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Abstract  

Let  be maps of a compact connected Riemannian manifold, with or without 

boundary. For  > 0 sufficiently small, we introduce an  – Nielsen coincidence number  

that is a lower bound for the number of coincidence points of all self – maps that are  - homotopic 

to f and g. We prove that there is always maps  that is  – homotopic to f and g such that 

 and  have exactly  coincidence points. 

 

Introduction 
The Nielsen coincidence point theory 

applied to study of the calculation by computer 

of multiple solutions of systems of 

polynomials equations,using a Nielsen 

coincidence number to obtain a lower bound 

for the number of distinct solution [5]. 

Because machine accuracy is finite, the 

solution procedure requires approximations, 

but the information is still applicable to the 

original problem. The reason is that 

sufficiently close functions on well - behaved 

spaces are homotopic and Nielsen coincidence 

number is a homotopy invariant. Although the 

homotopy between two sufficiently close maps 

are through maps that are close to both, no 

limitation on the homotopies employs. The 

purpose of this paper is to introduce a type of 

Nielsen coincidence point theory that does 

assume that a specified to-lerance for error 

must be respected. 

If distortion is limited to a pre–assigned 

amount, then it may not bepossible, without 

exceeding the limit, to deform maps f and g so 

that it has exactly  coincidence points. 

For very simple example, consider the maps 

 such that 

 g(0) 

= f( 1 ) = 0 and 

. If the maps  and  have 

=1 coincidence point, then there must 

be some  such that  and 

  

This example suggests a concept of the 

geometric minimum (coinciden-ce point) 

number of maps   different from the 

one, MF[f,g], that is the focus of Nielsen 

coincidence point theory, namely, 
 

MF[f,g]=min{#coin(f,g) :  homotopic 

to f, g respectively }, ................. (1) 
 

where #coin(f, g) denotes the cardinality of the 

coincidence point set.The distance d( f, g) 

between maps f, g : Z , where Z is 

compact and X is a metric space with distance 

 function d, is defined by  

.  ......... (2) 

Given  > 0, a homotopy  is an 

– homotopy if  for all . 

For 

a given  > 0, we define the  - minimum 

(coincidence point )number  of maps 

 of a compact metric space by  

M   

 .  

 .............................. (3) 

Note that the concept of –homotopic 

maps does not give an equivalence relation  

The notation MF[f,g] for the minimum 

number incorporates the symbol [f, g], 

generally used to denote the homotopy class of 

f and g, because MF[ f, g ] is a homotopy 

invariant. We do note use the corresponding 

notation for the  -minimum number because it 

is not invariant on the homotopy class of f and 

g. For instance, although constants maps  

and  of  are homotopic to maps f and g of 

the example,for which  for any 

,obviously   for any 

choice of .  
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Let  be maps of acompact 

manifold.Just as the Nielsen coincidence 

has property , in 

the next section we will introduce the               

 – Nielsen coincidence number , for          

 sufficiently small,that has the property 

. My main result proven 

in section 3, is a " minimum coincidence 

theorem " : give  , there exists  

and  with  and  such 

that  and  have exactly  

coincidence points.  

 

The  – Nielsen coincidence number 
Let X be a compact, connected 

differentiable manifold, possibly with 

boundary. We introducea Riemannian metric 

on X and denote the associated distance 

function by d. If the boundary of X is 

nonempty, we choose a product metric on a 

tubular neighborhood of the boundary and  

then use a partition of unity to extend to a 

metric for X. There is an  small enough 

so that,if p,q  X with d( p,q) < , then there is 

a unique geodesic  connected them. This 

choice of  is possible even through the 

manifold may have a nonempty boundary 

because the metric is a product on a 

neighborhood of the boundary for the rest of 

this paper,  >0 will always be small enough 

so that points within a distance of are 

connected by a unique geodesic. We view the 

geodesic between p and q as a path  in X 

such that  and . The 

function that takes the pair (p, q) to  is 

continuous. If  then d ( p,x ) d ( p, q ) 

because  is the shortest path from p to q            

( see [ 7, corollary 10.8 on page 62 ] ).  

If  are maps with 

 and , then setting 

 and  

defines an  –homotopy between f and , g 

and  respectively. Thus an equivalent 

definition of the  –minimum coinci-dence 

number of  is  

 

  

d   .................... (4) 

For maps  

, let 

 ................................. (5) 
 

Theorem (1) :  

The set  is open in X.  
 

Proof: 

Let denote the subspace of  of          

non– negative real numbers.Define 

by  = . Since 

[0, ) is open in , it follows that 

 is an open subset of X. 

For maps ,define an equivalence 

relation on Coin( f, g ) as follows :  

  are  - equivalent, if there is a 

path  from  to  such that 

. 

The equivalence classes will be called the     

-coincidence point classes or, more briefly, 

the -cpc of f and g. 
 

Theorem (2):  

Coincidence points  of  

are –equivalent if and only if there is a 

component of  that contains both of 

them. 
 

Proof : 
Suppose  are                              

 – equivalence and let  be a path in X from 

 to  such that . Thus for 

each  we have , 

so . Since  is connected it 

is contained in some component of . 

Conversely, suppose are 

in the same component of .The 

components of  are pathwise 

connected so there is a path  in it from  to . 

Since  is in  that means 

 and thus and  are                  

 – equivalent. □  

Theorems (1) and (2) imply that the – cpc 

are open in Coin ( f, g ), so there are finitely 



Journal of Al-Nahrain University                    Vol.12 (3), September, 2009, pp.161-166                                   Science 

 163 

many of them . We denote the 

component of  that contains  by 

. An –cpc,  is 

essential if the coincidence point index 

. The –Nielsen 

coincidence number of f and g, denoted by 

, the number of essential  – cpc.  

 

Theorem (3) :  

If the coincidence points  and  of 

 are  – equivalent, then  and  are 

in the same ( Nielsen ) coincidence point class. 

Therefore each coincidence point class is a 

union of  – cpc and .  
 

Proof :  

If  and  are  – equivalent by means of a 

path  between them such that 

 then  

defines a homotopy, relative to the endpoints, 

between  and  so  and are in the 

same coincidence point class. Therefore a 

coincidence point class F of f and g is the 

union of  –cpc.If F is essential, the additively 

property of coincidence point index implies 

that at least one of the  – cpc it contains must 

be an essential  – cpc, thus  

. □  

The Nielsen coincidence number             

is a local Nielsen coincidence number              

in the sense of [4], [1], spe-cifically 
. 

However, in the local Nielsen coinci-dence 

theory, the domain U of the local Nielsen 

 is the same for all the maps 

considered whereas  depends on f and 

g.  
 

Theorem (4): 

Let  be maps then 

.  

 

Proof :  
Given maps  with  

and , let  be the         

-homotopy with  and 

 and  defined by 

  and  

respectively.Theorem (1) implies that 

 for all x in the Boundary            

of . Thus for x in the boundary of, 

 and  we have 

d  

. ........... (6) 

Since  and  are an -homotopy, 

 and 

  so 

, that is  and have no 

coincidence points on the boundary of 

. 

Therefore, the homotopy property of 

coincidence point index implies that  

= . ........... (7) 

 

Consequently, if   

is an essential –cpc, then 

 so  and  have a 

coincidence point in .We conclude that 

 and  have at least  coincidence 

points. □ 

 

The minimum coincidence theorem : 

The main result in this section is to prove 

the minimum coincidence theorem, but before 

that we need the following theorem.  

 

Lemma (5) :  
Let F be a closed subset of a compact 

manifold X and let U be an open, connected 

subset of X that contains F, then there is an 

open, connected subset V of X containing F 

such that the closure of V is contained in U.  
 

Proof : 
Since F and X – U are disjoint compact 

sets, there is an open set W containing F such 

that the closure of W is contained in U.There 

are finitely many components  of W 

that contain points of the compact set F. Let 

 be a path in U from  to 

 and let  be an open subset of U 

containing  such that the closure of  is in 

U.  

Since  is connected,we may assume  is 

also connected. Continuing in this manner, we 

let  
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 , .... (8) 

Which is connected. The closures of each of 

the  and  are in U so the closure of V is 

also in U. □ 

Let be an  – cpc. 

By lemma 5, there is an open, connected 

subset of  containing  whose 

closure cl( ) is in . For the map 

 defined by , 

we see that  where 

. Choose  small enough so that 

.  

 

Theorem(6) (Minimum Coincidence 

Theorem): 

Given , there exists 

 with  and 

 such that  and  have exactly 

 coincidence points. 
 

Proof:  
We will define and outside  to 

be a simplicial approximation of f and g 

respectively such that  and 

,where  denotes the minimum of 

the . The proof then consists of describing 

 and on each  so,to simplify 

notation, we will assume for now that  

is connected and thus we are able to suppress 

the subscript j. Triangulate X and take a 

subdivision of such small mesh that if u and v 

are a simplicial approximation to f and g 

respectively with respect to that triangulation, 

then  and  and, for  a 

simplex that intersect X –int(V), we have 

 and . By the Hopf 

construction, we may modify u and v, moving 

no point more than , so that it has finitely 

many coincidence points, each of which lies in 

a maximal simplex in V and therefore in the 

interior of X (see [ 2,Theorem 2 on page 118]), 

[9]. We will still call the modified maps u and 

v, so we now have maps u and v with finitely 

many coincidence points and it has the pro-

perty that <  and . Refine the 

triangulation of X so that the coincidence 

points of u and v are vertices.Since V is a 

connected n–manifold, we may connect the 

coincidence points of u and v by paths in V, let 

be the union of all these paths. With respect 

to a sufficiently fine subdivision of the 

triangulation of X, the star neighbor-hood S(P) 

of P, which is a finite, connected polyhedron, 

has the property that the derived neighborhood 

of S(p) lies in V. Let T be a spanning tree for 

the finite connected graph that is the                 

1–skeleton of S(P), then T contains coin(u,v). 

Let R(T) be a regular neighborhood of T in 

 then, since T is collapsible, R(T) is 

the n – ball by [8, Corollary 3.27 on page 41]. 

Thus we have a subset W = int(R(T)) of V 

containing coin (u,v) and a homeomorphism 

.We may assume that  (coin(u,v)) 

lies in the interior of the unit ball in ,which 

we denote . Set . If  , then  

  

 

, (9) 

So there is a unique geodesic  

connected u(x) to v(x). Consider the map 

 defined by , 

then  is an open subset of  

containing . Therefore there exists 

 such that .  

Denote the origin in  by 0 and let 

 Define a retraction 

, the boundary of 

 

 , by  

. ....................... (10)  

 

Define  by  

setting  for all t and, otherwise let  

 

. ............ (11) 
 

The function K is continuous because 

 is a bounded subset of . Now 

define  by  

. Since  is an open 

subset of  containing , there 

exists  such that 

<  and < . Define 
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 by   and 

 respectively.  

Next we extend  and to the set  

consisting of  such that  by 

letting  

 

,  

, ....... (12) 

 

where . Noting that 

 and  if  , 

we extend  and  to all X by setting  

and  outside .  

The maps  and  have a single 

coincidence point at . If 

, we let 

. If  

 , by [ 2, Theorem 4 on 

page123], there is maps , 

identical to u and v respectively outside of , 

such that  and  have no coincidence point 

in  and  and < .We 

claim that <  and . For 

, we defined =  and 

 where < <  and 

< < .  

If , then  

  

and   

so   

and  

Therefore,  
   

  

  

≤   

  

.  

  

  

  

≤   

  

. ............................................. (13) 

 

Now suppose . If 

, then 

  and  

 so  

  

  

.  

   

  

  ............................................... (14) 

 

If  then  

d   

+   

  

<  

  

+   

=  

. ..................................... (15) 

 

Which completes the proof that 

 and .  

We return now to the general case, in which 

 may be not connected.Applying the 

construction above to each  gives us 

maps  with exactly  

coincidence points. For  we 

defined and to be a simplicial 

approximation with  and 

.For , the argument 

just concluded proves that  
 

  

, ............................ (16) 

 

because  is the minimum of the , so we 

know that  and . □ 
 

Theorem 6 throws some light on the failure 

of the Wecken property for surfaces [3]. For 

instance,consider the celebrated example of 
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Jiang [6], of maps f and g of the paths surface 

with  but .The 

coincidence point set of f and g consists of 

three points, one of them of index zero. The 

other two coincidence points,  and  are of 

index +1 and -1 respectively and Jiang 

described a path, call it  from  to  such 

that  is homotopic to  relative to the 

endpoints. Suppose  > 0 is small enough so 

that points in the pants surface that are within 

 of each other are connected by a unique 

geodesic. If there were a path  from  to  

such that  and  were  - homotopic, 

then  and therefore, by theorem 6, 

there would be a coincidence point free maps 

homotopic to f and g. Since Jiang proved that 

no maps homotopic to f and g can be 

coincidence point free, we conclude that no 

such path  exists. In other words,for any 

paths  from  to  that is homotopic to  

and  relative to the endpoints, it must be 

that .  
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