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Abstract

Numerical solution of oscillatory reaction—diffusion system of A — @ type was done by using two finite difference
schemes . The first one is the explicit scheme and the second one is the implicit rank— Nicholson scheme with averaging
of f(u,v) and without averaging of f(u,v). The comparison showed that Crank-Nicholson scheme is better than

explicit scheme and Crank—Nicholson scheme with averaging of f(u,v) is more accurate but it needs more time and
double storage and double time steps than Crank—Nicholson scheme without averaging of f(u,v).

1. Introduction and Mathematical Model

A — Systems are a class of simple examples of two
coupled reaction — diffusion equations whose Kinetics
have a stable limit cycle:

U =u, +Aru-olry
B (a)
Vv, =V, +o(ru+Alrl

Here Uand Vare functions of space X and time t, with

xeRand t>0 , and r=+vu’+v?[1] A-w
Systems are an important prototype for the study of
reaction — diffusion equations which have been used to
model a number of biological and chemical systems [2].
Many systems in biology and chemistry are intrinsically
oscillatory. In such cases, the stable state in the absence
of spatial variation is not a stationary equilibrium , but
rather consists of temporal oscillations in the interacting
chemical or biological species Examples include
intracellular calcium signaling , the Belousov -
Zhabotinskii reaction and some predator — prey
interactions These systems also exhibit spatial
interactions , which are often modeled by diffusion . This
combination of local oscillations and spatial diffusion
produces a very wide range of spatiotemporal behaviors ,
including spiral waves , target patterns and
spatiotemporal chaos . In one spatial dimension , the
equivalent of both spiral waves and target patterns are
periodic travelling waves , which are periodic functions
of space and time, moving with constant shape and
speed. Sherratt studied various features of the oscillatory
reaction-diffusion systems of A1—-@ type in series of
papers. He presented numerical evidence for a complex
sequence of bifurcations in the unstable region of
parameter space [6]. He also used numerical techniques
to give suggestion that the spatiotemporal irregularities
are genuinely chaotic [3]. He also made a comparison
between the numerical solutions of the oscillatory
reaction-diffusion systems of A — @ type [4]. He used
numerical results suggesting that when this system is
solved on semi-infinite domain subject to Dirichlet
boundary conditions in which the variables are fixed at
zero periodic travelling waves develop in the domain [5].
Borzi and Griesse presented the formulation, analysis,
and numerical solution of distributed optimal control
problems governed by lambda-omega systems [6].
Garvie and Blowey undertook the numerical analysis of a

reaction-diffusion system of A — @ type, their results
are presented for a fully practical piecewise linear finite
element method by mimicing results in the continuous
case [7]. In this paper, the numerical solution of an
oscillatory reaction-diffusion system of A — type by
the use of two finite difference schemes is done to the
following system [4].
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With initial and boundary conditions 4 _ v _ o at
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X=0 and u=v=001 at x=0, u=v=0, for x>0 at
t=0 and u=v=0 at x=L where L is sufficiently
large number.
2. Discretization of the A—@ System by Using
Explicit Scheme
By using the finite difference approximations for the
derivatives [8], we have
ui,j+l_ui,j _ u|+1,1 _2u|,1 +ui71,1

k h?
+(1_(ui.j)2 _(Vi‘j)z)(ui,j _3Vi‘j):>
U= (o, +u, )+ @-2r+k)u,, —k(u, f (2)
+ 3kv,’J(u,’J)2 - k(v,‘J )2 u; —3ky,; + C%k(vu)2
Where r =k /h?
For the boundary condition U, =0, by using the central

difference formula, we get
u, —u,,
———l =0
on 3)

u, =u

-1,

from (2) , we have , for i =0

Ug = r(uflvj +U, )+@-2r+ k)u,, - k(uolj )i @)
+3Kv, (uoyj )2 - k(voyj )2 U, — 3Ky, + 3k(vo‘j )3

Substitute (3) in (4) , we obtain

Uy, = 21U, , +(L—2r +K)u,, —k(u,, f )

+3kv, (U, F — kv, , Fu,, —3kv, , +3k(v,, )

Equation (5) represents the right boundary condition,
with respect to equation (1b)
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—kv,vj(u,vj)2 —3k( ,‘J) u,, +3ku,, —3k( ,11)3
The boundary condition v, =0, by using the central
difference formula, we have:
ATEREYS z_hv’l’j =0= v, =v,,
From (6) we have , for i =0

Vo u = r(v,“ +V,, )+@-2r + kv, — k(vovj )i ®)
—kv, | (Uo,,- )i —3k(v01j ¥ Uy, +3kU, | —3k(u01j y
Substitute (7) in (8), we obtain

Voo =21V, +(L=2r +K)v,, —k(v,, ] 9)
_kVo‘j( o,j) _Sk( o,j) Ug ; +3KU, | —3k(u0‘j)3

which represents the right boundary condition, with
respect to equation (1b).

3. Discretization of the A — @ System by Using of
Crank — Nicholson Scheme without Averaging of

f(u,v)
The diffusion term U, in this method is represented

with central differences, with their values at the current
and previous time steps averaged [8]
Uija — Ui _ Uig o — 2U; j Ui 4 Upgj —2U;; +U; g

k 2h? 2hZ

+ (1_(Ui j)z _(V”_)z) (Ui,j _3Vi.j) =

i

- r(ui—1,1+1 +Uy |+1) (2+ Zr)ui,j+1 = r(ui—l,j +ui+1‘1)
+(2-2r+k)u,, - k(u”)3 +3kvi‘1(uivj )2 —k(vi‘j)zuivj —3kv,, +3k(vi‘j)3
(10)

For the boundary condition u, =0, from central

difference formula , we have
% — 0 = ul,] — ufl‘j (11)

from (10) , we have , for i =0

- r(uf1.1+1 + U1,j+1)+ (2 + Zr)uo,m = r(u—LJ +Uy )

+(@2-2r+k)u,; -

from (11) , we get
Ui ja = U (12)
substitute (11) and (12) in (10), we obtain the equation
for the left boundary condition which is

-2ru, ., +(2+2r)u,,,, =2ru, +(2-2r+k)u,, 7k(u0‘j)3 (13)
+3kv0,1( ) _k( 01) 0.j _3kv0,1 +3k(\/0,1)3

for (b) , we have

Vi ~Vijj :Vi+1,j+1_2Vi,j+1+vi—1,j+1 Vi =2V Vi
k 2h? 2h2
-0, F -, P Gu 4w )=
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(14)

For the boundary condition Vv, =0, from central

difference formula, we have

by ;hv’“ =0 = v, =V, (15)

from (14), we have

1V o Vo JF (2420 =1V +vy )

+(2-2r+ k)Vo,j - k(vo‘j )3 - k(Vo,j )(uo,j )2

—3k(v0,j )zuolj +3Ku ; —Sk(uovj)3

from (15), we have

Vl,j+1 = V—l.j+1 (16)

Substitute (15) and (16) in (14), we have the equation for
the left boundary condition, with respect to equation
(1b)-

=2ry,,, +(2+2r)v

- k(vo_J )(um )2 - 3k(v0‘J )2 U, ; +3KU,,

=2rv,, +(2-2r+k)v,,

: —3k(u0vJ )3

The equations in above are especially pleasing to view in
their tridiagonal matrix form A x =g , where A is the

coefficient matrix, X is the unknown vector and B is the
known vector as shown below:

kv, ) (@7

0,j+1

k(uolj )3 +3Kv, | (Uo,j )2 - k(vo‘j )Zuo‘j = 3K, | +3k(v0vj)3
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[(2-2r+K)v,, +2rv, , —k(v,, F -3ku, (v, , F —3k(u,, P, , +3ku,, —3k(u,, f |
v, +(2-2r+k)v,  +rv, — k(vzvj)3 - kuzvj(vzlj)2 —3k(u2vj)zv2vj +3Ku, | —Sk(uzvj)Z

W +@-2r+Kkv,  +rv,, - k(vm)3 - kuplj(vm)2 —’3>k(upvj)2vp_j +3ku, | —3k(up‘1)3

vV, s+ (2 -2r+ k)vn_zyj TV, k(Vn_z,,-)3 —Kku, , ; (vn_zvj)2 - Sk(un_zvj)zvn_zyj +3KU, 5 - C%k(un_z‘j)2

Vo o+ (2 -2r+ k)vn—l,j - k(Vn-l,j)3 - kvn—l,j(un—l,j)z - 3k(vn—1,j )2 Uy g +3KU, 5 — 3k(un—1‘j)3
0

4. Discretization of the A — @ System by Using of Crank — Nicholson Scheme with Averaging of f (u, V)

In this scheme the functions U and V in system (1b)will be replaced by their values at the current and previous steps
averaged.
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Where 1, = k/2h?
By the same manner we have followed in (4), with repeat to right boundary condition U, =0 , we get

-2y, ., +(2+420)u,, ., =260, +(2-2r 4k )y, (21a)
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with repeat to (1b) , we have
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By the same manner we have already followed in (4) , with repeat to the right boundary condition , we get
=20V, ., 2420y, L, =20y, +(2-2n 4K, (25a)

_kl(vo,J)a_klva,J( ) 3k( ]) ‘J+3k1u0,1_3k1(u0‘J)3



Conclusions

In this study, we concluded that the Crank — Nicholson
Schemes without averaging and with averaging of f (u,v)
are more accurate than the explicit scheme which is
simpler and needs less time and storage . Crank —
Nicholson scheme with averaging of f(u,v) is more
accurate than Crank — Nicholson scheme without
averaging of f(y,v) but it doubles the time steps and
needs more storage as shown in table (1) below. The
figures (1), (2) and (3) show a comparison among
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explicit, Crank-Nicholson without averaging and Crank-
Nicholson with averaging schemes. The figures (4) and
(5) show a comparison between explicit scheme and
Crank-Nicholson without averaging  scheme when
a=10,b=10,n=101, m=1001, h=0.2, k=0.04, r=0.4

From the figures we concluded that the solutions
converge to the steady state solution u =0, v=0 when
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Table (1)
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Table (1) shows a comparison among explicit, Crank-Nicholson without averaging and Crank-Nicholson
schemes with averaging of U when a=1 b=1 n=11, m=251 r =0.4, k =0.004, h=0.1.



Figure (1)
explains the solution function U of the system by using explicit scheme when
a=10, b=10, n=101, m=1001, h=0.2, k =0.01, r=0.4
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Figure(2)
explains the solution function U of the system by using Crank- Nicholson scheme without averaging when
a=10,b=10,n=101, m=1001, h=0.2, k=0.0L, r =0.4-
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Figure(3)
explains the solution function U of the system by using Crank-Nicholson with averaging when
a=10,b=10, =101, m=1001, h=0.2, k=0.01, r =0.4.
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Figure (4)
explains the solution function Vv of the system by using explicit scheme when
a=10,b=10,n=101 m=1001, h=0.2, k=0.01, r=0.4.
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Figure (5)
explains thee solution function V of the system by using Crank-Nicholson scheme without averaging when
a=10,b=10, =101, m=1001, h=0.2, k=0.01, r =0.4.
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Figure (6)

explains thee solution function V of the system by using Crank-Nicholson scheme with averaging when
a=10, b =10, n =101, m=1001, h=0.2, k =0.0L, r =0.4.
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