
2012IssueMansour Journal / No.17/ Special-ALخاص/ 17/عدد/مجلة المنصور 

|11th Scientific Conference 19-20 Nov.2011 103

Estimation of the Frequency Postulate for
non-Linear Sequences Generated from

Complement Product and Shrinking Generators
Asst. Lecturer Zainab Sadiq

Dept. of Mathematics
College of Science

Al-Mustansiriya University

Abstract
The Randomness is one of the basic criterions to measure stream cipher

Efficiency. The stream cipher generator depends basically on Linear
FeedBack Shift Register which is considered as one of the basic units of
Stream Cipher Systems. In this paper, the frequency postulate of
Randomness criteria is calculated theoretically for non-linear stream cipher
systems before it be implemented or constructed (software or hardware),
this procedure save time and costs. Two non-linear stream cipher
generators are chosen to apply the theoretical studies; these key generators
are the Complement Product and Shrinking Generators. The theoretical
proofs of frequency estimation for the two key generators are introduced.
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1. Introduction
Shift register sequences are used in both cryptography and coding

theory. There is a wealth of theory about them; stream ciphers based on
shift registers have been the workhorse of military cryptography since the
beginnings of electronics. A feedback shift register is made up of two parts:
a shift register and a feedback function. The shift register is a sequence of
bits. (The length of a shift register is figured in bits). Each time a bit is
needed, all of the bits in the shift register are shifted 1 bit to the right [1].

In 1967 [2] Golomb deduced three theorems about the maximal sequence
generated from LFSR. One of the three Golomb’s theorems deduced from
the frequency postulate.

In 2009 [3] Al-Shammari, A. G., through his Ph. D. thesis, introduces four
basic criterions which are: Periodicity, Linear Complexity, Randomness and
Correlation Immunity used as basic criterions to measure Key Generator
Efficiency. He can calculated these basic criterions theoretically for any key
generator before it be implemented or constructed (software or hardware).
This work introduces the mathematical proof of the good efficiency of the
linear keygenerator deterministically.

In this paper, some studies are applied on the SCG sequences to
determine the sequence frequency. The Basic efficiency for SCG can be
defined as the ability of SCG and its sequence to withstand the mathematical
analytic which the cryptanalyst applied on them, this ability measured by
some basic criterions, the most important of is the randomness; one of the
randomness postulates is the frequency postulate.

In the next part of this paper, the frequency postulate of randomness
criterion will be discussed and introduce the basic conditions to obtain
efficient SCG especially those related to frequency.  It’s important to
mention that the zero input sequences must be avoided, this done when the
non-all zeros initial values for LFSR’s are chosen.

Let SCG consist of n-LFSR’s have lengths r1,r2,..,rn respectively with
CF=Fn(x1,x2,…,xn), s.t. xi{0,1} 1in, represents the output of LFSRi, let
S={s0,s1,…} be the sequence product from SCG and sj, j=0,1,… represents
elements of S. let Si be the sequence i product from LFSRi with aij elements
1in, j=0,1,…,.
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2. Conditions of the Theoretical Estimation
There are some conditions must be hold to guarantee that the SCG has

good statistical properties. The combined LFSR’s must have maximum
periods and the periods of LFSR’s must be relatively prime with each others.

Definition (1) [3]: Let GCD2=gcd(


1

1i
im ,m2.GCD1)=gcd(m1,m2), for

convenient let GCD1=1 and so on the general form of the recursion
equation will be:

GCDn=gcd(




1n

1i
im ,mn.GCDn-1) …(1)

where n2 s.t mi are positive integers, 1in.

Theorem (1) [3]:
Let miZ+, 1in then:

lcm(m1,m2,…,mn)=
)m(GCD

m

in

n

1i
i

 …(2)

where GCDn(mi) defined in (1).
Let the sequence S has period P(S), the period of LFSRi denotes by

P(Si), P(S) and P(Si) are least possible positive integers, so
P(S)=lcm(P(S1),P(S2),…,P(Sn)) …(3)

P(S)=
))S(P(GCD

)S(P

in

n

1i
i

 …(4)

s.t. GCDn(P(Si))= 







 




 ))S(P(GCD)S(P,)S(Pgcd i1nn

1n

1i
i [3]

If P(Si) are relatively prime with each other this mean GCDn(P(Si))=1 this
implies:

P(S)=


n

1i
i )S(P …(5)

It’s known earlier that P(Si) ≤ 12 ir  , and if the LFSRi has maximum period
then P(Si)= 12 ir  [4].

Theorem (2) [3]
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P(S)=



n

1i

r )12( i if and only if the following conditions are holds:

1. GCDn(P(Si))=1,.
2. the period of each LFSR has maximum period (P(Si)= 12 ir  ).

3. Randomness
The sequence that is satisfied the three randomness properties called

Pseudo Random Sequence (PRS) [2]. The randomness criterion depends on
LFSR’s and CF units, therefore from the important conditions to get PRS is,
the sequence must be maximal and CF must be balance [4].
To guarantee the SCG to produces PRS, the sequence must pass

randomness tests with complete period, these tests applied into two ways, on:
[1]

1. Global sequence for complete period and that is the right way (but it’s hard to
applied for high periods).

2. Local sequence for many times for various lengths less than the origin
length.

In this part, the 1st way will be applied theoretically for any period.

If GCDn(P(Si))=1 then,

P(S)= nrr1nrrrr
r

)1()22()1(22()1(2 n1n21n1

n

1i
i




    …(6)

Let t
mR denotes the combination to sum m of numbers ri from n of the

numbers ri, Rm denotes the set of all possibilities of t
mR s.t.




















m

1j
i

n21
t
m

j
r

r,...,r,r
R 0mn, 1in, t{1,2,…,Cm

n}

define R0={R0
1}, R0

1=0.

For instance let m=1 then n
n
11

1
1

C
1

2
1

1
11 rR,...,rR},R,...,R,R{R

n
1 

If m=n then Rn={Rn
1}, Rn

1=


n

1i
ir

So equation (6) can be written in compact formula:
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kn2)1()S(P …(7)

4. Frequency Postulate
Golomb mentioned that in general , if the sequences S is periodic sequence

of period n then in the cycle Sn of S, the number of 1s differs  from the number
of 0s by at most 1. This is which be called frequency postulate.

1st Golomb’s theorem says that if LFSR with length r has maximal sequence
then Nr(0)=2r-1-1 and Nr(1)=2r-1, where Nr(a) denotes the number of bit “a” in the
maximal sequence [2] s.t.:

P(r)=2r-1=(2r-1-1)+2r-1=


1

0a
r )a(N

Let NS(a) be the frequency of bit “a” in S which generates from SCG then:

P(S)= )1(N)1(N)1(N)0(N)0(N)0(N)a(N
n1n1n1 rrrrrr

1

0a
S  



…(8)

From this equation the act of CF will starts to distribute the ratio of “0” and
“1” in S. If the terms of equation (8) rearranged s.t. 0=F(ai1,ai2,..,ain), 1im0 for
the 1st m0 terms, and 1=F(ai1,ai2,..,ain), 1im1 for 2nd m1 terms 2n=m0+m1 then,

NS(a)=
 

a

j

m

1i

n

1j
ijr )a(N …(9)

subject to a=F(ai1,ai2,..,ain) s.t. 1ima , a=0,1.

Where ma denotes the number of states which are subject to the above
condition [3].

In the next sections we will introduce new theorems, as Golomb do on LFSR,
to show the frequency distribution for two famous SCG, these SCG are:
complement Product and Shrinking SCG's.

5. Complement Product Generator (n-CPSCG)
The Product generator is defined by n-maximum-length LFSRs whose

lengths r1, r2,…, rn, where nZ+ are pair wise relatively prime, with AND
combining function [5]:

Fn(x1,x2,..,xn) = x1x2…xn =


n

1i
ix … (10)



2012Zainab Sadiqزینب صادق جعف. م.م

108 |11th Scientific Conference 19-20 Nov.2011

In this paper the complement product generator will be discussed. The
generator takes the complement of the output of every LFSR. So, equation
(10) can be written as follows:

Fn(x1,x2,..,xn) =



n

1i
i )1x( … (11)

This generator considered weak, despite of his good linear complexity,
because of his weak randomness (see Figure 1).

For n=3 the truth table of this generator will be shown in table (1).
table (1)The truth table of Complement Product CSG.

x1 x2 x3 x11 x21 x31 Fn

0 0 0 1 1 1 1
0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 1 0 0 0
1 0 0 0 1 1 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 0

The linear complexity (LC) of this generator is LC(SP) = 



n

1i
i )1r(

Where SP is the sequence generate from n-CPSCG.
Assuming the degrees of the all combined primitive feedback

polynomials are relatively primes.

Outpu
t

LFSR1

LFSR2

LFSRn

Figure 1 Complement Product CSG.
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The correlation probability CP(Si) of the sequences Si generated from of
output of LFSRi which is combined in the n-CPSCG. It can be calculated by
the following Lemma (1).
Lemma (1): for all inputs of the product function consists of n-LFSR’s, the
CP=0.5+1/2n.
Proof:

Since the complement of the product function gives output zero’s every
where accept for the state when all inputs are zeros’s the corresponding
output is one, then for all zero’s and all one’s inputs are identical to the
corresponding output of the product function, then the CP1 is:

CP1(S) = 2/2n …(a)
Where n is the number of combined LFSR’s.
Half of the rest inputs is 2n-2 are zero’s, so they are identical to the
corresponding output of the product function, then the CP2 is:

CP2 = n

1n

n

n

2
12

2
2
22







…(b)

The final CP is the sum of the CP’s in equations (a) and (b), then

CP = nn

1n

n

1n

n 2
15.0

2
12

2
12

2
2










…(12)

Table (2) shows some values of correlation probability for n=2...8
depending on equation (11).

Table (2) some values of CP for n=2...8 using on equation (12).

n 2 3 4 5 6 7 8

C
P

0.
75

0.6
25

0.56
25

0.531
25

0.515
625

0.5078
125

0.507421
875

In the next theorem the frequency of “1” (NS(1)) in the generated
sequence from n-CPSCG can be calculated.

Theorem (3): Let NS(a) be the number of a-bit in the sequence S generated from
n-CPSCG, a{0,1}, then:

NS(1)= n1r1r1n)1n(rr)1n(rrr
nr

)1()22()1()22(2 n1n21n21

n

1i
i







   …(13)

Proof:

Recall equations (8) and (9).
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P(S)= )1(N)1(N).1(N...)0(N)0(N).0(N
n21n21 rrrrrr  

NS(1)=


n

1i
r )0(N
i

= )0(N)0(N).0(N
n21 rrr  = )12()12()12( 1r1r1r n21   

NS(1)= n1r1r1n)1n(rr)1n(rrr
nr

)1()22()1()22(2 n1n21n21

n

1i
i







  

From the result of the above theorem:

NS(0)=P(S)- n1r1r1n)1n(rr)1n(rrr
nr

)1()22()1()22(2 n1n21n21

n

1i
i







   …(14)

NS(0)=


 


n

1i
i nr

n 2)12( )22()1()22()12( 1r1r1n)1n(rr)1n(rrr1n n1n21n21     

Lemma (2): In the n-CPSCG, nS
r 2

1))S(P)1(N(Lim
i




,1in.

Proof:














 n

1i

r

n

1i

1r

S

)12(

)12(

)S(P
)1(N

i

i

As ri, then 12 ir   ir2 and 12 1ri   1ri2  (ignore 1), then:

 n
r

nr

S

2
1

2

2
)S(P
)1(N

n

1i
i

n

1i
i













Example (1):

Table (3) shows the proportion of NS(1) to P(S) for various n-cPSCG.
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output
bi

bi

ai

ai=0

ai=1
Clock

LFSR1

LFSR2

discard bi

Table (3) the proportion of NS(1) to P(S) for various n-cPSCG.

n ri NS(1) P(S) Proportion
Expected Observed

2
2,3
2,5
5,7

7,11

3
15

945
64449

21
93

3937
259969

0.25
0.143
0.161
0.240
0.248

3
2,3,5
3,4,5
4,5,7

4,5,11

45
315
6615

107415

651
3255

59055
951855

0.125
0.070
0.097
0.112
0.113

Mm 2,3,5,7
3,4,5,7

2835
19845

82766
413385 0.0625 0.034

0.048

6. Shrinking CSG (2-SHCSG)
The shrinking generator [6] uses a different form of clock control than

the previous generators. It’s a relatively new keystream generator, having
been proposed in 1993. Nevertheless, due to its simplicity and provable
properties, it is a promising candidate for high-speed encryption
applications. In the shrinking generator, a control LFSR1 is used to select a
portion of the output sequence of a second LFSR2. The keystream produced
is, therefore, a shrunken version (also known as an irregularly decimated
subsequence) of the output sequence of LFSR2 depicted in Figure (2).

Shrinking Generator Algorithm is as follows:
A control LFSR1 is used to control the output of a second LFSR2.
The following steps are repeated until a keystream of desired length is

produced.

Figure (2) Shrinking CSG [6].
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1. Registers LFSR1 and LFSR2 are clocked.
2. If the output of LFSR1 is 1, the output bit of LFSR2 forms part of the

keystream.
3. If the output of LFSR1 is 0, the output bit of LFSR2 is discarded.

More formally, let the output sequences of LFSR1 and LFSR2 be a0,a1,a2,... and
b0,b1,b2,..., respectively. Then the keystream produced by the shrinking
generator is x0,x1,x2,... , where xj=bij, and, for each j≥0, ij is the position of the jth
1 in the sequence a0,a1,a2,....

This idea is simple, reasonably efficient, and looks secure. If the
feedback polynomials are sparse, the generator is vulnerable, but no other
problems have been found. Even so, it’s new. One implementation problem
is that the output rate is not regular; if LFSR1 has a long string of zeros then
the generator outputs nothing. The authors suggest buffering to solve this
problem [6].Practical implementation of  the shrinking generator is
discussed in [7].

Example (2): (shrinking generator with artificially small parameters) Consider a
shrinking generator with component LFSR1=<3,1+D+D3> and LFSR2
=<5,1+D3+D5>.

Suppose that the initial states of LFSR1 and LFSR2 are [1,0,0] and
[0,0,1,0,1], respectively. The output sequence of LFSR1 is the 7-periodic
sequence with cycle

a7 = 0, 0, 1, 1, 1, 0, 1,

While the output sequence of LFSR2 is the 31-periodic sequence with
cycle

b31 = 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0.

The keystream generated is

SSH = 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0,....

Fact (1): (properties of the shrinking generator) Let LFSR1 and LFSR2 be
maximum-length LFSRs of lengths r1 and r2, respectively, and let SSH be an
output sequence of the shrinking generator formed by LFSR1 and LFSR2, If
gcd(r1,r2)=1, then the period P(SSH):

P(SSH)= 1r1rr1r1r1r1r
rrrr

1212121

2121
2222)12(2)1(N).1(N)0(N).1(N   …(15)

Establishes that the output sequence of a shrinking generator satisfies the
basic requirements of high period, high linear complexity, and good statistical
properties.

In the next theorem the frequency of “1” (NS(1)) in the generated
sequence from 2-SHSCG can be calculated.
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Theorem (4): Let NS(a), a=0,1 be the number of bit (a) in the sequence SSH
generated from 2-SHCSG, then:

NS(0)= 1r2rr 121 22   , and,

NS(1)= 2rr 212 

Proof:

Recall equations (8) and (9), and when n=2 for 2-SHSCG, only )1(N
1r

is active,
then:

NS(0)= 1r2rr1r1r
rr

12121

21
22)12(2)0(N).1(N   …(16)

and,

NS(1)= 2rr1r1r
rr

2121

21
222)1(N).1(N   …(17)

Example (3):

Table (4) shows the values of NS(0) and NS(1) for different ri of 2-SHSCG.

Table (4) the values of NS(0) and NS(1) for different ri of 2-SHSCG.

Ex.
ri P(Si) NS(a)

P(SSH)
r1 r2 P(S1) P(S2) NS(0) NS(1)

1 2 3 3 7 2*3=6 2*4=8 14
2 3 4 7 15 4*7=28 4*8=32 60
3 3 5 7 31 4*15=60 4*16=64 124
4 4 5 15 31 8*15=120 8*16=128 248
5 3 7 7 127 4*63=252 4*64=256 508
6 5 7 31 127 16*63=1008 16*64=1024 2032

Lemma (3): In the 2-SHSCG, NS(a)/P(S)=0.5, a=0,1, when ri be as large as
possible,1i2.

Proof:

12
12

)12(2
)12(2

22
22

)S(P
)0(N

2

2

21

21

121

121

r

1r

r1r

1r1r

1r1rr

1r2rr
S























As r2 be as large as possible, then 12 2r   2r2 (ignore 1), then:
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 5.0
2
1

2
2

)S(P
)0(N

2

2

r

1r
S 



12
2

)12(2
)2(2

22
2

)S(P
)1(N

2

2

21

21

121

21

r

1r

r1r

1r1r

1r1rr

2rr
S




















As r2 be as large as possible, then 12 2r   2r2 (ignore 1), then:

 5.0
2
1

2
2

)S(P
)1(N

2

2

r

1r
S 



…(18)

Example (4):

Table (5) shows the proportion of NS(0) and NS(1) to P(S) for various 2-SHSCG.

Table (5) the proportion of NS(0) and NS(1) to P(S) for various 2-SHCSG.

Ex.
ri NS(a)

P(S)
Proportion of NS(a)

r1 r2 NS(0) NS(1) Expected
Observed

NS(0) NS(1)
1 2 3 6 8 14

0.5

0.428 0.572
2 3 4 28 32 60 0.467 0.533
3 3 5 60 64 124 0.484 0.516
4 4 5 120 128 248 0.484 0.516
5 3 7 252 256 508 0.496 0.504
6 5 7 1008 1024 2032 0.496 0.504

7. Applying of Chi-Square Tests on Study Cases
In this part we will apply chi-square test on the results gotten from

calculations of frequency postulate on two study cases.
Let K be the number of categories in the sequence S, ci be the category i,

N(ci) be the observed frequency of the category ci, pi the probability of
occurs of the category ci, then the expected frequency Ei of the category ci is
Ei=P(S)pi, the T (chi-square value) can be calculated as follows [8]:

T=


K

1i i

2
ii

E
)E)c(N( …(19)

Assuming that T distributed according to chi-square distribution by =K-1
freedom degree by  as significance level (as usual =0.05%), which it has T0
as a pass mark. If TT0 then the hypothesis accepted and the sequence pass
the test, else we reject the hypothesis and the sequence fails to pass the test,
this mean that T not distributed according to chi-square distribution.
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Let N(ca)=Ns(a), for a=0,1.

To apply Hypothesis test:

H0:  Ns(0)  Ns(1), while,

H1: there are a big difference between Ns(0) and Ns(1).

Then we apply the hypothesis test for the difference between two
frequencies using chi-square distribution:

T=
)S(P

))1(N)0(N( 2
SS 

 2(1), s.t. =1.

Example (5):

In order to test our results we have to suggest an example suitable to our
two studied cases. Let r1=9 and r2=11. In Frequency test = 1, with =0.05%,
then T0=3.84 (see chi-square table).

1. 2-CPSCG: P(SP)= 1046017. From equation (13) we get NS(1)= 260865, and
NS(0)=P(S)NS(1)=785152,

T=
1046017

)260865785152( 2 = 262784.313 >> T0=3.84, then S generated from 2-

CPCSG fail to pass the test and we refuse the hypothesis H0 and accept H1,
this means there is a big difference between NS(0) and NS(1).

2. 2-SHSCG: P(SSH)=524032 from equation (17), we get NS(1)=262144, and
NS(0)=P(S)NS(1)=261888,

T=
524032

)262144261888( 2 = 0.1251 < T0=3.84, then S generated from 2-SHCSG

passes the test and we accept the hypothesis H0 and refuse H1, this means
there is no big difference between NS(0) and NS(1).
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7. Conclusions
1. In this work we prove deterministically that the complement Product

generator fail in frequency randomness test, while we prove
deterministically that the Shrinking generator passes the frequency
randomness test, in another word, it’s have good statistical frequency
properties.

2. These theoretical studies can be applied on other kind of SCG,s to calculate
the frequency of these SCG,s which are use combining functions with some
combinations of variables.

3. As future work we may apply other properties of randomness criterion like,
serial run, poker and autocorrelation on non-linear SCG.

4. The frequency test is not enough to judge on the sequence that has good
randomness tests we still have the run and autocorrelation test.

5. We recommend that not to use the complement Product generator in
cryptography since its fail to pass the frequency test then it may fail to
passes the other randomness tests and not to use shrinking generator in
cryptography since it’s still weak even it passes the randomness tests.
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لفرضیة التردد للمتتابعات غیر الخطیة المولدةالتخمین
والمولد المتقلصالمتمممن المولد الضربي

زینب صادق جعفر. م.م

الجامعة المستنصریة

مستخلصال

من اھم مقاییس الكفاءة الاساسیة لمولدات مفاتیح نظم التشفیر ) Randomness(تعتبر العشوائیة 
Stream Cipher(الانسیابي  Systems .( مولد المفاتیح یعتمد بشكل اساسي على المسجل الزاحف الخطي ذو

. كونھ أحد الوحدات الاساسیة لنظم التشفیر الانسیابي) Linear Feedback Shift Register(التغذیة الخلفیة 
خاصیة التردد، باعتبارھا احد اسس العشوائیة، لمتتابعة مولدة من مولد مفاتیح غیر خطي في ھذا البحث، تم حساب 

تم . ، وھذا الاسلوب سوف یوفر الوقت والجھد والكلفة لمصمم الشفرة)برمجیا او مادیاً(قبل تنفیذ النظام عملیا . نظریاً
Complement(مولد الضربي المتمم اختیار مولدي مفاتیح غیر خطیة لتطبیق الدراسة النظریة للبحث ھما ال

Product ( والمولد المتقلص)Shrinking .( لقد تم حساب فرضیة التردد باثبات نظري لكل من المولدین موضوع
.البحث


