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ABSTRACT

The n-Wiener polynomials of the Cartesian products of a complete
graph K; with another complete graph K, a star graph S, a complete
bipartite graph K, a wheel W,, and a path graph P, are obtained in this
paper. The n-diameters and the n-Wiener indices of KixK,, KixS;, KixKqg,
KixW, and KxP; are also obtained.
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1. Introduction.

We follow the terminology of [5] and [6]. Let v be a vertex of a
connected graph G and let S be an (n-1)-subset of vertices of V(G), n>2,
then the n-distance dy(v,S) is defined as follows[ 7]

dn(v,S)=min{ d(v,u):ul S}. ..(L1)

Sometimes, we refer to the n-distance of the pair (v,S) in G by
dn(v,S| G). The n-diameter diam,G of G is defined by

diam,G=max{dn(v,S): vl V(G), Sl V(G),¢S¢=n-1}. ..(1.2)

It is clear that for all 2<m=<n<p,

diam,G< diam,G< diamG. (1.3)
The n-Wiener index of G denoted by Wy(G) is defined as

Wi(G)=Q d(v.9), (L1.4)

(v.S)
where the summation is taken over all pairs (v,S) for which vi V(G),
Sl V(G) and 8S&=n-1. The n-average distance ny(G) is defined as
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o
0
my(G)= Wn(G)/pé T, 3<n<p. ...(1.5)
n- 1@
Let v be any vertex of G, then the n-distance of v denoted d,(V€G)
or simply dn(v) isdefined as
di(V)= & du(v,S) , &SE=n-1. ...(1.6)
Si V(G)
The Wiener polynomial of G with respect to the n-distance, which is
called n-Wiener polynomial and defined as below.

Definition 1.1.[2]. Let Cy(G,k) be the number of pairs (v,S), |S|=n-1,3<n<p,
such that dn(v,S)=k, for each 0<k<5,. Then, the n-Wiener polynomial
Wy(G;x) is defined by

W,(G;x):%" Cn(G k)X, (L7
k=0
inwhich &, isthe n-diameter of G .
One may easily see [2] that for 3<n<p, the number of all (v,S) pairs is

L5

g 8o 15
a G(Gk=p& =z, Cn(G,0)= pé B ...(1.8)
k=1 n-1g 20
s} 6 ge--deg 9
Ci(G,1)= pé = ...(1.9
n- 1@ \”V(G)é n-1 a

Definition 1.2[1] Let v be a vertex of G, and let C,(v,G,k) be the number of
(n-1)-subsets of vertices of G such that

dn(v,S¢G)=k , for n>3, O<k<3,.
Then, the n-Wiener polynomial of vertex v, denoted by Wy(v,G;X) is
defined as

Wo(v,GX)=Q  Cn(v,G,K)X . ...(1.10)
k30
It is clear that for al k>0,
A Ci(v,GK)=Cy(G/k), ...(1.11)
ViV (G)
and
A Wi(V,GX)=Wi(G;X) . ..(1.12)
ViV (G)
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There are many classes of graphs G in which for each k,1<k<3, ,
Cn(v,G,K) is the same for every vertex vi V(G); such graphs are called [1]
vertex-n-distance regular. If G is of order p and it is vertex-n-distance
regular, then

Wi(G;xX)=pWn(V,G;X), ..(1.13)

where v isany vertex of G.
The authors of references [2],[3] and [4] obtained the n-Wiener polynomials
of some special graphs and some types of composite graphs. In this paper,
we obtain n-Wiener polynomials of the Cartesian products KixK;, KixS,
Kx Kr,s, KxWy and KxP.

2. The Cartesian Product of a Complete Graph and a Star

Let K; be acomplete graph with V(K)={ us,Up,...,u}, and S; be a star
of center vo and end vertices va,Vs,... V1. Each vertex of KixS; is an ordered
pair (u;,vj), 1<i<t, 0<j<r-1. Let K{ be the clique graph [6] of order t of vertex
set {(uw,v)): 1=1,2,....t, 05j<r-1} . The graph KxS; is depicted in Fig. 2.1.

(U3, Vo) (U, Vo)

(ug,vo)

Fig. 2.1. The graph KixS..
It is clear that O<d((u;,Vj),(ui,Vm))<3. Thus,
diam, KixS<diam KxS, <3.
Proposition 2.1. For t>2, r>3, the n-diameter of KxS;is given by
3, if 2<n<(t-1)(r-2)+1,
diam, KixS= < 2, if 1+(t-1)(r-2)<n<t(r-1),
1, if t(r-1)<n<rt.
Proof. The proof isclear fromFig. 2.1. m
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The following theorem gives us the n-Wiener polynomial of KixS;. It
is clear that the order of KixS;is p=rt.

Theorem 2.2. For t>2, r>3, 3<n<rt,

1" - t-14 -t-r+16
Wi(KxS:x)= pé Ttp -t(f 1)% é I
n-20 n-1 n-1 g ni @
t r+1 -t-14 - 2t- r+2
H] ‘+(f s = ‘}]X
é n-1 @ n-1 ﬂ é 1 @
2t r+2;
+(r-1) é

Proof. It isclear that each vertex of K¢ is of degree r+t-2, and each vertex
of K{, 1<j<r-1, is of degree t. Therefore, by (1.9) we obtained C(KxS;,1) as
given in the theorem.

To find Cy(KixS,,3), we notice that there are (t-1)(r-2) vertices each of

distance 3 from each vertex (u,v) of K¢, 1<j<r-1. Thus,
-2

Cn(KtXS,,B):t(r-l)é

Finally, by (1.8) and Proposition 2.1, we get

1..

Ci(KixS,2)= pé 2 Ci(KxS,1)-CoKixS,3)

n- 1@
t r+1 -t-1 -2t-r+2 24
—t[é ‘+(f 1) z-(r-1) =]
nl @ n-1 ﬂ n-1 ﬂ

Hence, the proof.m
Corollary 2.3. For t>2, r>3 3<n<rt

t-l" -t-r+l - 2t-r+2 24
Wo(KxS)= pé —+t[(r 1)§ é TH(r-1) ] .
n-1 ﬂ n-1 @ 1 @

3. The Cartesian Product of Complete Graphs
Lee K; and K, be digoint complete graphs, and let

(U, V), (U, Vo)l V(Kex K;), thenit is clear that

diam KxK=2.
Thus,

diamn KtXKrSZ, 2§n§rt
If w#uU; and vi#£va, then (u,vi), (Uz,v2) are non-adjacent in KixK,; and (uy,
V1), (U1,V2), (Uz,V2) isapath of length 2. Therefore,
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d((Ul,Vl),(Uz,Vz)):z.
The degree of each vertex (uy,vy) is r+t-2. Thus, the number of vertices of
distance 2 from (us,vy) is rt-r-t+1. Hence, we have the following resullt.

Proposition 3.1. For t,r>2,
{2 if 2<n<rt-r-t+2,
diamn KxK=
1if rt-r-t+3<n<rt.
Now, we find the n-Wiener polynomial of KixK;.

Theorem 3.2. For r,t>2, 3<n<rt

ag-l'.' aglo ag-r-tﬂb ag-r-tﬂb )
Wn(KtXKr;X):rté T+rt[§ :-é T]x+rt X5
n- n-10

20 1 @ n-1 ﬂ

Proof. Itisclear that KixK; is vertex-n-distance regular. Thus,
Cn(KxK,2)=rtCn((u1,v1), KixK; 2).
Since the number of vertices of distance 2 from (uy,vy) is rt-r-t+1, and there
is no vertex of distance more than 2 from (us,v1), then
-r-t+l 8
Cn((ug,va), KixK,,2)= I
1 @
The constant term and the coefficient of x follow from (1.8) and (1.9).m

Corollary 3.3. For r,t>2, 3<n<rt,
aglo ag-r-tﬂb
WalkeK)=rlg g ]
n-10 1 @

4. The Cartesian Product of a Complete Graph and a Complete Bipartite
Graphs
Let K;s be a complete bipartite graph of bipartite sets of vertices

Vi={V1,V2,....Vi}, Vo={W1,Wy,...,We}; r>s, and let

V(Kt):{ Ug,Up,... ,Ut},
then it isclear that in KxK; s

d((ui,vn),(u;,vi))=3 when i#], h#k,

because there is a shortest path

(U, V), (Ui,Vih), (U, W), (Ui, Vi), Wi V.

Similarly,

d((ui,wh),(u;,wWi))=3 when i, h#k.
Moreover,

d((ui,vn), (Ui, vi))= d((ui, W), (Ui, Wk))=2.
Therefore,

diam KK, =3,
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and so

diam, KixK; <3, 2<n<p, p=t(r+s).
For any vertex (u;,vh), the number of vertices of distance 3 from (u;,vy) in
KixK,sis (t-1)(r-1). Similarly, there are (t-1)(s-1) vertices of distance 3 from
(ui,wi). Moreover, the degree of each vertex of KixK; s is either r+t-1 or st+t-
1
Thus, we have the following result.

Proposition 4.1. For t,r,s>2, r>s, then the n-diameter of KxK;sisgiven
3, for 2<n<tr-t-r+2,
diam, KixK, =+ 2, for tr-t-r+3<n<p-t-s,
1, for pt-stl<n<p.
|
The next theorem determines the n-Wiener polynomial of KixK; s.

Theorem 4.2. For t,r,s>2, 3<n<p, p=t(r+s),

1" £1 -r-t ey é-s-tb

Wi(KxK; ¢X)= pé -+[p§n 12 én_l g-rt 3 g]x

-S-t A -t-r+l 1 -r-t A - t- s+1
H ft[é é T+ Zé _]}X
n-1 ﬂ n-1 ﬂ n-1 ﬂ n-1 @
-t- r+1 a?t s+1
+[rt§ —+st _]x
n-1 ﬂ 1 @

Proof. C,(KxK;0) and Cn(KxK;s1) are obtained from (1.8) and (1.9). To
find the other coefficients, we notice that C,((a,b), KixK, k) is the same for
every vertex (a,b)l V(K)xV1, and Cy((c,d),KixK;sK) is the same for every
vertex (c,d)l V(KyxV,, for k=2,3. Since the number of vertices of distance
3 from vertex (a,b) is (t-1)(r-1), and the number of vertices of distance 3
from vertex (c,d) is (t-1)(s-1), then we get the coefficient of X as given in
the statement of the theorem.

Finally, Cy(KtxK;s2) is obtained using the relation (1.8) and the coefficients
already obtained. This completes the proof. m

Corollary 4.3. For t,r,s>2, and 3<n<p in which p=t(r+s),

19 é t- r+1
Wih(KxK;.9= pé +rt[§ 3 g é ;]

1 @
a§t r+lc

= 2.
énlﬂ é nl @
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Proof. The n-Wiener index is obtained from Wr(KxK;X) by taking the
derivative with respect to x, and then put x=1, and simplified the
expression.m

5. The Cartesian Product of a Complete Graph and a Wheel
Let W, be a wheel of order r>4 and let its center be denoted by vo
and its other vertices be vi,va,...,Vi1. Moreover, let V(Ki)={ us,Us,...,u}. The
order of KixW, isp=rt, and in KixW,
deg(ui,vj)=t+2, for 1<i<t, 1<j<r-1,
deg(u;,vo)=t+r-2.
One can easily see that in KixW,
d((ui,vo),(uj,vn))=2, for i, h£0,
d((Ui,Vn),(u;,vm))=3, for i#j, h+m, h,m+0,
because (ui,Vn), (Uj,Vh), (U;Vo), (W,vm) IS a shortest (ui,vn)-(u,vm) when
ViVml W, Thus,
diam KxW,=3, when r>5.
Thus, for r>5, t>2,
diamn KtXWrSB.
Since for each vertex (uj,vy), 1<i<t, 0 there are (t-1)(r-4) vertices of
distance 3 from (u;,vy), and deg(u;,vy)=t+2, then we have the following
result.
Proposition 5.1. For t>2, r>5, the n-diameter of K<xW, is given by
3, for 2<n<1+(t-1)(r-4),
diam, KixW,= { 2, for 2+(t-1)(r-4)<n<p-t-2,
1, for p-t-1<n<p. [
The following theorem gives us the n-Wiener polynomial of KixWi,.

Theorem 5.2. For t>2, r>5, 3<n<p, p=tr

a:?-l" 10 -t-3 4 -r-t+l s
Wi(KexWrx)= pé i+[p§ i-t(r-l)é i—té Zlx
n-Zb n-lb n-1 ﬂ n-1 ﬂ
aiq-t-3" -t-r+les - - 4t+4 5
+[t(r-1)§ ! T-t(r-1) X
n-1 ﬂ n-1 ﬂ n-1 ﬂ

- - 4t+4 5

+t(r-1)§ 33,
n-1 ﬂ

Proof. The coefficients of x° and x are obtained using (1.8) and (1.9). To
obtain the coefficient of x°, we notice that for any (ui,vo), 1<i<t and every
(n-1)-set of vertices S, dn((ui,Vo),S)<2. But for every vertex (u,v;), 1<i<t,
1<j<r-1, there are (t-1)(r-4) vertices each of distance 3 from (u;,V;).
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- 1- 4t+4 2

Therefore, there are é : sets S, |S=n-1, such that dn((u;,v;),S)=3.
nl @

Thus,

- - 4t+4 1

-0

Ca(Kex Wi, 3)=t(r-1) é

We obtain C(KxW,2) by using (1.8). Hence, the proof. m
Corollary 3.4.3. For t>2, r>5 and 3<n<rt,

a:?lo -t-3 A a?-r-tﬂ-- -r-4t+4 ¢
Wn(KtXW,):pé T+H(r- 1)§ T+t T+(r-1)
. n-1 ﬂ n-1 ﬂ n-1

Q.'..'.o

Proof. The proof follows from Theorem 5.2 and the fact
Wn(KtXWr): Wn(KtXWr;l). |

6. The Cartesian Product of a Path and a Complete Graph
Let P, r>2 be a path graph of order r and
Pr vy, Vo,...
and let
V(Kt):{ Ug,Uy,... ,Ut} , =3,
The Cartesian product KxP; is shown in Fig. 6.1. The following proposition
determines the n-diameter of KixP, .

Proposition 6.1. For r>2, t>3, 2<n<rt,
diamn KtXPr:r+1'éVtu

(Ul,Vl ,‘ --- (Ue,va)

(ul’VZ) Uz,V2)  (U3,V2) o ()
(U3,Vr1) --- (Ug,Vr-1)
(U, vy (U, Vi)

Fig.6.1. The graph KixP;
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Proof. From Fig. 6.1, we notice that d.((u,v),S), |S=n-1 has maximum value

when (u,v) is one of the vertices in A;E A, where
Ai={ (Uj,Vi)Z j=1,2,....1},

and S isthe (n-1)-set of vertices farthest from (u,v) in K¢xP.. Thus, we may

take the vertex (us,vy), and S consisting of vertices of A1,Az,...

vertices of Aj+1-{ (ug,Vvi+1)} when
it<n-1<t(i+1)-1;
and when
2<n<t, then Si Al-{ (Ul,Vl)} .
In the last case,
diamp KxPe=r ;
and in general case of n,
diam, KxP=r-i, it+1<n<(i+1)t.
One can easily see that
i=én/tir 1.
Hence, in any case of the value of n,
diam, KixP; =r+1-é/tu. m

A and some

Now, we obtain the n-Wiener polynomial of KxP; in the following

two theorems.
Theorem 6.2. Let r=2s, s>1, t>3 and 3<n<rt. Then

Wn(KtXPr;x):%‘n Cn(KtXP,,k)xk,

k=0
where
2819
Cn(KtXPr,O):rté :,
15 -1 S24
Cn(KtXPr,l) rté '2t 't(r 2) é
n- 1@ n-1 ﬂ n-1 ﬂ
for 2<k<s
51 g8 Aty +2t-tk- 144 -tk
Co(KexPrk)=2t[2 { :} +2 :é I}
i=1 n-1 ﬂ n-19 @ €en10
+2t- tk- 1 é tk- 1
+Hs-kK T }]
é é n-1 ﬂ
for k>s+1
s @™o a8
Cn(KtXPr,k) 2ta {é : _}
i=1 13 €en19d
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inwhich
a=p-t(k-1)-1.

Proof. Cn(KxP;,0) and Cn(K:xP,1) are obtained from (1.8) and (1.9). For
2<k<d,, we shall consider three cases for the values of k.
Q) If 2<k<s, then for each 1<i<s the number of vertices of distance k
from any vertex, say (u;,vi), of A; ist and the number of vertices of distance
more than k from (u;,v;) is p-t(i+k-1)-1=a-ti when 1<i<k-1 which gives us
kin 18:3 (055 N0] ( )
a= - H ..(6.1
G9¢ 5.
If i=K, then there are 2t-1 vertices of distance k from (u;,v;), and there
are p-t(2k-1)-1 vertices of distance more than k. This gives us
n 1 g8t 10p@- 2kt+t- 10
b=3¢ ¢

-18 énll 2

£ 2kt+3t- 20 £ 2kt +t- 10
n-1 a n-1 Ef
éﬂt-tk-lb ékto
:é - T ...(6.2)
n-l @ en19
If k+1<i<s, then there are 2t vertices of distance k from (u;,v;) and
there are p-t(2k-1)-2 vertices of distance more than k. This gives us
S n 1%]:@ 2kt+t- 20
cgags¢ =
Ik+lj—18 é n-1- j g

2kt+3t 2 - 2kt+t- 2 22

—(Srk)[é é _ g]-

+2t- tk- 1 é kt- 1
=(sk 7. ...(6.3)
Rt B
Since r=2s and each A; consists of t vertices,
Cn(KxPr,K)=2t(at+b+c) when 2<k<s.
2 If k=s, then using the same reasoning as in case (1) we find that (6.1)
and (6.2) aretrue for this case, and (6.3) does not hold. Thus,
Cn(KixPy,k)=2t(at+b) when k=s.
(3) If k>st1, thenit is clear that both (6.2) and (6.3) do not hold. Thus,
Cn(KxPr,k)==2ta when k>s+1.
Substituting a, b and ¢, we get the required results. m
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Theorem 6.3. Let r=2s+1, s>1, t>3 and 3<n<rt.

Then
o\ — d: k
Wn('(t>< Pr,X)— a Cn(KtX Pr,k)x )
k=0
where
ag_l..
Cn(KtXPr,O):rté :,
16 -t- 26
Cn(KtXPr,l) rté '2t 't(r 2) é
n- 1@ n-1 ﬂ n-1 ﬂ
for 2<k<s
kc;l +H-ti A -itb é+2t-tk-lb é-tk A
Ca(Ke<P K)=4t[ a { -&¢ 3 +§ :é z]
i=1 n-1 @ n-19 nl @ €en109
+2t tk- 1 é tk- 1
+(r-2K){ - 21,
é é n-1 ﬂ
for k=st+1,

05 éﬂ: IIO é tI
Cn(KtX Pr,k):2t a

{ Huf 2
i=1 é n-1 ﬂ é én 12‘

05 éﬂ: IIO é tIO
Cn(Ktx Pr,k):2t a

i=1 {énlﬂénlﬂ

a=p-t(k-1)-1.

Proof. The proof of C,(KxP;,k) for k#s+1 is similar to that for even r given
in Theorem 6.2. For k=st+1 we add the number of pairs ((u;,Vs+1),S) of n-
t- 2 64
distance s+1, which equals é = foreach 1<j<t. m
n-1 9

for s+1<k<3,,

in which
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