The n-Wiener Polynomials of the Cartesian Product of a Complete Graph with some Special Graphs

Ali. A. Ali

College of Computers Sciences and Mathematics University of Mosul Haveen G. Ahmed

College of Sciences

University of Duhok

Received on:22/4/2008

Accepted on:11/6/2008

الملخص

تضمن هذا البحث إيجاد متعددات وينر n لجداءات بيان تام K_t مع بيانات خاصة مثل البيان التام K_r ، نجمة K_r ، وبيان ثنائي التجزئة تام K_s ، وعجلة K_r ودرب $K_t \times P_r$. كما تضمن إيجاد قطر $K_t \times P_r$, $K_t \times W_r$, $K_t \times K_s$, $K_t \times S_r$, $K_t \times K_r$ ويان تام من الجداءات $K_t \times P_r$, $K_t \times K_s$ ودليل وينر $K_t \times P_r$, $K_t \times V_r$, $K_t \times K_s$, $K_t \times S_r$, $K_t \times V_r$,

ABSTRACT

The n-Wiener polynomials of the Cartesian products of a complete graph K_t with another complete graph K_r , a star graph S_r , a complete bipartite graph $K_{r,s}$, a wheel W_r , and a path graph P_r are obtained in this paper. The n-diameters and the n-Wiener indices of $K_t \times K_r$, $K_t \times S_r$, $K_t \times K_{r,s}$, $K_t \times W_r$ and $K_t \times P_r$ are also obtained.

Keywords: n-distance, n-diameter, n-index, n-Wiener polynomial.

1. Introduction.

We follow the terminology of [5] and [6]. Let v be a vertex of a connected graph G and let S be an (n-1)-subset of vertices of V(G), $n\geq 2$, then the **n-distance** $d_n(v,S)$ is defined as follows[7]

$$d_n(v,S) = min\{d(v,u): u \in S\}.$$
 ...(1.1)

Sometimes, we refer to the n-distance of the pair (v,S) in G by $d_n(v,S \mid G)$. The **n-diameter** diam $_nG$ of G is defined by

$$diam_nG = max\{d_n(v,S): v \in V(G), S \subseteq V(G), |S| = n-1\}.$$
 ...(1.2)

It is clear that for all $2 \le m \le n \le p$,

$$diam_nG \le diam_mG \le diamG. \qquad ...(1.3)$$

The **n-Wiener index** of G denoted by W_n(G) is defined as

$$W_n(G) = \sum_{(v,S)} d_n(v,S),$$
 ...(1.4)

where the summation is taken over all pairs (v,S) for which $v \in V(G)$, $S \subseteq V(G)$ and |S| = n-1. The **n-average distance** $\mu_n(G)$ is defined as

$$\mu_n(G) = W_n(G)/p \binom{p-1}{n-1}, 3 \le n \le p.$$
...(1.5)

Let v be any vertex of G, then **the n-distance of v** denoted $d_n(v|G)$ or simply $d_n(v)$ is defined as

$$d_{n}(v) = \sum_{S \subseteq V(G)} d_{n}(v,S) , |S| = n-1.$$
 ...(1.6)

The Wiener polynomial of G with respect to the n-distance, which is called n-Wiener polynomial and defined as below.

Definition 1.1.[2]. Let $C_n(G,k)$ be the number of pairs (v,S), $|S|=n-1,3 \le n \le p$, such that $d_n(v,S)=k$, for each $0 \le k \le \delta_n$. Then, the n-Wiener polynomial $W_n(G;x)$ is defined by

$$W_n(G;x) = \sum_{k=0}^{d_n} C_n(G,k)x^k$$
, ...(1.7)

in which δ_n is the n-diameter of G.

One may easily see [2] that for $3 \le n \le p$, the number of all (v,S) pairs is

$$p\binom{p}{n-1}, \text{ and } [1]$$

$$\sum_{k=1}^{d_n} C_n(G,k) = p\binom{p-1}{n-1}, \qquad C_n(G,0) = p\binom{p-1}{n-2}, \qquad \dots (1.8)$$

$$C_n(G,1) = p\binom{p-1}{n-1} - \sum_{v \in V(G)} \binom{p-1-\deg_G(v)}{n-1} \qquad \dots (1.9)$$

$$C_{n}(G,1) = p \binom{p-1}{n-1} - \sum_{v \in V(G)} \binom{p-1-\deg_{G}(v)}{n-1} \qquad \dots (1.9)$$

Definition 1.2[1] Let v be a vertex of G, and let $C_n(v,G,k)$ be the number of (n-1)-subsets of vertices of G such that

$$d_n(v,S|G)=k$$
, for $n\geq 3$, $0\leq k\leq \delta_n$.

Then, the **n-Wiener polynomial of vertex v**, denoted by $W_n(v,G;x)$ is defined as

$$W_n(v,G;x) = \sum_{k>0} C_n(v,G,k)x^k.$$
 ...(1.10)

It is clear that for all $k \ge 0$,

$$\sum_{v \in V(G)} C_n(v,G,k) = C_n(G,k), \qquad ...(1.11)$$

and

$$\sum_{v \in V(G)} W_n(v,G,x) = W_n(G;x) . \qquad ...(1.12)$$

There are many classes of graphs G in which for each $k,1 \le k \le \delta_n$, $C_n(v,G,k)$ is the same for every vertex $v \in V(G)$; such graphs are called [1] **vertex-n-distance regular**. If G is of order p and it is vertex-n-distance regular, then

$$W_n(G;x)=pW_n(v,G;x),$$
 ...(1.13) where v is any vertex of G.

The authors of references [2],[3] and [4] obtained the n-Wiener polynomials of some special graphs and some types of composite graphs. In this paper, we obtain n-Wiener polynomials of the Cartesian products $K_t \times K_r$, $K_t \times S_r$, $K_t \times K_{r,s}$, $K_t \times W_r$ and $K_t \times P_r$.

2. The Cartesian Product of a Complete Graph and a Star

Let K_t be a complete graph with $V(K_t)=\{u_1,u_2,...,u_t\}$, and S_r be a star of center v_0 and end vertices $v_1,v_2,...,v_{r-1}$. Each vertex of $K_t \times S_r$ is an ordered pair (u_i,v_j) , $1 \le i \le t$, $0 \le j \le r-1$. Let K_t^j be the clique graph [6] of order t of vertex set $\{(u_i,v_i): i=1,2,...,t,0 \le j \le r-1\}$. The graph $K_t \times S_r$ is depicted in Fig. 2.1.

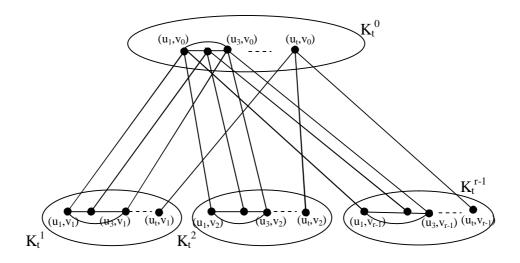


Fig. 2.1. The graph $K_t \times S_r$.

 $\begin{aligned} \text{It is clear that } 0 &\leq d((u_i,v_j),(u_l,v_m)) \leq 3. \text{ Thus,} \\ & \text{diam}_n \ K_t \times S_r {\leq} \text{diam } K_t \times S_r \leq 3. \end{aligned}$

Proposition 2.1. For $t\ge 2$, $r\ge 3$, the n-diameter of $K_t\times S_r$ is given by

$$diam_n \ K_t \times S_r = \left\{ \begin{array}{l} 3 \ , \ if \ 2 \leq n \leq (t-1)(r-2) + 1 \, , \\ 2 \ , \ if \ 1 + (t-1)(r-2) < n \leq t(r-1), \\ 1 \ , \ if \ t(r-1) < n \leq rt \, . \end{array} \right.$$

Proof. The proof is clear from Fig. 2.1.

The following theorem gives us the n-Wiener polynomial of $K_t \times S_r$. It is clear that the order of $K_t \times S_r$ is p=rt.

Theorem 2.2. For $t \ge 2$, $r \ge 3$, $3 \le n \le rt$,

$$\begin{split} W_n(K_t \times S_r; x) &= p \binom{p-1}{n-2} + [p \binom{p-1}{n-1} - t(r-1) \binom{p-t-1}{n-1} - t \binom{p-t-r+1}{n-1}] x \\ &+ t [\binom{p-t-r+1}{n-1} + (r-1) \{\binom{p-t-1}{n-1} - \binom{p-2t-r+2}{n-1}\}] x^2 \\ &+ t (r-1) \binom{p-2t-r+2}{n-1} x^3. \end{split}$$

Proof. It is clear that each vertex of K_t^0 is of degree r+t-2, and each vertex of K_t^j , $1 \le j \le r-1$, is of degree t. Therefore, by (1.9) we obtained $C_n(K_t \times S_r, 1)$ as given in the theorem.

To find $C_n(K_t \times S_r, 3)$, we notice that there are (t-1)(r-2) vertices each of distance 3 from each vertex (u,v) of K_t^j , $1 \le j \le r-1$. Thus,

ach vertex (u,v) of
$$K_t$$
, $1 \le j \le r-1$.
$$C_n(K_t \times S_r, 3) = t(r-1) \binom{(t-1)(r-2)}{n-1}.$$

Finally, by (1.8) and Proposition 2.1, we get

$$\begin{split} C_{n}(K_{t}\times S_{r},2) &= p\binom{p-1}{n-1} - C_{n}(K_{t}\times S_{r},1) - C_{n}(K_{t}\times S_{r},3) \\ &= t[\binom{p-t-r+1}{n-1} + (r-1)\binom{p-t-1}{n-1} - (r-1)\binom{p-2t-r+2}{n-1}]. \end{split}$$

Hence, the proof.■

Corollary 2.3. For $t\ge 2$, $r\ge 3$, $3\le n\le rt$,

$$W_n(K_t \times S_r) = p \binom{p-1}{n-1} + t[(r-1)\binom{p-t-1}{n-1} + \binom{p-t-r+1}{n-1} + (r-1)\binom{p-2t-r+2}{n-1}]. \quad \blacksquare$$

3. The Cartesian Product of Complete Graphs

Let K_t and K_r be disjoint complete graphs, and let (u_1,v_1) , $(u_2,v_2) \in V(K_t \times K_r)$, then it is clear that

diam
$$K_t \times K_r = 2$$
.

Thus,

$$\operatorname{diam}_{n} K_{t} \times K_{r} \leq 2, \quad 2 \leq n \leq rt.$$

If $u_1 \neq u_2$ and $v_1 \neq v_2$, then (u_1, v_1) , (u_2, v_2) are non-adjacent in $K_t \times K_r$; and (u_1, v_1) , (u_1, v_2) , (u_2, v_2) is a path of length 2. Therefore,

$$d((u_1,v_1),(u_2,v_2))=2.$$

The degree of each vertex (u_1,v_1) is r+t-2. Thus, the number of vertices of distance 2 from (u_1,v_1) is rt-r-t+1. Hence, we have the following result.

Proposition 3.1. For t,r
$$\geq 2$$
,

$$diam_n \ K_t \times K_r = \begin{cases} 2 \ \text{if} \ 2 \leq n \leq rt-r-t+2, \\ 1 \ \text{if} \ rt-r-t+3 \leq n \leq rt. \end{cases}$$
Now, we find the n Wiener polynomial of

Now, we find the n-Wiener polynomial of $K_t \times K_r$.

Theorem 3.2. For $r,t \ge 2$, $3 \le n \le rt$

$$W_n(K_t\times K_r;x) = rt\binom{rt-1}{n-2} + rt[\binom{rt-1}{n-1} - \binom{rt-r-t+1}{n-1}]x + rt\binom{rt-r-t+1}{n-1}x^2.$$

Proof. It is clear that $K_t \times K_r$ is vertex-n-distance regular. Thus,

$$C_n(K_t \times K_r, 2) = rtC_n((u_1, v_1), K_t \times K_r, 2).$$

Since the number of vertices of distance 2 from (u_1,v_1) is rt-r-t+1, and there is no vertex of distance more than 2 from (u_1, v_1) , then

$$C_n((u_1,v_1), K_t \times K_r, 2) = \binom{rt-r-t+1}{n-1}.$$

The constant term and the coefficient of x follow from (1.8) and (1.9).

Corollary 3.3. For $r,t\geq 2$, $3\leq n\leq rt$,

$$W_n(K_t \times K_r) = rt \begin{bmatrix} \binom{rt-1}{n-1} + \binom{rt-r-t+1}{n-1} \end{bmatrix} . \blacksquare$$

4. The Cartesian Product of a Complete Graph and a Complete Bipartite Graphs

Let K_{r,s} be a complete bipartite graph of bipartite sets of vertices $V_1 = \{v_1, v_2, ..., v_r\}, V_2 = \{w_1, w_2, ..., w_s\}; r \ge s$, and let

$$V(K_t) = \{u_1, u_2, ..., u_t\},\$$

then it is clear that in $K_t \times K_{r,s}$

$$d((u_i,v_h),(u_i,v_k))=3$$
 when $i\neq j$, $h\neq k$,

because there is a shortest path

$$(u_i, v_h), (u_i, v_h), (u_i, w), (u_i, v_k), w \in V_2.$$

Similarly,

$$d((u_i, w_h), (u_i, w_k))=3$$
 when $i\neq j$, $h\neq k$.

Moreover.

$$d((u_i,v_h),(u_i,v_k))=d((u_i,w_h),(u_i,w_k))=2.$$

Therefore,

diam
$$K_t \times K_{r,s} = 3$$
,

and so

$$\operatorname{diam}_{n} K_{t} \times K_{r,s} \leq 3, 2 \leq n \leq p, p = t(r+s).$$

For any vertex (u_i,v_h) , the number of vertices of distance 3 from (u_i,v_h) in $K_t \times K_{r,s}$ is (t-1)(r-1). Similarly, there are (t-1)(s-1) vertices of distance 3 from (u_i,w_k) . Moreover, the degree of each vertex of $K_t \times K_{r,s}$ is either r+t-1 or s+t-1

Thus, we have the following result.

$$\begin{aligned} \textbf{Proposition 4.1.} \ \ &\text{For t,r,s}{\geq}2, \ r{\geq}s, \ \text{then the n-diameter of } K_t{\times}K_{r,s} \ \text{is given} \\ &\text{diam}_n \ K_t{\times}K_{r,s}{=} \begin{cases} 3 \ , \ \text{for} \quad 2{\leq}n{\leq}tr\text{-}t\text{-}r\text{+}2, \\ 2 \ , \ \text{for} \quad tr\text{-}t\text{-}r\text{+}3{\leq}n{\leq}p\text{-}t\text{-}s, \\ 1 \ , \ \text{for} \quad p\text{-}t\text{-}s\text{+}1{\leq}n{\leq}p. \end{aligned}$$

The next theorem determines the n-Wiener polynomial of $K_t \times K_{r.s.}$

Theorem 4.2. For t,r,s ≥ 2 , $3 \le n \le p$, p = t(r+s),

$$\begin{split} W_{n}(K_{t} \times K_{r,s}; x) &= p \binom{p-1}{n-2} + [p \binom{p-1}{n-1} - st \binom{p-r-t}{n-1} - rt \binom{p-s-t}{n-1}] x \\ &+ \{rt [\binom{p-s-t}{n-1} - \binom{rt-t-r+1}{n-1}] + st [\binom{p-r-t}{n-1} - \binom{ts-t-s+1}{n-1}] \} x^{2} \\ &+ [rt \binom{rt-t-r+1}{n-1} + st \binom{ts-t-s+1}{n-1}] x^{3}. \end{split}$$

Proof. $C_n(K_t \times K_{r,s}, 0)$ and $C_n(K_t \times K_{r,s}, 1)$ are obtained from (1.8) and (1.9). To find the other coefficients, we notice that $C_n((a,b), K_t \times K_{r,s}, k)$ is the same for every vertex $(a,b) \in V(K_t) \times V_1$, and $C_n((c,d),K_t \times K_{r,s},k)$ is the same for every vertex $(c,d) \in V(K_t) \times V_2$, for k=2,3. Since the number of vertices of distance 3 from vertex (a,b) is (t-1)(r-1), and the number of vertices of distance 3 from vertex (c,d) is (t-1)(s-1), then we get the coefficient of x^3 as given in the statement of the theorem.

Finally, $C_n(K_t \times K_{r,s}, 2)$ is obtained using the relation (1.8) and the coefficients already obtained. This completes the proof.

Corollary 4.3. For t,r,s ≥ 2 , and $3\le n\le p$ in which p=t(r+s),

$$\begin{split} W_n(K_t \times K_{r,s}) &= p \binom{p-1}{n-1} + rt \begin{bmatrix} \binom{p-s-t}{n-1} + \binom{rt-t-r+1}{n-1} \\ \\ +st \begin{bmatrix} \binom{p-r-t}{n-1} + \binom{ts-t-r+1}{n-1} \\ \\ \\ \end{bmatrix} \end{bmatrix}. \end{split}$$

Proof. The n-Wiener index is obtained from $W_n(K_t \times K_{r,s};x)$ by taking the derivative with respect to x, and then put x=1, and simplified the expression.

5. The Cartesian Product of a Complete Graph and a Wheel

Let W_r be a wheel of order $r \ge 4$ and let its center be denoted by v_0 and its other vertices be $v_1, v_2, ..., v_{r-1}$. Moreover, let $V(K_t) = \{u_1, u_2, ..., u_t\}$. The order of $K_t \times W_r$ is p = rt, and in $K_t \times W_r$

$$deg(u_i,v_j)=t+2$$
, for $1 \le i \le t$, $1 \le j \le r-1$, $deg(u_i,v_0)=t+r-2$.

One can easily see that in $K_t \times W_r$

 $d((u_i,v_0),(u_i,v_h))=2$, for $i\neq j$, $h\neq 0$,

 $d((u_i,v_h),(u_i,v_m))=3$, for $i\neq j$, $h\neq m$, $h,m\neq 0$,

because (u_i, v_h) , (u_j, v_h) , (u_j, v_0) , (u_j, v_m) is a shortest (u_i, v_h) - (u_j, v_m) when $v_h v_m \notin W_r$. Thus,

diam
$$K_t \times W_r = 3$$
, when $r \ge 5$.

Thus, for $r \ge 5$, $t \ge 2$,

 $\operatorname{diam}_{n} K_{t} \times W_{r} \leq 3.$

Since for each vertex (u_i,v_h) , $1 \le i \le t$, $k \ne 0$ there are (t-1)(r-4) vertices of distance 3 from (u_i,v_h) , and $deg(u_i,v_h)=t+2$, then we have the following result.

Proposition 5.1. For $t \ge 2$, $r \ge 5$, the n-diameter of $K_t \times W_r$ is given by

$$diam_n \, K_t \times W_r = \left\{ \begin{array}{l} 3 \; , \; for \; \; 2 \leq \! n \leq \! 1 + (t \text{-} 1)(r \text{-} 4), \\ 2 \; , \; for \; \; 2 + (t \text{-} 1)(r \text{-} 4) \leq \! n \leq \! p \text{-} t \text{-} 2, \\ 1 \; , \; for \; \; p \text{-} t \text{-} 1 \leq \! n \leq \! p. \end{array} \right. \quad \blacksquare$$

The following theorem gives us the n-Wiener polynomial of $K_t \times W_r$.

Theorem 5.2. For $t \ge 2$, $r \ge 5$, $3 \le n \le p$, p = tr

$$\begin{split} W_{n}(K_{t} \times W_{r}; x) &= p \binom{p-1}{n-2} + [p \binom{p-1}{n-1} - t(r-1) \binom{p-t-3}{n-1} - t \binom{p-r-t+1}{n-1}] x \\ &+ [t(r-1) \binom{p-t-3}{n-1} + t \binom{p-t-r+1}{n-1} - t(r-1) \binom{p-r-4t+4}{n-1}] x^{2} \\ &+ t(r-1) \binom{p-r-4t+4}{n-1} x^{3}. \end{split}$$

Proof. The coefficients of x^0 and x are obtained using (1.8) and (1.9). To obtain the coefficient of x^3 , we notice that for any (u_i,v_0) , $1 \le i \le t$ and every (n-1)-set of vertices S, $d_n((u_i,v_0),S) \le 2$. But for every vertex (u_i,v_j) , $1 \le i \le t$, $1 \le j \le r-1$, there are (t-1)(r-4) vertices each of distance 3 from (u_i,v_j) .

Therefore, there are $\binom{p-r-4t+4}{n-1}$ sets S, |S|=n-1, such that $d_n((u_i,v_j),S)=3$.

Thus,

$$C_n(K_t \times W_r, 3) = t(r-1) \begin{pmatrix} p-r-4t+4 \\ n-1 \end{pmatrix}$$
.

We obtain $C_n(K_t \times W_r, 2)$ by using (1.8). Hence, the proof.

Corollary 3.4.3. For $t \ge 2$, $r \ge 5$ and $3 \le n \le rt$,

$$W_{n}(K_{t} \times W_{r}) = p \binom{p-1}{n-2} + t(r-1) \binom{p-t-3}{n-1} + t \binom{p-r-t+1}{n-1} + t(r-1) \binom{p-r-4t+4}{n-1}$$

Proof. The proof follows from Theorem 5.2 and the fact

$$W_n(K_t \times W_r) = W_n(K_t \times W_{r;1}). \blacksquare$$

6. The Cartesian Product of a Path and a Complete Graph

Let P_r , $r \ge 2$ be a path graph of order r and

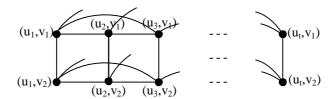
$$P_r: v_1, v_2, ..., v_r,$$

and let

$$V(K_t) = \{u_1, u_2, ..., u_t\}, t \ge 3.$$

The Cartesian product $K_t \times P_r$ is shown in Fig. 6.1. The following proposition determines the n-diameter of $K_t \times P_r$.

Proposition 6.1. For $r \ge 2$, $t \ge 3$, $2 \le n \le rt$, diam_n $K_t \times P_r = r + 1 - \lceil n/t \rceil$.



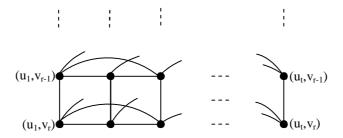


Fig.6.1. The graph $K_t \times P_r$

Proof. From Fig. 6.1, we notice that $d_n((u,v),S)$, |S|=n-1 has maximum value when (u,v) is one of the vertices in $A_1 \cup A_r$, where

$$A_i = \{(u_i, v_i): j=1,2,...,t\},\$$

and S is the (n-1)-set of vertices farthest from (u,v) in $K_t \times P_r$. Thus, we may take the vertex (u₁,v_r), and S consisting of vertices of $A_1,A_2,...,A_i$ and some vertices of A_{i+1} -{(u₁,v_{i+1})} when

$$it \le n-1 \le t(i+1)-1;$$

and when

$$2 \le n \le t$$
, then $S \subseteq A_1 - \{(u_1, v_1)\}$.

In the last case,

$$diam_n K_t \times P_r = r$$
;

and in general case of n,

$$diam_n K_t \times P_r = r-i, it+1 \le n \le (i+1)t.$$

One can easily see that

$$i=[n/t]-1$$
.

Hence, in any case of the value of n,

$$\operatorname{diam}_{n} K_{t} \times P_{r} = r+1-\lceil n/t \rceil$$
.

Now, we obtain the n-Wiener polynomial of $K_t \times P_r$ in the following two theorems.

Theorem 6.2. Let r=2s, $s\ge 1$, $t\ge 3$ and $3\le n\le rt$. Then

$$W_n(K_t \times P_r; x) = \sum_{k=0}^{d_n} C_n(K_t \times P_r, k) x^k,$$

where

$$C_{n}(K_{t}\times P_{r},0)=rt\binom{r-1}{n-2},$$

$$C_{n}(K_{t}\times P_{r},1)=rt\binom{r-1}{n-1}-2t\binom{r-t-1}{n-1}-t(r-2)\binom{r-t-2}{n-1},$$

for $2 \le k \le s$

$$\begin{split} C_{n}(K_{t}\times P_{r},k) = & 2t[2\sum_{i=1}^{k-1}\left\{\binom{a+t-ti}{n-1} - \binom{a-it}{n-1}\right\} + 2\left\{\binom{a+2t-tk-1}{n-1} - \binom{a-tk}{n-1}\right\} \\ + & (s-k)\left\{\binom{a+2t-tk-1}{n-1} - \binom{a-tk-1}{n-1}\right\}], \end{split}$$

for $k \ge s+1$

$$C_n(K_t \times P_r, k) = 2t \sum_{i=1}^s \left\{ \binom{a+t-ti}{n-1} - \binom{a-ti}{n-1} \right\},$$

in which

$$\alpha = p-t(k-1)-1$$
.

Proof. $C_n(K_t \times P_r, 0)$ and $C_n(K_t \times P_r, 1)$ are obtained from (1.8) and (1.9). For $2 \le k \le \delta_n$ we shall consider three cases for the values of k.

(1) If $2 \le k < s$, then for each $1 \le i \le s$ the number of vertices of distance k from any vertex, say (u_j, v_i) , of A_i is t and the number of vertices of distance more than k from (u_i, v_i) is p-t(i+k-1)-1= α -ti when $1 \le i \le k$ -1 which gives us

$$a = \sum_{i=1}^{k-1} \sum_{j=1}^{n-1} {t \choose j} {a-ti \choose j}_{n-1-j} \dots (6.1)$$

If i=k, then there are 2t-1 vertices of distance k from (u_j,v_i) , and there are p-t(2k-1)-1 vertices of distance more than k. This gives us

$$b = \sum_{j=1}^{n-1} {2t-1 \choose j} {p-2kt+t-1 \choose j-1} = {p-2kt+3t-2 \choose n-1} - {a-kt \choose n-1} - {a-kt \choose n-1}. \qquad \dots (6.2)$$

If $k+1 \le i \le s$, then there are 2t vertices of distance k from (u_j, v_i) and there are p-t(2k-1)-2 vertices of distance more than k. This gives us

$$c = \sum_{i=k+1}^{s} \sum_{j=1}^{n-1} {2t \choose j} {p-2kt+t-2 \choose n-1-j}$$

$$= (s-k) \left[{p-2kt+3t-2 \choose n-1} - {p-2kt+t-2 \choose n-1} \right].$$

$$= (s-k) \left[{a+2t-tk-1 \choose n-1} - {a-kt-1 \choose n-1} \right]. \dots (6.3)$$

Since r=2s and each A_i consists of t vertices,

 $C_n(K_t \times P_r, k) = 2t(a+b+c)$ when $2 \le k < s$.

(2) If k=s, then using the same reasoning as in case (1) we find that (6.1) and (6.2) are true for this case, and (6.3) does not hold. Thus,

 $C_n(K_t \times P_r, k) = 2t(a+b)$ when k=s.

(3) If $k \ge s+1$, then it is clear that both (6.2) and (6.3) do not hold. Thus,

 $C_n(K_t \times P_r, k) = 2ta \text{ when } k \ge s+1.$

Substituting a, b and c, we get the required results.

Theorem 6.3. Let r=2s+1, $s\ge 1$, $t\ge 3$ and $3\le n\le rt$.

Then

$$W_n(K_t \times P_r; x) = \sum_{k=0}^{d_n} C_n(K_t \times P_r, k) x^k,$$

where

$$C_{n}(K_{t}\times P_{r},0)=rt\binom{n-1}{n-2},$$

$$C_{n}(K_{t}\times P_{r},1)=rt\binom{n-1}{n-1}-2t\binom{n-t-1}{n-1}-t(r-2)\binom{n-t-2}{n-1},$$

for $2 \le k \le s$

$$\begin{split} C_n(K_t \times P_r, k) = & 4t \big[\sum_{i=1}^{k-1} \left\{ \binom{a+t-ti}{n-1} - \binom{a-it}{n-1} \right\} + \binom{a+2t-tk-1}{n-1} - \binom{a-tk}{n-1} \big] \\ & + t (r-2k) \big\{ \binom{a+2t-tk-1}{n-1} - \binom{a-tk-1}{n-1} \big\}, \end{split}$$

for k=s+1,

$$C_n(K_t \times P_r, k) = 2t \sum_{i=1}^{s} \left\{ \begin{pmatrix} a+t-ti \\ n-1 \end{pmatrix} - \begin{pmatrix} a-ti \\ n-1 \end{pmatrix} \right\} + t \begin{pmatrix} 2t-2 \\ n-1 \end{pmatrix}$$

for $s+1 < k \le \delta_n$,

$$C_{n}(K_{t}\times P_{r},k)=2t\sum_{i=1}^{s} \left\{ \begin{pmatrix} a+t-ti \\ n-1 \end{pmatrix} - \begin{pmatrix} a-ti \\ n-1 \end{pmatrix} \right\},$$

in which

$$\alpha = p-t(k-1)-1$$
.

Proof. The proof of $C_n(K_t \times P_r, k)$ for $k \neq s+1$ is similar to that for even r given in Theorem 6.2. For k=s+1 we add the number of pairs $((u_j, v_{s+1}), S)$ of n-

distance s+1, which equals
$$\binom{2t-2}{n-1}$$
 for each $1 \le j \le t$.

<u>REFERENCES</u>

- [1] Ahmed, H.G. (2007), **On Wiener Polynomials of n-Distance in Graphs**, M.Sc.Thesis, University of Dohuk.
- [2] Ali, A.M. (2005), "Wiener Polynomials of Generalized Distance in Graphs", M.Sci. Thesis, **Mosul University**.
- [3] Ali, A.A. and Ali, A.M. (2006)," Wiener polynomials of Generalized Distance for some special Graphs", **Raf J. Com. Sci. and Maths.**, Vol.3, No.2, pp.103-120.
- [4] Ali, A.A. and Ali, A.M., "Wiener Polynomials of Generalized Distance for some Compound Graphs of Special Graphs", Raf. J. Comp. Sci. and Maths. (2007,accepted),"
- [5] Buckley, F. and Harary, F. (1990), **Distance in Graphs**, Addison-WesLey, Redwood.
- [6] Chartrand, G. and Lesniak, L. (1986); **Graphs and Digraphs**, Wadsworth Inc. Belmont, California.
- [7] Dankelman, P., Goddard, W., Henning, M.A. and Swart, H.C. (1999)," Generalized eccentricity, radius, and diameter in graphs", **Networks**, **34**; 312-319.