Weighted (k, n)-arcs of Type $(n-4, n)$ in $P G(2,8)$

Fuad. K. Hameed Habeeb M. Abood Zainab A. Abudljebar
Mathematics Department- College of Education for pure Sciences
University of Basrah

Abstract

The main purpose of this paper is to construct a $(k, n ; f)$-arcs of type $(n-4, n)$ in projective plane of order 8 . We proved that there exist $(66,16 ; f)$-arc of type $(12,16)$ when the points of weight 0 form a $(7,3)$-arc of type $(7,0,42,24)$ and $(66,15 ; f)-\operatorname{arc}$ of type $(11,15)$ when the points of weight 0 form $(7,3)-\operatorname{arc}$ of types $(3,12,30,28)$ and $(2,15$, 27, 29).

Key words. Projective Plane, weighted (k, n) -arcs.

Mathematics Subject Classification. 51E2.

1. Introduction

The notion of weighted (k, n)-arcs was proposed by Scafati [13] in 1971. In 1977, Barlotti [2] suggested the study of sets with weighted points. He presented the definition of $\left(k, n ;\left\{\omega_{i}\right\}\right)$-sets of kind s in $P G(r, q)$, for which two-dimensional yields the definition of ($k, n ;\left\{\omega_{i}\right\}$) -arcs. Barnabei [3] in 1979 studied these types of arcs and obtained some particular results about the existence or non-existence of these arcs. She gave some examples of these arcs in $P G(2, q)$ by using a computer programme. D'Agostini [4] in 1979 studied caps with weighted points in $P G(n, q), n \geq 2$. Some relations between parameters of $(k, n ; f)$-cap and its characters were found. She studied a weighted (k, n)-arcs of type $(n-2, n)$ in $P G(2, q)$.Wilson [14] in 1986 proved that there is $(88,14 ; f)-\operatorname{arc}$ of type $(11,14)$ in the Galois plane of order 9 . Also he proved that there is $(10,7 ; f)$-arc of type $(4,7)$ in the $P G(2,3)$. In 1989, Hummed [9] studied the existence and non-existence weighted of (k, n)-arcs in $P G(2,9)$ and he proved that
there exist $(81,12 ; f)$-arc of type $(9,12)$ and $(85,13 ; f)$-arc of type $(10,13)$.

Mahmood [12] in 1990 discussed a $(k, n ; f)$-arcs in $P G(2,5)$. She proved there is $(21,11 ; f)-\operatorname{arc}$ of type $(6,11)$, $(20,10, f)$-arc of type $(5,10)$ and $(15,8, f)$-arc of type (3,8). The extensions work of the weighted arcs in $\operatorname{PG}(2,9)$ was investigated by Abbas [1] in 2011. He proved there exists $(81,12 ; f)-\operatorname{arc}$ of type $(9,12)$ and $(76,11 ; f)$-arc of type $(8,11)$.

2. Preliminaries

Definition 2.1 [11]. Let $G F(p)=Z / p Z, \quad p$ prime and let $f(x)$ be irreducible polynomial of degree h over $\operatorname{GF}(\mathrm{p})$, then
$G F\left(p^{h}\right)=\operatorname{GF}(p)[x] /(f(x))=\left\{a_{0}+a_{1} t+\right.$ $\cdots+a_{\mathrm{h}-1} \mathrm{t}^{\mathrm{h}-1}: a_{\mathrm{i}}$ in $\left.\operatorname{GF}(p), f(t)=0\right\}$

Definition 2.2[11]. A projective plane over $G F(q)$ is 2 -dimentional projective space and denoted by $P G(2, q)$ or π which contains $q^{2}+q+1$ points and $q^{2}+q+1$ lines, every line contains $q+1$ points and through every point there pass $q+1$ lines and satisfy the following axioms:
(i) Any two distinct points determine a unique line ;
(ii) Any two distinct lines intersect in exactly one point ;
(iii) There exist four distinct points such that no three of them are on a line.

Definition 2.3 [11]. A (k, n)-arc \mathcal{H} in a finite projective plane is a set of k points such that no $(n+1)$ of them are collinear. $\mathrm{A}(k, 2)-$ arc denoted by $k-\operatorname{arc}$ which is a set of k points such that no three points are collinear. Let ℓ be any line in $\operatorname{PG}(2, q)$, if ℓ intersect \mathcal{H} in i - points, then ℓ is called i-secant to \mathcal{H}, and let τ_{i}, ρ_{i} and σ_{i} are respectively denoted the total number of i-secant to \mathcal{H}, the number of
i-secant through a point p of \mathcal{H} and the number of i-secant through a point Q in $\pi \backslash \mathcal{H}$.

Lemma 2.4 [11]. For the $(k, n)-\operatorname{arc} \mathcal{H}$, the following equations are hold:
$\sum_{i=0}^{n} \tau_{i=} q^{2}+q+1 ;$
$\sum_{i=1}^{n} i \tau_{i}=k(q+1) ;$
$\sum_{i=2}^{n}(i(i-1) / 2) \tau_{i}=k(k-1) / 2 ;$
$\sum_{i=1}^{n} \rho_{i}=q+1 ;$
$\sum_{i=2}^{n}(i-1) \rho_{i}=k-1$
$\sum_{i=1}^{n} \sigma_{i}=q+1$
$\sum_{i=1}^{n} i \sigma_{i}=k$
$i \tau_{i}=\sum_{p \in \mathcal{H}} \rho_{i}$
$(q+1-i) \tau_{i}=\sum_{Q \in \pi \backslash \mathcal{H}} \sigma_{i}$
Definition 2.5 [4]. Let π be a projective plane of order q and denoted by P and a R are respectively the sets of points and lines of π. Let f be a function from P into the set N of non-negative integers and call the weight of $p \in P$ the value $f(p)$ and the support of f the set of points of the plane have non-zero weight. By using f we can define the function $F: R \rightarrow Z^{+}$such that for any $r \in R, F(r)=$ $\sum_{p \in r} f(P)$. We call $F(r)$ the weight of the line r.

Definition 2.6 [4]. A $(k, n ; f)$-arc of the plane π is a subset K of the points of the plane such that:
(i) K is the support of f;
(ii) $k=|K|$;
(iii) $\quad n=\max \{F(r): r \in R\}$.

Denote $l_{j}=\left|f^{-1}(j)\right|$ to the number of points having weight j for $j=0,1, \ldots, \omega$, where $\omega=\max _{p \in P} f(p), V_{i}^{j}$ to the number of lines of weight i through a point of weight j and $W=\sum_{j=1}^{\omega} J l_{j}=\sum_{p \in P} f(p)$. For a $(k, n ; f)-\operatorname{arc}, t_{i}$ the number of lines having
weight i for $i=0,1, \ldots, n$. We have the following important lemma:

Lemma 2.7 [9].

(i) $\quad \omega \leq n-m$;
(ii) If p is any point of the plane, then
$\sum_{r \in[p]} F(r)=W+q f(p)$, where $[p]$ denote the set of lines through p;
(iii) The weight W of a $(k, n ; f)$-arc satisfies $m(q+1) \leq W \leq(n-\omega) q+n$;
(iv) Let K be a ($k, n ; f$)-arc of type (m, n), $m>0$ and let p be a point having weight s,
then V_{m}^{s} and V_{n}^{s} are determined of p and are given by:

$$
V_{m}^{s}=(q(n-s)-W+n) /(n-m)
$$

and

$$
V_{n}^{s}=(q(s-m)+W-m) /(n-m) ;
$$

(v) $q \equiv 0 \bmod (n-m)$;
(vi) the characters of $(k, n ; f)-\operatorname{arc} K$ of type (m, n) are given by
t_{m}
$=(q+1 / n-m)\left[n\left(q^{2}+q+1 / q+1\right)-W\right]$
and
$t_{n}=$
$(q+1 / n-m)\left[W-m\left(q^{2}+q+1 / q+1\right)\right]$

3. $(k, n ; f)$-arcs of type $(n-4, n)$

For $(k, n ; f)-\operatorname{arc}$ of type $(n-4, n)$, it is necessary that $n \geq 4$. If $n=4$ we have to consider a ($k, 4$)-arc having only 0 -secants and 4 -secants .

Lemma 3.1. The existence of $(k, n ; f)$-arc of type ($n-4, n$) with $n \geq 5$ requires

$$
q \equiv 0(\bmod 4)
$$

Proof. Directly, from Lemma 2.7 case (v).
Lemma 3.2 [5]. The existence of a $(k, n ; f)-\operatorname{arc}$ of type $(n-4, n)$ with $n \geq 5$ requires $l_{i}=0, i \geq 3$.

We used Lemma 2.7 case (iii) to get

$$
(n-4)(q+1) \leq W \leq(n-4)(q+1)+4
$$

Lemma 3.3. For a ($k n ; f$) -arc of type $(n-4, n)$ in $P G(2, q), q=2^{h}, h \geq 1$ with W minimal $(W=(n-4)(q+1))$ we have :

$$
\begin{aligned}
& V_{n-4}^{0}=q+1, \quad V_{n-4}^{1}=\frac{3 q+4}{4} \\
& V_{n-4}^{2}=\frac{q+2}{2}, \quad V_{n}^{0}=0 \\
& V_{n}^{1}=\frac{q}{4}, \quad V_{n}^{2}=\frac{q}{2}
\end{aligned}
$$

Proof. From Lemma 2.7 case (iv), by substituting $m=n-4$ for $\operatorname{Im} f=\{0,1,2\}$.

Corollary 3.4. There is no point of weight 0 on n-secants of the $(k, n ; f)$-arc of type $(n-4, n)$.

For the case $l_{0}>0, l_{1}>0, l_{2}>0, l_{3}=0$, we have the maximum weight of the points of the $(k, n ; f)-\operatorname{arc}$ is $\omega=2$, and we use the minimal case $(W=(n-4)(q+1))$ and Lemma 2.7 to find the following:

$$
t_{n}+t_{n-4}=q^{2}+q+1
$$

By counting the number of $n-$ secants $\left(t_{n}\right)$ and $n-4-$ secants $\left(t_{n-4}\right)$. And counting the total incidence we get

$$
\begin{aligned}
n t_{n}+ & (n-4) t_{n-4}=W(q+1)= \\
& (n-4)(q+1)^{2}
\end{aligned}
$$

Consequently, we get
$t_{n}=\frac{1}{4}(n-4)$
$t_{n-4}=\frac{1}{4}\left(4 q^{2}+8 q-n q+4\right)$
Now, from Corollary 3. 4 there is no points of weight 0 on n-secants. Suppose that on n secants there are β points of weight 1 and δ points of weight 2 . Then counting the points of n-secants lines, it follows that: $\beta+\delta=q+1$

And counting the weights of points on n-secants, we have

$$
\beta+2 \delta=n
$$

Solving these two equations, we obtain
$\beta=2(q+1)-n$

$$
\begin{equation*}
\delta=n-(q+1) \tag{3.4}
\end{equation*}
$$

Counting incidences between the points of weight 2 and $n-$ secants, we get

$$
l_{2} V_{n}^{2}=t_{n} \delta
$$

Making use of the Lemma 3. 3, equation (3.1) and equation (3.4) we obtain
$l_{2}=(n-4)(n-q-1) / 2$
Similarly, counting incidences between the points of weight 1 and n-secants we have

$$
l_{1} V_{n}^{1}=t_{n} \beta
$$

Hence, by using Lemma 2.4, equation (3.2) and equation (3.3) we get

$$
\begin{equation*}
l_{1}=(n-4)(2 q+2-n) \tag{3.6}
\end{equation*}
$$

From equations (3.5) and (3.6), counting the points in the plane
$l_{0}+l_{1}+l_{2}=q^{2}+q+1$
$l_{0}=q^{2}+q+1-(n-4)(2 q+2-n)$
$-\frac{(n-4)(n-q-1)}{2}$
Hence
$2 q^{2}+(14-3 n) q+n^{2}-7 n$
$+14-2 l_{0}=0$
The solution of equation (3.7) exists with respect to q if $(17-3 n)^{2}-8\left(n^{2}-7 n+\right.$ $\left.14-2 l_{0}\right)$ is square, then
$(n-14)^{2}-\left(112-16 l_{0}\right)=$ square
We discuss the $(k, n ; f)$-arc of type $(n-4, n)$ in $P G(2,8)$ where the points of weight 0 is 7 . For the value of $l_{0}=7$, the equation (3.7) becomes

$$
\begin{equation*}
2 q^{2}+(14-3 n) q+n^{2}-7 n=0 \tag{3.9}
\end{equation*}
$$

From the equation (3.8), we get

$$
(n-14)^{2}=\mu^{2}
$$

The solution of the equation (3.9) is either $q=n-7$ or $2 q=n$. In $P G(2,8)$ we have two solutions for n being non-negative integers with $q \equiv 0 \bmod (n-m)$ which are $n=16$ or $n=15$.

4. $(k, 16 ; f)$-arcs of Type $(12,16)$ in

 $P G(2,8)$By Lemma 2.4 cases (i) and (iii) we have:
(i) $0 \leq \omega \leq 4$;
(ii) $108 \leq W \leq 128$.

Lemma 4. 1. For a $(66,16 ; f)$-arc of type $(12,16)$ in $P G(2,8)$ with $W=108$ we have

$$
\begin{aligned}
& V_{16}^{0}=0, \quad V_{16}^{1}=2, \quad V_{16}^{2}=4 V_{12}^{0}=9 \\
& V_{12}^{1}=7, \quad V_{12}^{2}=5
\end{aligned}
$$

Proof. From Lemma 3. 3 directly, we get the requirements by putting $n=16, q=8$.

Corollary 4. 2. There are no points of weight 0 lie on any 16 -secants.

Lemma 4. 3. For the existence of $(66,16 ; f)$-arc of type $(12,16)$ with 7 points of weight zero in $P G(2,8)$ we have :
(i) The number of 16 -secants t_{16} is 24 ;
(ii) The number of 12 -secants t_{12} is 49 ;
(iii) The number of points of weight $2\left(l_{2}\right)$ is 42;
(iv) The number of points of weight $1\left(l_{1}\right)$ is 24.

Proof. From equations (3.1), (3. 2), (3. 5) and (3.6) we obtain (i), (ii), (iii) and (iv) respectively.

Let T_{12} be $12-$ secant of $(66,16 ; f)-\operatorname{arc}$ have on it α points of weight $0, \beta$ points of weight 1 and δ points of weight 2 then

$$
\begin{gathered}
\alpha+\beta+\delta=9 \\
\beta+2 \delta=12
\end{gathered}
$$

So the possibilities of non-negative integers solutions α, β and δ are listed in the table

Type of16- secant	δ	β	α
T_{12}^{3}	6	0	3
T_{12}^{2}	5	2	2
T_{12}^{1}	4	4	1
T_{12}^{0}	3	6	0

Table (4. 1)
Now, let A_{16} be 16 - secant of $(66,16 ; f)-$ arc. Since there are no points 0 f weight 0 on a 16 - secants, then we suppose β points of of weight 1 and δ points of weight 2 , then

$$
\beta+\delta=9, \beta+2 \delta=16
$$

Thus, $\delta=7$ and $\beta=2$. Hence, we proved the following lemma:

Lemma 4. 4. The lines of $P G(2,8)$ are partitioned into five classes with respect to a minimal $(66.16 ; f)$-arc of type $(12,16)$ as follows:
(i) A_{16}^{0} which contains no points of weight 0,2 points of weight 1 and 7 points of weight 2 ; (ii) T_{12}^{3} which contains 3points of weight 0 , no points of weight 1 and 6 points of weight 2 ; (iii) T_{12}^{2} which contains 2 points of weight 0,2 points of weight 1 and 5 points of weight 2 ; (iv) T_{12}^{1} which contains 1 point of weight 0,4 points of weight 1 and 4 points of weight 2 ; (v) T_{12}^{0} which contains no points of weight 0,6 points of weight 1 and 3 points of weight 2.

Corollary 4.5. There is no point of weight 1 on the 3 -secant of (7.3) -arc formed by the points of weight 0 .

From the equations (1.1), (1.2) and (1.3), the following equations are obtained:

$$
\begin{aligned}
& \tau_{0}+\tau_{1}+\tau_{2}+\tau_{3}=73 \\
& \tau_{1}+2 \tau_{2}+3 \tau_{3}=63 \\
& \tau_{2}+3 \tau_{3}=21
\end{aligned}
$$

where τ_{i} is the number of i-secants of $(k, 3)$-arc. The possible solutions of these equations are listed in the following table:

Type of	τ_{3}	τ_{2}	τ_{1}	τ_{0}

\mathcal{R}_{i}				
\mathcal{R}_{7}	7	0	42	24
\mathcal{R}_{5}	5	6	36	26
\mathcal{R}_{4}	4	9	33	27
\mathcal{R}_{3}	3	12	30	28
\mathcal{R}_{2}	2	15	27	29
\mathcal{R}_{1}	1	18	24	30

Table (4.2)
Where \mathcal{R}_{i} represent $(7,3)$-arc having $i 3$ secasnts.

Let \mathcal{H} be a $(7,3)-\operatorname{arc}, K$ be a $(66,16 ; f)$-arc of type $(12,16)$ and $Q \in P G(2,8) \backslash \mathcal{H}$. Suppose that through Q pass S_{1} represent the number of 3 -secants of \mathcal{H} which are 12-secants of K, S_{2} represent the number of 2 -secant of \mathcal{H} which are 12secants of K, S_{3} represent the number of 1 secants of \mathcal{H} which are 12 - secants of K, S_{4} represent the number of 0 -secants of \mathcal{H} which are 12-secants of K and S_{5} represent the number of 0 -secants of \mathcal{H} which are 16 secants of K. By counting the number of the lines which are pass through a point we get

$$
S_{1}+S_{2}+S_{3}+S_{4}+S_{5}=q+1=9
$$

From Lemma 4.4 we get the following equations:

$$
\begin{align*}
& 6 S_{1}+5 S_{2}+4 S_{3}+3 S_{4}+7 S_{5}=l_{2} \tag{4.2}\\
& 2 S_{2}+4 S_{3}+6 S_{4}+2 S_{5}=l_{1} \tag{4.3}\\
& 3 S_{1}+2 S_{2}+S_{3}=l_{0} \tag{4.4}
\end{align*}
$$

Let Q_{2} be a points of weight 2 in $\operatorname{PG}(2,8) \backslash$ \mathcal{R}_{i}. From Lemma 4.1, the number of the lines of weight 16 through any point of weight 2 is 4 so $S_{5}=4$. Thus, the equations (4.1), (4.2), (4. 3) and (4.4) becomes:

$$
\begin{aligned}
& S_{1}+S_{2}+S_{3}+S_{4}=5 \\
& 5 S_{1}+4 S_{2}+3 S_{3}+2 S_{4}=17 \\
& 2 S_{2}+4 S_{3}+6 S_{4}=16 \\
& 3 S_{1}+2 S_{2}+S_{3}=7
\end{aligned}
$$

The solutions of the above system are given in the following table:

Type of points	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
A_{1}	2	0	1	2	4
A_{2}	1	2	0	2	4
A_{3}	1	1	2	1	4
A_{4}	0	3	1	1	4
A_{5}	1	0	4	0	4
A_{6}	0	2	3	0	4

Table (4.3)
Let Q_{1} be a points of weight 1 in $P G(2,8) \backslash$ \mathcal{R}_{i}. From Lemma 4.1, the number of the lines of weight 16 through any point of weight 1 is 2, so $S_{5}=2$ and from Corollary 4.5 we deduce $S_{1}=0$. Put $S_{5}=2$ and $S_{1}=0$, the equations (4.1), (4.2), (4.3) and (4.4) becomes:

$$
\begin{aligned}
& S_{2}+S_{3}+S_{4}=7 \\
& 5 S_{2}+4 S_{3}+3 S_{4}=28 \\
& S_{2}+3 S_{3}+5 S_{4}=21 \\
& 2 S_{2}+S_{3}=7
\end{aligned}
$$

The solutions of the above system are given in the following table:

Type of point	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
B_{1}	0	3	1	3	2
B_{2}	0	2	3	2	2
B_{3}	0	1	5	1	2
B_{4}	0	0	7	0	2

Table (4. 4)
Let P be a points of weight 0 in \mathcal{H}. From Lemma 4.1, The number of the lines of weight 16 through any point of weight 0 is 0 , so $S_{5}=0$. Since the 0 -secant of \mathcal{H} having no points of the $(k, 3)-\operatorname{arc}$, then $S_{4}=0$.
Putting $S_{5}=0$ and $S_{4}=0$, the equations (4. 1), (4. 2), (4.3) and (4.4) becomes:

$$
\begin{aligned}
& S_{1}+S_{2}+S_{3}=9 \\
& 6 S_{1}+5 S_{2}+4 S_{3}=42 \\
& 2 S_{2}+4 S_{3}=24 \\
& 2 S_{1}+S_{2}=6
\end{aligned}
$$

The possible solutions of these equations are listed in the following table :

Type of points	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
C_{1}	0	6	3	0	0
C_{2}	1	4	4	0	0
C_{3}	2	2	5	0	0
C_{4}	3	0	6	0	0
Table (4.5)					

From [15], there are six projectively distinct $(7,3)$ - arc in $P G(2,8)$ which are listed in the following table:

$\mathcal{R}_{i}(7,3)-\operatorname{arc}$									τ_{2}	${ }_{1}$		τ_{0}
\mathcal{R}	P_{1}	P_{2}	P_{3}	P_{5}	${ }_{53} P_{3}$	P_{38}	P_{7}	7	0	42		2
\mathcal{R}_{5}	P_{1}	P_{2}	P_{3}	P_{5}	${ }_{53} P_{3}$	P_{2}	P_{73}	5	6	36		26
\mathcal{R}_{4}	P_{1}	P_{2}	P_{3}	P_{5}	${ }_{53} P_{3}$	P_{2}	P_{7}	4	9	33		27
\mathcal{R}_{3}	P_{1}	P_{2}	P_{3}		${ }_{53} P_{3}$	P_{24}	P_{73}	3	12	30		
\mathcal{R}	P_{1}	P_{2}	P_{3}	P_{1}	${ }_{13} P_{3}$	P_{2}	P_{7}	2	15	27		29
\mathcal{R}_{1}	P_{1}	P_{2}	P_{3}	P_{5}	${ }_{53} P_{13}$	P_{4}	P_{11}	1	18	24		

Let \mathcal{R}_{7} be a $(7,3)$-arc of type $(7,0,42,24)$ represent a points of weight zero.

$$
\mathcal{R}_{7}=\left\{P_{1}, P_{2}, P_{3}, P_{53}, P_{37}, P_{38}, P_{73}\right\}
$$

Lemma 4.6: The points of weight zero of $(66,16 ; f)-\operatorname{arc} K$ are the points of type C_{4} with respect to \mathcal{R}_{7}.

Proof. Since the number of 2 -secants of \mathcal{R}_{7} is 0 and 2 -secants of \mathcal{R}_{7} are 12 -secants of K which is nominating S_{2}, so S_{2} is 0 . Therefore, the points of weight 0 are only points of type C_{4} [Table (4.5)].

Lemma 4.7. The points of weight 2 of $(66,16 ; f)-$ arc K of type $(12,16)$ are points of type A_{5} when the points of weight zero formed \mathcal{R}_{7}.

Proof. From the Table (4. 2), the number of 2 -secants of \mathcal{R}_{7} is 0 and every 2 -secants of \mathcal{R}_{7} are 12 -secants of K. So $S_{2}=0$. Since the number of 0 -secants of \mathcal{R}_{7} from Table (4. 2)
is 24 and from Lemma (4.3) the number of 16 -secants is 24 and every lines of weight 16 of K is 0 -secants of \mathcal{R}_{7}. Hence there is no line of weight 12 of K is 0 -secant of \mathcal{R}_{7}, this implies S_{4} equal zero. From the Table (4. 3), the only type of points in which $S_{2}=S_{4}=0$ is A_{5}.

Lemma 4.8. The points of type B_{4} represent the points of weight 1 of K where the points of weight $0 \mathcal{R}_{7}$.

Proof. From Lemma 4.7 we have $S_{2}=S_{4}=$ 0 , so B_{4} is the only type of points which represents point of weight 1 [Table (4. 4)].

From Lemmas 4. 3, 4. 4 and Table (4. 2) we deduce the following lemmas:

Lemma 4.9. The points of weight two form $(42,7)$-arc of type ($24,7,0,42,0,0,0,0$).

Lemma 4.10. The points of weight one form $(24,4)$-arc of type ($42,0,24,0,7$).

Hence, we deduce the following theorem:
Theorem 4.11. There is $(66,16 ; f)-\operatorname{arc} K$ of type $(12,16)$ in $P G(2,8)$ when the points of weight 0 form $(7,3)-\operatorname{arc} \mathcal{H}$ of type (7, 0 , $42,24)$.

Theorem 4.12. There is no $(66,16 ; f)$-arc of type $(12,16)$ in $P G(2,8)$ when the points of weight zero form $(7,3)$-arc having five, four , three, two and one 3 -secant.

Proof. Suppose the points of weight zero form \mathcal{R}_{5} and \mathcal{R}_{4}. So the number of points of weight 1 equal 32 and 31respectively which contradict Lemma 4.3.
If the points of weight 0 form \mathcal{R}_{3} and \mathcal{R}_{1}, then there exist 12 -secant of K which is 1 -secant of \mathcal{R}_{i} contains 5 points of weight 1 . This contradict Lemma 4.4 .
When the points of weight 0 form \mathcal{R}_{2}, there exist 0 -secant of \mathcal{R}_{2} having 4 points of weight 2 and 3 points of weight 1 . This contradict Lemma 4. 4.
5. $(k, 15 ; f)$-arcs of type $(11,15)$ in $P G(2,8)$

By Lemma 2.7(i) and (iii) we get the following
(i) $0 \leq \omega \leq 4$
(ii) $99 \leq W \leq 119$

Lemma 5. 1. For a $(66,15 ; f)$-arc of type $(11,15)$ in $P G(2,8)$ with $W=99$ we have

$$
\begin{array}{ll}
V_{15}^{0}=0, & V_{15}^{1}=2, \quad V_{15}^{2}=4 V_{11}^{0}=9 \\
V_{11}^{1}=7, & V_{11}^{2}=5
\end{array}
$$

Proof: Put $n=15$ and $q=8$ in Lemma (3. 3), we obtain solutions of V_{11}^{s} and V_{15}^{s} for $s=\{0,1,2\}$.

Corollary 5. 2. There are no points of weight zero lie on any 15 -secants of a $(66,15 ; f)-$ arc.

Now, we classify the lines of the plane with respect to the $(66.15 ; f)$-arc of type $(11,15)$. Let U_{11} be 11 -secant having on it ε points of weight $0, \mu$ points of weight 1 and γ points of weight 2 , then $\varepsilon+\mu+\gamma=9$

And counting the weights of the points on U_{11}, it follows that $\mu+2 \gamma=11$

Let U_{15} be 15 -secant having on it μ points of weight 2 and γ points of weight 2 , then

$$
\begin{gathered}
\mu+\gamma=9 \\
\mu+2 \gamma=15
\end{gathered}
$$

We summaries the solutions of these equations in the following table :

Type of the lines	Point of weight 0	Point of weight 1	Point of weight 2
U_{11}^{3}	3	1	5
U_{11}^{2}	2	3	4
U_{11}^{1}	1	5	3
U_{11}^{0}	0	7	2
U_{15}	0	3	6

Table(5.1)

By substituting $q=8$ and $n=15$ in equations (3.1), (3.2), (3.5) and (3.6) we get
$t_{15}=22, \quad t_{11}=51, \quad l_{2}=33$ and $l_{1}=33$.
Lemma 5. 3. The points of weight zero form $(7,3)-\operatorname{arc}$ of type $\left(\tau_{3}, \tau_{2}, \tau_{1}, \tau_{0}\right)$.

Remark 5.4. Let $P \in \mathcal{H}$ and suppose that through there pass $\ell_{3} 3$-secants , $\ell_{2} 2$ secants, $\ell_{1} 1$-secants, then by using equations (2.4) and (2.5), the following obtained:

$$
\begin{gathered}
\ell_{3}+\ell_{2}+\ell_{1}=9 \\
\ell_{2}+2 \ell_{3}=6
\end{gathered}
$$

The possible solutions of these equations are listed in the following table:

Type of the point	ℓ_{3}	ℓ_{2}	ℓ_{1}
Type 1	3	0	6
Type 2	2	2	5
Type 3	1	4	4
Type 4	0	6	3
Table (5.2)			

Suppose there are A points of type $1, B$ points of type $2, C$ points of type 3 and D points of type 4 , then by using equation (2 . 8), the following equations are obtained

$$
\begin{align*}
& A+B+C+D=k=7 \tag{5.1}\\
& 3 A+2 B+C=3 \tau_{3} \tag{5.2}\\
& 2 B+4 C+6 D=2 \tau_{2} \tag{5.3}\\
& 6 A+5 B+4 C+3 D=\tau_{1} \tag{5.4}
\end{align*}
$$

Let $Q \notin \mathcal{H}$, and suppose that through Q there pass $\ell_{3} 3$-secants, $\ell_{2} 2$-secants, $\ell_{1} 1$ secants and $\ell_{0} 0$-secants. Then , by the equations (2.6) and (2.7), it follows that:

$$
\begin{aligned}
& \ell_{3}+\ell_{2}+\ell_{1}+\ell_{0}=9 \\
& \ell_{1}+2 \ell_{2}+3 \ell_{3}=7
\end{aligned}
$$

From above equations we have eight nonnegative integral solutions as follows:

Type of the point	ℓ_{3}	ℓ_{2}	ℓ_{1}	ℓ_{0}
E_{1}	2	0	1	6
E_{2}	1	2	0	6
E_{3}	1	1	2	5
E_{4}	1	0	4	4
E_{5}	0	3	1	5
E_{6}	0	2	3	4
E_{7}	0	1	5	3
E_{8}	0	0	7	2

Table (5.3)
Lemma 5.5. The points of weight 2 of the $(66, i 6 ; f)-\operatorname{arc} K$ are points of type $E_{i}, i=1, \ldots, 6$ with respect to the $(7,3)$-arc \mathcal{H}.

Proof. By Lemma 5.1, through a point of weight 2 there pass four 15 -secants of K which represent 0 -secants of \mathcal{H} and five 11secants of K which are i-secants of $\mathcal{H}, i=$ $0,1,2,3$. Hence the number of 0 -secants which pass through a point of weight 0 must be at least 4 . Then, the type of points of K, which not satisfied the condition above are the points of type E_{7}, E_{8} [Table (5.3)].

Remark 5.6. Suppose that φ_{i} be the number of the points of type $E_{i}, i=1, \ldots, 8$ which represent the points of the plane of order 8 excluding the points of \mathcal{H}, then we obtained the following:

$$
\sum_{i=1}^{8} \varphi_{i}=73-7=66
$$

Making use of equation (2.9), we obtain

$$
\begin{align*}
& 2 \varphi_{1}+\varphi_{2}+\varphi_{3}+\varphi_{4}=6 \tau_{3} \tag{5.5}\\
& 2 \varphi_{2}+\varphi_{3}+3 \varphi_{5}+2 \varphi_{6}+\varphi_{7}=7 \tau_{2} \tag{5.6}\\
& \varphi_{1}+2 \varphi_{3}+4 \varphi_{4}+\varphi_{5}+3 \varphi_{6}+5 \varphi_{7}+7 \varphi_{8}= \\
& =8 \tag{5.7}\\
& 6 \varphi_{1}+6 \varphi_{2}+5 \varphi_{3}+4 \varphi_{4}+5 \varphi_{5}+4 \varphi_{6}+ \\
& 3 \varphi_{7}+2 \varphi_{8}=9 \tau_{0} \tag{5.8}
\end{align*}
$$

From [8], there are six projectively distinct $(7,3)$-arcs in $P G(2,8)$ which are listed in the following table:

\mathcal{M}_{i}	Distinct (7,								τ_{3}	τ_{2}	τ_{1}
τ_{0}											
	3)-arc										
\mathcal{M}_{7}	P_{1}	P_{2}	P_{3}	P_{53}	P_{37}	P_{38}	P_{73}	7	0	42	24
\mathcal{M}_{5}	P_{1}	P_{2}	P_{3}	P_{53}	P_{37}	P_{5}	P_{28}	5	6	36	26
\mathcal{M}_{4}	P_{1}	P_{2}	P_{3}	P_{53}	P_{37}	P_{5}	P_{6}	4	9	33	27
\mathcal{M}_{3}	P_{1}	P_{2}	P_{3}	P_{53}	P_{37}	P_{5}	P_{17}	3	12	30	28
\mathcal{M}_{2}	P_{1}	P_{2}	P_{3}	P_{53}	P_{10}	P_{4}	P_{11}	2	15	27	29
\mathcal{M}_{1}	P_{1}	P_{2}	P_{3}	P_{53}	P_{13}	P_{4}	P_{11}	1	18	24	30

Table (5. 4)
Where \mathcal{M}_{i} represent $(7,3)$-arc with i 3secants.

Theorem 5.7. There is no $(66,15 ; f)$-arc Kof type $(11,15)$ in $P G(2,8)$ having $\operatorname{Imf}=\{0$, $1,2\}$, where the seven points of weight 0 form (7, 3)-arc having 7, 5, and 43 -secants.

Proof. Suppose the points of weight 0 form \mathcal{M}_{7}, So the number of points of weight 2 equal 35, this contradiction because $l_{2}=33$. And if the seven points of weight 0 form \mathcal{M}_{5} and \mathcal{M}_{4}, then there exist 11 -secant of K which 1 -secant of \mathcal{M}_{i} that contains 6 points of weight1, this lead to contradict the Table (5.1).

From Table (5.4) the points of $(7,3)-\operatorname{arc}$ of type $(3,12,30,28)$ is the set

$$
\mathcal{M}_{3}=\left\{P_{1}, P_{2}, P_{3}, P_{5}, P_{11}, P_{37}, P_{53}\right\}
$$

Let $P \in \mathcal{M}_{3}$, since there are 32 -secants which meet at most in two points of \mathcal{M}_{3}, then $A=0$. By putting $\tau_{3}=3, \tau_{2}=12, \tau_{1}=30$ and $A=0$ in the equations(5.1), (5.2), (5.3) and (5. 4) then we have the only non-negative integer solution is $B=3, C=3$ and $D=1$. Suppose $Q \notin \mathcal{M}_{3}$, the three 3 -secants are meet in a point of \mathcal{M}_{3}, and every two 2secants of \mathcal{M}_{3} are intersects at point $Q \notin$ \mathcal{M}_{3} and not lies on any 3 -secant of \mathcal{M}_{3}. Therefore, $\left|E_{1}\right|=\left|E_{2}\right|=0$.

Putting $\tau_{3}=3, \tau_{2}=12, \tau_{1}=30, \tau_{0}=$ 28 and $\left|E_{1}\right|=\left|E_{2}\right|=0$, the equations (5.
5), (5.6), (5.7) and (5.8) becomes

$$
\begin{aligned}
& \varphi_{3}+\varphi_{4}=18 \\
& 3 \varphi_{5}+2 \varphi_{6}+\varphi_{7}=84 \\
& 2 \varphi_{3}+4 \varphi_{4}+\varphi_{5}+3 \varphi_{6}+5 \varphi_{7}+7 \varphi_{8}=240
\end{aligned}
$$

$5 \varphi_{3}+4 \varphi_{4}+5 \varphi_{5}+4 \varphi_{6}+3 \varphi_{7}+2 \varphi_{8}=$ 252

By classification the points in the plane of order 8 with respect to \mathcal{M}_{3}, we get the only non- negative integer r solution of the above equations which is:
$\varphi_{1}=0, \varphi_{2}=0, \varphi_{3}=12, \varphi_{4}=6, \varphi_{5}=3$, $\varphi_{6}=21, \varphi_{7}=20, \varphi_{8}=4$.

Hence we deduce the following theorem:
Theorem 5.8. There is $(66,15 ; f)-\operatorname{arc} K$ of type $(11,15)$ in $P G(2,8)$ having $\operatorname{Imf}=\{0,1$, 2 \}for which the seven points of weight 0 form \mathcal{M}_{3}.

Now, we discuss the case when points of weight 0 form \mathcal{M}_{2}. From Table (5. 4) the points of \mathcal{M}_{2} of type $(2,15,27,30)$ is the set

$$
\mathcal{M}_{2}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{10}, P_{11}, P_{53}\right\}
$$

Since there are only two 2 -secant which meet in one point of \mathcal{M}_{2}, therefore $A=0$ and there is only one point of type B [Table (5.2)]. This mean $B=1$.

By substituting $\tau_{3}=2, \tau_{2}=15, \tau_{1}=27, A=$ 0 and $B=1$ in the equations (5.1), (5.2), (5.3) and (5.4) we have the only non-negative integral solution is $A=0, B=1, C=4$ and $D=2$.

Suppose $Q \notin \mathcal{M}_{2}$, hence every two 3-secants of \mathcal{M}_{2} are not intersect at a point of $Q \notin$ \mathcal{M}_{2}, therefore, $\varphi_{1}=0$. But every two 2 secants of \mathcal{M}_{2} are intersects at a point $Q \notin \mathcal{M}_{2}$ and not lies on any 3 -secants of \mathcal{M}_{2}. Therefore, $\varphi_{2}=0$.
Substituting $\tau_{3}=2, \tau_{2}=15, \tau_{1}=27, \tau_{0}=$ 29, and $\varphi_{1}=\varphi_{2}=0$, the equations (5.5), (5. 6), (5. 7) and (5. 8) becomes $\varphi_{3}+\varphi_{4}=12$ $\varphi_{3}+3 \varphi_{5}+2 \varphi_{6}+\varphi_{7}=105$ $2 \varphi_{3}+4 \varphi_{4}+\varphi_{5}+3 \varphi_{6}+5 \varphi_{7}+7 \varphi_{8}=216$ $5 \varphi_{3}+4 \varphi_{4}+5 \varphi_{5}+4 \varphi_{6}+3 \varphi_{7}+2 \varphi_{8}=$ 261

By classification the points in the plane of order 8 with respect to \mathcal{M}_{2}, we get: $\varphi_{1}=0$, $\varphi_{2}=0, \varphi_{3}=10, \varphi_{4}=2, \varphi_{5}=7, \varphi_{6}=29$, $\varphi_{7}=16, \varphi_{8}=2$.

Hence we deduce the following theorem:
Theorem 5.9. There is $(66,15 ; f)-\operatorname{arc} K$ of type $(11,15)$ in $P G(2,8)$ having $\operatorname{Imf}=\{0,1,2\}$ for which the seven points of weight 0 form \mathcal{M}_{2}.

References.

[1] M.Y. Abass, "Existence and non-existence of ($k, n ; f$) - arcs of type $(n-3, n)$ and monoidal arcs in $P G(2,9) "$ M. Sc. Thesis, University of Basrah, Iraq (2011).
[2] A. Barlotti, "Recent results in Galois geometries useful in coding theory", Proc. C. N. R. S .Colloquium. E. N. S. E. T. Cachan, (1977).
[3] M. Barnabei, "On arcs with weighted points ", J. Statist. Plann. Inference, 3:279286, (1979).
[4] E. D'Agostini, "Alcune osservazioni sui ($k, n ; f$) -archi di un piano finite", Atti Accad. Sci. Ist. Bologna Rend., 6:211-218, (1979).
[5] E. D'Agostini,"Sulla caratterizzazione delle ($k, n ; f$)-calotte di tipo $(n-2, n){ }^{\prime \prime}$, Atti Sem. Mat. Fis. Univ. Modena, 29:263275,(1980).
[6] E. D'Agostini, "On weighted caps with weighted points in $P G(t, q)$ ", Discrete Math., 34: 103-110, (1981).
[7] E. D'Agostini, "On weighted arcs with three nonzero characters", J. Geom., 50: 5262, (1994).
[8] S. A. Falih, "On complete $(k, 3)$-arc in $P G(2,8)$ ", Journal of Basrah Researches (Sciences) Volume 37. Number 4. C(2011).
[9] F. K. Hameed, "Weighted (k, n) - arcs in the projective plane of order nine ", Ph.D. Thesis, University of London Royal Holloway and Bedford New College, England, (1989).
[10] F. K. Hameed, M. Hussein and Mohammed Y. Abass "On $(k, n ; f)$-arcs of type $(n-5, n)$ in $P G(2,5) "$, Joumal of Basrah Researches (Sciences) Volume 37. Number 4. C (2011)
[11] J. W. P. Hirschfeld, "Projective geometries over finite fields", (seconed edition), Clarendon Press, Oxford, (1998).
[12] R. D. Mahmood, " (k, n; f) -arcs of type $(\mathrm{n}-5, \mathrm{n})$ in $P G(2,5) ", ~ M . ~ S c$. Thesis, University of Mosul, (1990) .
[13] M. Tallini Scafati, " Graphic curves on a Galois plane. In Atti del Convegno di Geometrica Combinatoriae sue Applicazioni", pages 413-419. Universita di Perugia, 1971.
[14] B. J. Wilson," ($k, n ; f$) -arcs and caps in finite projective spaces", In Combinatorics, volume 30 of Ann. Discrete Math. , p. 355-362 North-Holland, Amsterdam, 1986.
[15] A. L. Yasin, "Cubic arcs in the projective plane of order eight", Ph. D. Thesis, University of Sussex; UK, (1986).

