield (2.3) let  ℊ
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/   ( ). Applying by the holder inequality 

and lemma (1.1), we get 
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  For every ℊ             and from (1.6), 
(2.5) immediately follows (2.4). 

Theorem (2.3): 
  Let      ,     

  and   , then there exists  

  (      )  such that:                        

   ‖  
 
(     )‖  

  (      )‖  ( )‖

     for all   ,   - 

and    . 

Proof: 

 For     
  and     ,   - we have 
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From this we get  
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Which by (2.2), (2.1) and from inequality: 
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By (2.3), (2.5) and (2.2) we get  
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Proof: 

For all       and     ,    we get from (1.5) 
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Applying the Minkowski inequality for sum we get 

 ‖  
 
(     )‖   (  

 

√ 
) {∑      ( ) |√ |

 

 
  

   

 |
 

  |
 

}

 

 

 

   .  
 

√ 
/ {∑      ( ) |√ |

 

 
   |

 

|
 

 
   }

 

 

   

From (1.10) and theorems (2.3), (2.1) we have: 
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Corollary (1): 

 For all       and     ,    we have 
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 Implies that         
 (     )    at every  

,   -. 

Corollary (2): 
  Let      ,     and    , then there exists  
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Conclusions: 
1-We prove lemma (2.1), (2.2) about the linear 

positive operate. 
2- We fined the strong approximations by using the 

linear positive operators in terms of the 

averaged modulus of order one. 
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 :الخلاصة
CIفييبحثنا يياحقييناحاييؤث احاخثيياامحاخ )ييبحاخثن ييفح ثم ءييلاالحوحفييلحفتييا ح ييلحاخييؤنالحاخث ييلثم حححح ثييبحث ييخحاخ يينااححخ ييناححح-   , 

 اخثاامحننخكحلإا اؤحأانىحاخفمنقحخلؤنالحث لثؤالحفبحنخكحعللحث ؤلاتحاخقااسحثلحاخملثةحالانخلحح.
 


