On m-Regular Rings

Zubayda M. Ibraheem
Maha F. Khalaf
College of Computer Sciences and Mathematics
University of Mosul

Received on: 13/02/2011
Accepted on: 16/05/2011
الملخص
كتعميم للحقات المنتظمة, قدمنا الحققات المنتظمة من النمط - m على أنها لكل $a \in R$ يو
صحيح موجب ثابت m بحيث أن a^{m} يكون منتظم. في هذا البحث درسنا المميزات والخواص الأساسية له
وكذلك العلاقة بين الحلقات المنتظمة من النمط - m و الحلقات المنتظمة من النمط - π, و الحلقات المختزلة
و الحلقات المحلية و الحقات الموحدة.

Abstract

As a generalization of regular rings, we introduce the notion, of m-regular rings, that is for all $a \in R$, there is a fixed positive integer m such that a^{m} is a Von-Neumann regular element. Some characterization and basic properties of these rings will be given. Also, we study the relation-ship between them and Von-Neumann regular rings, π regular rings, reduced rings, locally rings, uniform rings and 2-primal rings.

Key Word: m-regular rings, π-regular rings, reduced rings, locally rings, uniform rings and 2-primal rings.

1- Introduction

Throughout in this paper, R denotes an associative ring with identity. For a subset X of R, the right (left) annihilator of X in R is denoted by $r(X)(1(X))$. If $X=\{a\}$, we usually abbreviate it to $r(a)(l(a))$. We write $J(R), Y(R), Z(R), N(R), P(R)$ for the Jacobson radical, right singular ideal, left singular ideal, the set of all nilpotent element of R and the prime radical of R respectively.
A right R - module M is called p - Injective, if for any principal right ideal $a R$ of R and any right R - homomorphism of $a R$ into M can be extended to one of R into M . The ring R is called right p - Injective if R_{R} is p - Injective [12]. An ideal I of a ring R is said to be essential if and only if I has a non-zero intersection with every non-zero ideal of R. A ring R is called π-regular, if for each a in R, there exist a positive integer n and an element b in R such that $a^{n}=a^{n} b a^{n}$ [7]. A ring R is called reduced if $a^{2}=0$ implies $a=0$ for all a in R [10]. A ring R is said to be reversible if $a b=0$ implies $b a=0$ for all a in R [3]. Finally a ring R is said to be right (left) duo if every right (left) ideal is a two-sided ideal of R [2].

2- m-Regular ring

This section is devoted to give the definition of m-regular rings with some of its characterization and basic properties.
A ring R is said to be Von-Neumann regular (or just regular) if and only if for each a in R there exists b in R such that $\mathrm{a}=\mathrm{aba}$ [8].

Definition 2.1 [5]:

Let R be a ring, if there is a fixed positive integer $m \neq 1$ such that for all elements a of R, a^{m} is regular $\left(a^{m}=a^{m} b a^{m}\right)$. Then we say that R is m-regular, and it is left (right) m-regular if $a^{m}=x a^{m+1}\left(a^{m}=a^{m+1} y\right)$ for some $x, y \in R$. The ring R is (left or right) m -regular if all its elements have this property.
Examples: $Z_{3}, Z_{4}, Z_{8}, Z_{9}$ are m-regular rings.
Note: clearly that when $m=1$, then R is regular ring, but the converse is not true by the following example :
Example [5]: The endomorphism ring of $G=Q \oplus \prod_{p} Z(p)$ is (left, right) 2-regular but not regular.

Proposition 2.2:

If y is an element of a ring R such that $a^{m}-a^{m} y a^{m}$ is regular element for a fixed positive integer $m \neq 1$, then a is m-regular .

Proof :

$$
\text { Let } x=a^{m}-a^{m} y a^{m}
$$

Since x is regular, then $x=x u x$ for some $u \in R$.
Hence $a^{m}=x+a^{m} y a^{m}$

$$
\begin{aligned}
& =\left(a^{m}-a^{m} y a^{m}\right) u\left(a^{m}-a^{m} y a^{m}\right)+a^{m} y a^{m} \\
& =a^{m}\left(1-y a^{m}\right) u\left(1-a^{m} y\right) a^{m}+a^{m} y a^{m} \\
& =a^{m}\left[\left(1-y a^{m}\right) u\left(1-a^{m} y\right)\right] a^{m}+a^{m} y a^{m} \\
& =a^{m}\left[\left(1-y a^{m}\right) u\left(1-a^{m} y\right)+y\right] a^{m}
\end{aligned}
$$

Therefore $a^{m}=a^{m} z a^{m}$, where $z=\left(1-y a^{m}\right) u\left(1-a^{m} y\right)+y$

Theorem 2.3:

A ring R is m -regular if and only if $a^{m} R$ is generated by idempotent for every $a \in R$ and for a fixed positive integer $m \neq 1$.

Proof:

Let $a \in R$. Choose an idempotent e in R and there exists a fixed positive integer $m \neq 1$, such that $a^{m} R=e R$. Take $e=a^{m} b$ for some $b \in R$, then $a^{m}=e c$ for some c in R, so $e a^{m}=a^{m} b a^{m}$ and $e a^{m}=e . e c=e c=a^{m}$. Therefore $a^{m}=e a^{m}=a^{m} b a^{m}$. Thus R is m-regular.

Conversely: It is clear.

Theorem 2.4:

If R is m - regular ring without zero divisor element, then R is a division ring.

Proof:

Let $0 \neq a \in R$. Since R is m - regular ring, then there exists b in R such that $a^{m}=a^{m} b a^{m}$, then
$0=a^{m}-a^{m} b a^{m}=a^{m}\left(1-b a^{m}\right)=a\left(a^{m-1}\left(1-b a^{m}\right)\right)$. Since $a \neq 0$, then $a^{m-1}\left(1-b a^{m}\right)=0$. So

$$
\begin{aligned}
& a\left(a^{m-2}\left(1-b a^{m}\right)\right)=0 \\
& \vdots
\end{aligned}
$$

$a\left(1-b a^{m}\right)=0$
So $1-b a^{m}=0$
Thus $1=b a^{m}$, implies that $1=\left(b a^{m-1}\right) a$.
Hence a is a left invertible. Now, since $1=\left(b a^{m-1}\right) a$. Then $a=a\left(b a^{m-1}\right) a$. Hence $\left(1-a b a^{m-1}\right) \in l(a)=0$. So $1=a\left(b a^{m-1}\right)$, implies that a is a right invertible. Therefore R is a division ring.

Theorem 2.5:

If P is a primary ideal of a ring R , and if R / p is m-regular, then P is maximal.

Proof :

$$
\text { Let } a \in R \text {, then } a+p \in R / p \text {. }
$$

Since R / p is m-regular ring, then there exists $b+p \in R / p$ such that

$$
\begin{aligned}
a^{m}+p= & (a+p)^{m}(b+p)(a+p)^{m} \\
& =a^{m} b a^{m}+p
\end{aligned}
$$

So $\quad a^{m}-a^{m} b a^{m} \in p$, thus $a^{m}\left(1-b a^{m}\right) \in p$.
Suppose that $a^{m} \notin p$, then $\left(1-b a^{m}\right)^{n} \in p, n \in z^{+}$.
Now, $\left(1-b a^{m}\right)^{n}=1-\left[\sum_{k=1}^{n} c_{k}^{n}(-1)^{k-1} b^{m} a^{m(k-1)}\right] a^{m} \in p$.
Let $z=\sum_{k=1}^{n} c_{k}^{n}(-1)^{k-1} b^{m} a^{m(k-1)}$.
Then $1-z a^{m} \in p$ and so $1+p=(z+p)\left(a^{m}+p\right)$. Therefore $a^{m}+p$ has an inverse and hence R / p is a division ring. Therefore P is maximal.

Theorem 2.6:

Let R be a ring with $r\left(a^{m+1}\right) \subseteq r\left(a^{m}\right)$ for a fixed positive integer $m \neq 1$. Then R is m -regular if $R / r(a)$ is m-regular.

Proof :

Suppose that $R / r(a)$ is m-regular ring, then for any $a+r(a) \in R / r(a)$, there exists $b+r(a) \in R / r(a)$ such that
$(a+r(a))^{m}=(a+r(a))^{m}(b+r(a))(a+r(a))^{m}$
$a^{m}+r(a)=a^{m} b a^{m}+r(a)$. So $a^{m}-a^{m} b a^{m} \in r(a)$.
Hence $a\left(a^{m}-a^{m} b a^{m}\right)=0$
That is $a^{m+1}\left(1-b a^{m}\right)=0$
So $1-b a^{m} \in r\left(a^{m+1}\right) \subseteq r\left(a^{m}\right)$
Hence $a^{m}\left(1-b a^{m}\right)=0$
Thus $a^{m}=a^{m} b a^{m}$.
Therefore R is m-regular.

Recall that, a ring R is called bounded index of nilpotency [4] if there exists a positive integer n such that $a^{n}=0$, for all nilpotent elements a in R.
As a result of Theorem 2.6 we obtain the following corollary:

Corollary 2.7:

A ring R is m-regular if and only if R is bounded index of nilpotency and $R / r(a)$ is m-regular for all $a \in R$.

Theorem 2.8:

Let I be an ideal of R. If R / I is a right m-regular and I is a right n -regular. Then R is right mn-regular.

Proof :

Let $x \in R$, then $x+I \in R / I$.
Since R / I is right m -regular, then there exists $y+I \in R / I$ such that:
$(x+I)^{m}=(x+I)^{m+1}(y+1)$ which implies that $x^{m}+1=x^{m+1} y+I$ and hence $x^{m}-x^{m+1} y \in I$. Since I is right n -regular ideal, then there exists $z \in I$, such that $\left(x^{m}-x^{m+1} y\right)^{n}=\left(x^{m}-x^{m+1} y\right)^{n+1} z$, implies that $x^{m n}-x^{m n-1} x^{m+1} y+x^{m n-2} \frac{\left(x^{m+1} y\right)^{2}}{2!}-\cdots+\left(x^{m+1} y\right)^{n}=$ $\left[x^{m n+m}-x^{m n} x^{m+1} y+x^{m n+m-2} \frac{\left(x^{m+1} y\right)^{2}}{2!}-\cdots+\left(x^{m+1} y\right)^{n+1}\right] z$
Then

$$
\begin{aligned}
& x^{m n}=x^{m n-1} x^{m+1} y-x^{m n-2} \frac{x^{2 m+2} y^{2}}{2!}+\cdots-x^{m n+n} y^{n}+ \\
& {\left[x^{m n+n}-x^{m n} x^{m+1} y+x^{m n+m-2} \frac{x^{2 m+2} y^{2}}{2!}-\cdots+x^{m n+m+n+1} y^{n+1}\right] z} \\
& \text { So } x^{m n}=x^{m n+1}\left[x^{m-1} y-x^{-3} \frac{x^{2 m+2} y^{2}}{2!}+\cdots-x^{n-1} y^{n}+\right. \\
& \left.\left[x^{n-1}-x^{m} y+x^{m-3} \frac{x^{2 m+2} y^{2}}{2!}-\cdots+x^{m+n} y^{n+1}\right] z\right]
\end{aligned}
$$

Thus $x^{m n}=x^{m n+1} y$,
where

$$
y=x^{m-1} y-x^{-3} \frac{x^{2 m+2} y^{2}}{2!}+\cdots-x^{n-1} y^{n}+\left(x^{n-1}-x^{m} y+x^{m-3} \frac{x^{2 m+2} y^{2}}{2!}-\cdots+x^{m+n} y^{n+1}\right) z
$$

Therefore R is a right mn -regular .

Proposition 2.9:

Let R be a ring in which every maximal right ideal is m-regular. Then R is right non-singular ring if $r\left(a^{m}\right) \subset r(a)$ for all $a \in R$ and a fixed positive integer $m \neq 1$.

Proof:
If $Y(R) \neq 0$, then there exists $0 \neq a \in Y(R)$ such that $a^{2}=0$. First suppose that $a R+r(a) \neq R$. Thus, there is a maximal ideal M such that $a R+r(a) \subseteq M$. Since M is right m-regular, then there exists $\mathrm{b} \in \mathrm{M}$ and a fixed positive integer $m \neq 1$ such that $a^{m}=a^{m+1} b$. It follows that $a^{m}(1-a b)=0$, that is $(1-a b) \in r\left(a^{m}\right) \subset r(a) \subset M$. Hence $1 \in M$, a contradiction. Therefore $a R+r(a)=R$. In particular, $a r+d=1$ for some $r \in R$ and $d \in r(a)$.Then $a^{2} r=a$. Thus $a=0$, that is $Y(R)=0$.

Proposition 2.10 :

Let R be m-regular ring, then $J(R)$ is nilideal.

Proof:

Let $0 \neq a \in J(R)$, then $a^{m} \in J(R)$. Since R is m-regular, so there exists $c \in R$ such that $a^{m}=a^{m} c a^{m}$.
Hence $\left(1-c a^{m}\right)$ is invertable, so there exists $u \in R$ such that $u\left(1-c a^{m}\right)=1$. It follows that $u\left(a^{m}-a^{m} c a^{m}\right)=a^{m}=0$. Thus a is nilpotent element .Therefore $\mathrm{J}(\mathrm{R})$ is nilideal.

Corollary 2.11:

Let R be a reduced m-regular ring. Then $J(R)=(0)$.

Proof :

If $J(R) \neq(0)$, then there exists $a \in J(R)$ with $b \in R$ such that $a^{m}=a^{m} b a^{m}$, then $a^{m}-a^{m} b a^{m}=0$.
Hence $a^{m}\left(1-b a^{m}\right)=0$. Since $a \in J(R)$, that is $a^{m} \in J(R)$ and $b a^{m} \in J(R)$, therefore $1-b a^{m}$ is invertable.
Then there exists an invertable $u \in R$ such that $\left(1-b a^{m}\right) u=1$, implies that $\left(a^{m}-a^{m} b a^{m}\right) u=a^{m}$. Thus $a^{m}=0$. Since R is reduced. Therefore $a=0$.

Preposition 2.12:

Let R be semi-prime m-regular ring. Then the Center of R is right and left mregular ring.

Proof:

Let $0 \neq a \in \operatorname{Cent}(R)$, the Center of R, and let $a^{2}=0$, then $a^{2} R=0$, which gives $a R a=0$. Since R is semi-prime, then $\mathrm{a}=0[6 \mathrm{p} .9 .2 .7]$. Therefore $\operatorname{Cent}(R)$ is reduced.
Now, let $c \in \operatorname{Cent}(R)$, then there exists $b \in R$ and a fixed positive integer $m \neq 1$ such that $c^{m}=c^{m} b c^{m}$ (R is m-regular).If we set $d=c^{2 m} b^{3} \in \operatorname{Cent}(R)$. Now,

$$
\begin{aligned}
c^{m+1} d=c^{m+1} & c^{2 m} b^{3} \\
& =c c^{m} c^{m} c^{m} b b b=c c^{m} b c^{m} b c^{m} b \\
& =c c^{m} b c^{m} b \\
& =c^{m+1} b
\end{aligned}
$$

Since R is m-regular , then every element is left and right m-regular, hence

$$
\begin{aligned}
& c^{m+1} b=c^{m} \\
& \left(c^{m}-c^{m+1} d\right)^{2}
\end{aligned}=\left(c^{m}-c^{m+1} d\right)\left(c^{m}-c^{m+1} d\right) .\left(c^{2 m}-c^{2 m+1} d-c^{m+1} d c^{m}+\left(c^{m+1} d\right)\left(c^{m+1} d\right)\right)
$$

Since $\operatorname{Cent}(R)$ is reduced. Thus $c^{m}-c^{m+1} d=0$
Then $c^{m}=c^{m+1} d$ and $c^{m}=d c^{m+1}$
Therefore $\operatorname{Cent}(R)$ is right and left m-regular ring

Proposition 2.13:

Let I be any right ideal of a duo ring R. Then an element a of I is m-regular if and only if it is m -regular element in the ring R .

Proof:

Let a be m-regular element in I, and let b be any element of the ideal (a) generated by a in R. Then we have $b=n a+u a+a v+\sum u_{i} a v_{i}$, where n is a positive integer and u and v are elements of R. Since a is m-regular element then there exists an element $x \in I$ such that $a^{m}=a^{m} x a^{m}, m \neq 1$ is a fixed positive integer. Consequently

$$
\begin{aligned}
b^{m} & =\left[n a+u a+a v+\sum u_{i} a v_{i}\right]^{m} \\
= & {\left[(n a+u a)+\left(a v+\sum u_{i} a v_{i}\right)\right]^{m} } \\
= & (n a+u a)^{m}+(n a+u a)^{m-1}\left(a v+\sum u_{i} a v_{i}\right)+(n a+u a)^{m-2} \frac{\left(a v+\sum u_{i} a v_{i}\right)^{2}}{2!}+ \\
& \quad \cdots+\left(a v+\sum u_{i} a v_{i}\right)^{m}
\end{aligned}
$$

Hence we have $b \in(a)^{\prime}$, where $(a)^{\prime}$ denotes an ideal generated by a in I. Therefore b is m -regular and the element a is m - regular element in R . The converse part is clear.

Proposition 2.14:

A ring R is m-regular ring if and only if $r\left(a^{m}\right)$ is direct summand with every principal left ideal for a fixed integer $m \neq 1$.

Proof:
Suppose that $r\left(a^{m}\right) \oplus R a^{m}=R$, for every a in R and a fixed positive integer $m \neq 1$. In particular $x+b a^{m}=1$, then $a^{m} x+a^{m} b a^{m}=a^{m}$. S0 $a^{m}=a^{m} b a^{m}$. Therefore R is m-regular.
Conversely: Assume that R is m-regular ,then for each a in $\mathrm{R} a^{m}=a^{m} b a^{m}$ for some b in R, then $a^{m}\left(1-b a^{m}\right)=0$. So $\left(1-b a^{m}\right) \in r\left(a^{m}\right)$. Now, since $1=b a^{m}+\left(1-b a^{m}\right)$ then $R=R a^{m}+r\left(a^{m}\right)$. Now to prove $R a^{m} \cap r\left(a^{m}\right)=0$. Let $x \in R a^{m} \cap r\left(a^{m}\right)$, then $x \in R a^{m}$ and $a^{m} x=0$ and so $x=b a^{m}$ for some b in R then $a^{m} b a^{m}=0$. So $a^{m}=0$. Therefore $\mathrm{x}=0$.

3- The Relation between m-Regular Ring and Other Rings

In this section we give the relation between m-regular rings and regular rings, reduced rings, local rings, π-regular rings and uniform rings.

Proposition 3.1 :

Every reduced regular ring is left and right m-regular ring.

Proof :

Let R be a regular ring, and let $a \in R$, then there exists an element $b \in R$ such that $a=a b a$,then $a-a b a=0$. It follows that $a(1-b a)=0$, that is $(1-b a) \in r(a)=l(a) \subset l\left(a^{m}\right)$. Hence $(1-b a) a^{m}=0$. So $a^{m}=b a^{m+1}$, that is R is left mregular ring. Now, $(1-a b) a=0$, implies that $(1-a b) \in l(a)=r(a) \subset r\left(a^{m}\right)$. Thus $a^{m}(1-a b)=0$. So $a^{m}=a^{m+1} b$. Therefore R is right m-regular ring.

Corollary 3.2 :

Let R be a ring whose maximal right ideals are right m-regular. Then R is right and left m-regular, if $r\left(a^{m}\right) \subset r(a)$ for all $a \in R$, and a fixed positive integer $m \neq 1$.

Proof:

Let $0 \neq a \in R$. We claim first $a R+r(a)=R$. If not, there exists a maximal right ideal M containing $a R+r(a)$. Since M is a right m-regular ideal, then there exists $b \in M$ such that $a^{m}=a^{m+1} b$. It follows that $a^{m}(1-a b)=0$, that is $1-a b \in r\left(a^{m}\right) \subset r(a)$, then $1-a b \in r(a)$, since $a \in M$ then $a b \in M$ and so $1 \in M$, contradiction. Therefore $R=a R+r(a)$. In particular $1=a r+d$ for some $r \in R$ and $d \in r(a)$. Hence $a=a^{2} r+a d$ implies $a=a^{2} r$ and then by Proposition (3.1), R is a right and left m-regular ring.

Proposition 3.3:

Let R be a ring whose maximal right ideals are right m-regular. Then every right R-modules is p-injective if $r\left(a^{m}\right) \subset r(a)$, for all $a \in R$.

Proof:

By a similar method of proof used in Corollary (3.2), we have $a=a^{2} r$ for some r in R , then $a=a r a$. Now, let $f: a R \rightarrow L$ be any right R- homomorphism, and let $f(a r)=y \in L \quad[\mathrm{~L} \quad$ is an $\quad \mathrm{R}$ - module]. Then for any $c \in R$; $f(a c)=f(a r a c)=f(a r) a c=y a c$. This means that every right R -module is p injective.

Lemma 3.4: [9]

If R is a right p-injective, then $J(R)=Y(R)$.

Corollary 3.5:

Let R be m-regular ring. Then $r(a)$ is essential in R for any a in R, if the set of non units elements is an ideal of R , with $r\left(a^{m}\right) \subset r(a)$ for a fixed positive integer $m \neq 1$.

Proof:

Let S be the set of non units element. Then S is contained in unique maximal ideal M by (p .158 in [11]), that is; $\mathrm{J}(\mathrm{R})$ is a unique maximal left ideal of R . Hence $R a \neq R$ and $a \in J(R)$, and $\mathrm{J}(\mathrm{R})$ is m-regular , that is $\mathrm{J}(\mathrm{R})$ is a right m-regular and hence by Proposition(3.3) R is p-injective module, which implies that $\mathrm{J}(\mathrm{R})=\mathrm{Y}(\mathrm{R})$ by Lemma (3.4). So, $a \in Y(R)$, therefore $\mathrm{r}(\mathrm{a})$ is essential.

Recall that, a ring R is said to be uniform if all non zero- ideal of R is essential.
Recall that, a ring R is said to be local [6] if it has a unique maximal ideal.

Proposition 3.6:

Let R be a right m-regular ring, satisfies $r\left(a^{m}\right) \subset r(a)$ for all $a \in R$. Then R is local ring if and only if R is uniform ring.

Proof:

Let R be a right m-regular, if R is local, then for all non- zero element $a \in R$, $a R$ essential. Now, if $a R \neq R$, then there exists a maximal ideal M such that $a R \subset M$ and since R is local ring, then $\mathrm{M}=\mathrm{J}(\mathrm{R})$ that is $a \in J(R)$, then every ideal is right mregular and by Proposition(3.3).That is R is right p -injective and by Lemma (3.4), we have $a \in Y(R)$, that is $\mathrm{r}(\mathrm{a})$ is essential for every $a \in R$ and hence R is uniform ring.
Conversely: Assume that R is uniform, that is $\mathrm{r}(\mathrm{a})$ is essential for every $a \in R$, and hence $a \in Y(R)$. Since R is right m-regular and by Proposition(3.3).That is R is right p-injective and by Lemma (3.4) $Y(R)=J(R)$. Thus $a \in J(R)$. Hence (1-a) is invertible. Therefore R is local ring by [6, Proposition 10.1.3]

Proposition 3.7:

Let R be a reversible ring. Then R is reduced ring if every maximal essential right ideal of R is right m-regular.

Proof :

Let $0 \neq a \in R$ such that $a^{2}=0$. If there exists a maximal right ideal M of R containing $r(a)$, then M must be an essential right ideal. Otherwise $M=r(e)$, $0 \neq e^{2}=e \in R$, since R reversible, then $a \in M=r(e)=l(e)$ hence $e a=0$ and we get $e \in l(a)=r(a) \subseteq M=r(e)$ that is $e^{2}=0$, contradiction. Hence M is essential and so M is right m-regular, then there exists $b \in M$ and an integer $m \neq 1$ such that $a^{m}=a^{m+1} b$.
It follows that $a^{m}(1-a b)=0$, that is $1-a b \in r\left(a^{m}\right)$ since R is reversible. Then $r\left(a^{m}\right)=r(a)$, so $1-a b \in r(a) \subseteq M$, and we get $1 \in M$, contradiction. Therefore R is reduced.

Theorem 3.8:

Let R be local ring. Then R is m-regular if and only if R is π-regular ring with bounded index of nilpotency.

Proof :

Let R be m-regular ring. Then it is obvious that R is π-regular with bounded index of nilpotency.

Now, let $a \in R$, then if $a R \neq R$, then there exists a maximal ideal M such that $a R \subset M$. Since R is local ring, then $M=J(R)$ that is $a \in J(R)$ and by Proposition (2.10), $a \in N(R)$, that is there exists a positive integer n such that $a^{n}=0=a^{n} b a^{n}$. But R has property bounded index of nilpotency. Therefore R is m-regular ring. Now, if $a R=R$ and $R a=R$ (Since R is locally).
Then $a r=1$ and $c a=1$, for some $c, r \in R$
That is $a^{2} r=a$ and $c a^{2}=a$
Hence $a^{m}=a^{m+1} r$ and $a^{m}=c a^{m+1}$, for a fixed positive integer $m \neq 1$. That is R is right and left m-regular . Therefore R is m-regular.

REFERENCES

[1] Birkenmeier, G.F., Kim, J.Y. and park, J.K. (1994), "A Connection Between Weak Regularity And The Simplicity Of Prime Factor Rings", American Math. Sco. 122(1), pp.53-58.
[2] Brown, S.H. (1973), "Rings Over Which Every Simple Modular Is Rationally Complete", canad. J. Math. 25 pp.693-701.
[3] Cohn, P.M. (1999), " Reversible Rings " Bull. London Math. Soc., 31, pp. 641-648.
[4] Fisher, J.W. and R.L. Snider (1974), "On The Von Neumann Regularity Of Rings With Prime Factor Rings" pacific Journal Math. 64, pp,135-144.
[5] Fuchs, L. and Rangaswamy, K.M. (1968), "On Generalized Regular Rings", Math. Zeitschr. 107, pp.71-81.
[6] Michiel Hazewinkel, Nadiya Gubareni and V.V. kirichenko, (2004), "Algebras, Rings And Modules" V. 1 kuluwer Academic publishers.
[7] McCoy, N.H. (1939), "Generalized Regular Rings", Bull. Amer. Math. Soc. Vol. 45, pp 175-178.
[8] Neumann, J.V. (1936), "On Regular Rings" Princeton N. J. Vol. 22, pp 707-713.
[9] Nicholson, W.K. and Yousif, M.F. (1995), "Principally Injective Rings", J. Algebra, 174, pp. 77-93.
[10] Stenstrom, B. (1977), "Ring Of Quotient", Springer-Verlag, Berlin Heidelberg, New York.
[11] Thomas W. Hungerford (2004), "An Introduction To Abstract Algebra", Cleveland state university.
[12] Yue Chi. Ming, R. (1974), "On Von Neumann Regular Rings", proc, Edinburgh Math. Soc. 19, pp. 89-91.

