On S*-Convergence Nets And Filters Sabiha I. Mahmood

Al-Mustansiriyah University

College of Science - Department of Mathematics

Abstract: This paper is devoted to introduce and study many topological properties of s*-convergence of nets and s*-convergence of filters by using the concept of s*-open sets, also some properties of s*-cluster points of nets and filters has been studied.

Key words: s*-open, s*-closed, s*-convergent, s*-cluster, s*-limit point and <math>s*-irresolute

1. Introduction

The concept of s*-closed set was first introduced by Al-Meklafi, S. [1], by using the concept of semi-open set. Recall that a subset A of a topological space (X, τ) is called semi-open (briefly s-open) set if there exists an open subset U of X such that $U \subseteq A \subseteq cl(U)$. The complement of a semi-open set is defined to be semi-closed (briefly s-closed) [2]. Also, a subset A of a topological space (X,τ) is called s*-closed if $cl(A) \subseteq U$ whenever $A \subset U$ and U is semi-open in X [1]. The complement of an s*-closed set is defined to be s*-open .The family of all s*-open (resp.s*closed) subsets of (X,τ) is denoted by $S*O(X,\tau)$ (resp. $S*C(X,\tau)$) [1], this family from a topology on X which is finer than $\tau[3]$. The s*-closure of A, denoted by s*-cl(A) is the intersection of all s*-closed sets which contains A [3]. A subset A of a topological space (X,τ) is s*-closed iff $A = s^* - cl(A)$ [3]. Also, a function $f: (X, \tau) \to (Y, \tau^*)$ is called s^* -irresolute if the inverse image of every s*-open subset of Y is an s*-open set in X [4]. Some times s*-closed set is also called \hat{g} -closed set [5,6] (resp. s*gclosed set [3,7]).

Throughout this paper (X,τ) and (Y,τ^*) (or simply X and Y) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned .

2. S*-Convergence Of Nets

2.1.Definition:

A subset A of a topological space X is called an s*-neighborhood of a point x in X if there exists an s*-open set U in X such that $x \in U \subseteq A$. The family of all s*-neighborhoods of a point $x \in X$ is denoted by $N_{s*}(x)$.

2.2.Remark:

Since every open set is an s^* -open , then every neighborhood of x is an s^* -neighborhood of x ,but the converse is not true in general . Consider the following example :-

Example:

Let X any infinite set with indiscrete topology and $x \in X$, then $\{x\}$ is an s^* -neighborhood of x, since $x \in \{x\} \subseteq \{x\}$, where $\{x\}$ is an s^* -open set in X, while $\{x\}$ is not neighborhood of x.

2.3. Theorem:

A function $f: X \to Y$ from a topological space X to a topological space Y is s^* -irresolute iff for each $x \in X$ and each s^* -neighborhood V of f(x) in Y, there is an s^* -neighborhood U of x in X such that $f(U) \subseteq V$.

Proof: \Rightarrow

Let $f: X \to Y$ be an s^* -irresolute function and V be an s^* -neighborhood of f(x) in Y. To prove that , there is an s^* -neighborhood U of x in X such that $f(U) \subseteq V$. Since f is an s^* -irresolute then, $f^{-1}(V)$ is an s^* -neighborhood of x in X.

Let
$$U = f^{-1}(V) \Rightarrow f(U) = f(f^{-1}(V)) \subseteq V \Rightarrow f(U) \subseteq V$$
.

Conversely,

To prove that $f: X \to Y$ is s*-irresolute. Let V be an s*-open set in Y. To prove that $f^{-1}(V)$ is an s*-open in X. Let $x \in f^{-1}(V) \Rightarrow f(x) \in V \Rightarrow V$ is an s*-neighborhood of f(x). By hypothesis there is an s*-neighborhood U_x of x such that $f(U_x) \subseteq V$.

$$\Rightarrow U_x \subseteq f^{-1}(V), \forall x \in f^{-1}(V) \Rightarrow \exists \text{ an s*-open set } W_x \text{ of x such}$$
 that $W_x \subseteq U_x \subseteq f^{-1}(V), \forall x \in f^{-1}(V) \Rightarrow \bigcup_{x \in f^{-1}(V)} W_x \subseteq f^{-1}(V).$ Since $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} \{x\} \subseteq \bigcup_{x \in f^{-1}(V)} W_x \Rightarrow f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} W_x.$

 $\Rightarrow f^{-1}(V)$ is an s*-open in Y , since its a union of s*-open sets . Thus $f:X\to Y$ is an s*-irresolute function .

2.4. Definition:

Let $(x_d)_{d\in D}$ be a net in a topological space X. Then $(x_d)_{d\in D}$ s*-converges to $x\in X($ written $x_d\xrightarrow{s^*}x)$ iff for each s*-neighborhood U of x, there is some $d_0\in D$ such that $d\geq d_0$ implies

 $x_d \in U$. Thus $x_d \xrightarrow{s^*} x$ iff each s*-neighborhood of x contains a tail of $(x_d)_{d \in D}$. This is sometimes said $(x_d)_{d \in D}$ s*-converges to x iff it is eventually in every s*- neighborhood of x. The point x is called an s*-limit point of $(x_d)_{d \in D}$.

2.5. Definition:

Let $(x_d)_{d\in D}$ be a net in a topological space X. Then $(x_d)_{d\in D}$ is said to have $x\in X$ as an s^* -cluster point (written $x_d \propto x$) iff for each s^* -neighborhood U of x and for each $d\in D$, there is some $d_0\geq d$ such that $x_{d_0}\in U$. This is sometimes said $(x_d)_{d\in D}$ has x as an s^* -cluster point iff $(x_d)_{d\in D}$ is frequently in every s^* -neighborhood of x.

2.6.Theorem:

Let A be a subset of a topological space X. Then $x \in s^* - cl(A)$ if and only if for any s*-open set U containing x, $A \cap U \neq \phi$.

Proof: \Rightarrow

Let $x \in s^* - cl(A)$ and suppose that, there is an s^* -open set U in X such that $x \in U$ & $A \cap U = \phi \Rightarrow A \subset U^c$ which is s^* -

closed in $X \Rightarrow s^*-cl(A) \subset U^c$.

 $x \in U \implies x \notin U^c \implies x \notin s^* - cl(A)$, this is a contradiction.

Conversely,

Suppose that, for any s*-open set U containing x, $A \cap U \neq \phi$. To prove that $x \in s^* - cl(A)$, if not $\Rightarrow x \notin s^* - cl(A)$ $\Rightarrow x \in (s^* - cl(A))^c$ which is s*-open in $X \Rightarrow A \cap (s^* - cl(A))^c \neq \phi$

This is a contradiction , since $A \cap (s^* - cl(A))^c = \phi$. Thus $x \in s^* - cl(A)$.

Since every neighborhood is an s*-neighborhood, then we have the following theorem:-

2.7. Theorem:

Let X be a topological space and $(x_d)_{d \in D}$ be a net in X and $x \in X$. Then :-

- i) If $x_d \xrightarrow{s^*} x$, then $x_d \stackrel{s^*}{\propto} x$.
- ii) If $x_d \xrightarrow{s^*} x (x_d \propto x)$, then $x_d \rightarrow x (x_d \propto x)$ respectively.

2.8. Remarks:

1) The converse of (2.7(i)) may not be true in general. To show that we give the following example:-

Example: Let (\mathfrak{R},μ) be the usual topological space where \mathfrak{R} be the set of all real numbers, then the net $(s_n)_{n\in N}=(n+(-1)^n n)_{n\in N}$ in \mathfrak{R} has 0 as an s*-cluster point but not s*-limit point. Since if U is an s*-neighborhood of 0 in \mathfrak{R} , then for each $n\in \mathbb{N}$, either n is odd or even .If n is odd, then $n_0=n\Rightarrow s_{n_0}=0\in U$ and if n is even,

then $n_0 = n+1 \Rightarrow s_{n_0} = 0 \in U$, thus $s_n \stackrel{s^*}{\propto} 0$. But s_n does not s*-converge to 0, since U = (-1,1) is an s*-neighborhood of 0 and $s_n \notin (-1,1), \forall n \in N_e$.

2) The converse of (2.7(ii)) may not be true in general .To show that we give the following example:-

Example: Let (N, I) be the indiscrete topological space where N be the set of all natural numbers and $(s_n)_{n \in N} = (n)_{n \in N}$ be a net in N. Observe that $s_n \to 1$ ($s_n \propto 1$). But s_n does not s*-converge to 1 (does not s*-cluster to 1), since $\{1\}$ is an s*-neighborhood of 1 and $s_n \notin \{1\}, \forall n > 1$.

2.9. Theorem:

Let X be a topological space and $A \subseteq X$. If x is a point of X, then $x \in s^* - cl(A)$ if and only if there exists a net $(x_d)_{d \in D}$ in A such that $x_d \xrightarrow{s^*} x$.

Proof: ⇐

Suppose that \exists a net $(x_d)_{d \in D}$ in A such that $x_d \xrightarrow{s^*} x$. To prove that $x \in s^* - cl(A)$. Let $U \in N_{s^*}(x)$, since $x_d \xrightarrow{s^*} x \Rightarrow \exists \ d_0 \in D$ such that $x_d \in U \ \forall \ d \geq d_0$. But $x_d \in A \ \forall \ d \in D$. $\Rightarrow U \cap A \neq \phi \ \forall \ U \in N_{s^*}(x)$. Hence by (2.6), we get $x \in s^* - cl(A)$.

Conversely,

Suppose that $x \in s^* - cl(A)$. To prove that \exists a net $(x_d)_{d \in D}$ in A such that $x_d \xrightarrow{s^*} x$.

 $\therefore x \in s^* - cl(A)$, then by (2.6), we get $N \cap A \neq \phi \ \forall N \in N_{s^*}(x)$.

 $\therefore D = N_{s^*}(x)$ is a directed set by inclusion.

 $\because N \cap A \neq \phi \ \forall \ N \in N_{s^*}(x) \ \Rightarrow \ \exists \ x_N \in N \cap A \, .$

Define $x: N_{s^*}(x) \to A$ by: $x(N) = x_N \ \forall \ N \in N_{s^*}(x)$.

 $\therefore (x_N)_{N \in N_{s^*}(x)}$ is a net in A . To prove that $x_N \xrightarrow{s^*} x$.

Let $N \in N_{s^*}(x)$ to find $d_0 \in D$ such that $x_d \in N \ \forall \ d \ge d_0$.

Let $d_0 = N \Rightarrow \forall d \ge d_0 \Rightarrow d = M \in N_{s^*}(x)$.

i.e. $M \ge N \Leftrightarrow M \subset N$.

 $\Rightarrow x_d = x(d) = x(M) = x_M \in M \cap A \subseteq M \subseteq N \Rightarrow x_M \in N \, .$

$$\Rightarrow x_d \in N \ \forall \ d \ge d_0$$
. Thus $x_N \xrightarrow{s^*} x$.

2.10.Definition:[4].

A topological space X is called an s^* - T_2 -space if for any two distinct points x and y of X, there are two s^* -open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

2.11.Theorem:

A topological space X is an s^*-T_2 -space iff every s^* -convergent net in X has a unique s^* -limit point .

Proof: \Rightarrow

Let X be an s*-T₂-space and $(x_d)_{d \in D}$ be a net in X such that $x_d \xrightarrow{s^*} x \& x_d \xrightarrow{s^*} y \& x \neq y$. Since X is an s*-T₂-space $\Rightarrow \exists U \in N_{s^*}(x)$ and $V \in N_{s^*}(y)$ such that $U \cap V = \phi$.

$$\therefore x_d \xrightarrow{s^*} x \Rightarrow \exists d_0 \in D \ s.t \ x_d \in U \ \forall d \geq d_0 \ .$$

$$\therefore x_d \xrightarrow{s^*} y \Rightarrow \exists d_1 \in D \text{ s.t. } x_d \in V \ \forall d \geq d_1.$$

Since D is a directed set and $d_0, d_1 \in D$

$$\Rightarrow \exists d_2 \in D \text{ s.t. } d_2 \ge d_0 \& d_2 \ge d_1$$
.

$$\Rightarrow x_d \in U \ \forall d \geq d_2 \text{ and } x_d \in V \ \forall d \geq d_2 \Rightarrow U \cap V \neq \phi.$$

This is a contradiction.

Conversely,

Suppose that every s*-convergent net in X has a unique s*-limit point . To prove that X is an s*- T_2 -space . Suppose not

$$\Rightarrow \exists x, y \in X, x \neq y \text{ s.t}$$

$$\forall U \in N_{s^*}(x)$$
 and

$$\forall V \in N_{s^*}(y), U \cap V \neq \phi.$$

$$(N_{s^*}(x),\subseteq)$$
 and $(N_{s^*}(y),\subseteq)$ are directed sets by inclusion .

Let
$$\rho = N_{s^*}(x) \times N_{s^*}(y)$$
. Define a relation \geq on ρ as follows:

$$\forall (U,V),(W,S) \in \rho$$
, we have $(U,V) \ge (W,S) \Leftrightarrow U \ge W \& V \ge S$.

It is easy to verify that (ρ, \ge) is a directed set .

Let
$$(U,V) \in \rho \implies x \in U, y \in V \& U \cap V \neq \phi$$
.

$$: U \cap V \neq \phi \Rightarrow \exists x_{(U,V)} \in U \cap V.$$

Define $x: \rho \to X$ by $: x(U,V) = x_{(U,V)} \ \forall (U,V) \in \rho$.

 $\Rightarrow (x_{(U,V)})_{(U,V)\in \rho}$ is a net in X . We will show that $(x_{(U,V)})_{(U,V)\in \rho}$ is

s*-convergent to both x and y.

For if $U \in N_{s^*}(x)$ and $V \in N_{s^*}(y)$, then for each $(N,M) \in \rho$ s.t $(N,M) \ge (U,V)$, we have $x(N,M) = x_{(N,M)} \in N \cap M \subseteq U \cap V$

$$\Rightarrow x_{(N,M)} \in U \text{ and } x_{(N,M)} \in V.$$

$$\Rightarrow x_{(U,V)} \xrightarrow{s^*} x \text{ and } x_{(U,V)} \xrightarrow{s^*} y.$$

This is a contradiction. Thus (X, τ) is an s*-T₂-space.

2.12.Definition:

Let X be a topological space and $A \subseteq X$. A point $x \in X$ is said to be s*-limit point of A iff every s*-open set U in X containing x contains a point of A different from x.

2.13.Theorem:

Let X be a topological space and $A \subseteq X$. Then:-

- 1. A point $x \in X$ is an s*-limit point of A iff there is a $net(x_d)_{d \in D}$ in $A \{x\}$ s*-converging to x.
- 2. A set A is s*-closed in X iff no net in A s*-converges to a point in X A.
- 3. A set A is s^* -open in X iff no net in X A s^* -converges to a point in A.

Proof:

Let x be an s*-limit point of A. To prove that \exists a net

 $(x_d)_{d \in D}$ in $A - \{x\}$ such that $x_d \xrightarrow{s^*} x$.

Since x is an s*-limit point of $A \Rightarrow \forall N \in N_{s^*}(x), N \cap A - \{x\} \neq \emptyset$.

 $\therefore (N_{s^*}(x), \subseteq)$ is a directed set by inclusion .

Since
$$N \cap A - \{x\} \neq \emptyset$$
, $\forall N \in N_{s^*}(x) \Rightarrow \exists x_N \in N \cap A - \{x\}$.
Define $x: N_{s^*}(x) \to A - \{x\}$ by: $x(N) = x_N \forall N \in N_{s^*}(x)$.
 $\therefore (x_N)_{N \in N_{s^*}(x)}$ is a net in $A - \{x\}$. To prove that $x_N \xrightarrow{s^*} x$.
Let $N \in N_{s^*}(x)$ to find $d_0 \in D$ such that $x_d \in N \forall d \geq d_0$.
Let $d_0 = N \Rightarrow \forall d \geq d_0 \Rightarrow d = M \in N_{s^*}(x)$.
i.e. $M \geq N \Leftrightarrow M \subseteq N$.
 $\therefore x_d = x(d) = x(M) = x_M \in M \cap A - \{x\} \subseteq M \subseteq N \Rightarrow x_M \in N$.
 $\Rightarrow x_d \in N \ \forall d \geq d_0$. Thus $x_N \xrightarrow{s^*} x$.

Conversely,

Suppose that \exists a net $(x_d)_{d \in D}$ in $A - \{x\}$ such that $x_d \xrightarrow{s^*} x$. To prove that x is an s*-limit point of A. Let $U \in N_{s^*}(x)$, since $x_d \xrightarrow{s^*} x \Rightarrow \exists d_0 \in D$ such that $x_d \in U \ \forall \ d \geq d_0$. But $x_d \in A - \{x\} \ \forall \ d \in D \Rightarrow U \cap A - \{x\} \neq \phi \ \forall \ U \in N_{s^*}(x)$. Thus x is an s*-limit point of A.

Let A be an s*-closed in X. To prove that \exists no net in A s*-converges to a point in X - A.

Suppose not $\Rightarrow \exists$ a net $(x_d)_{d \in D}$ in A s.t $x_d \xrightarrow{s^*} x$ and $x \in X - A$.

By (2.9) $x \in s^* - cl(A)$. Since A is s^* -closed in X, then $s^* - cl(A) = A \implies x \in A$. But $x \in X - A \implies (X - A) \cap A \neq \phi$, this is a contradiction.

Thus no net in A s*-converges to a point in X-A.

Conversely,

Suppose that \exists no net in A s*-converges to a point in X – A. To prove that A is s*-closed .Let $x \in s*-cl(A)$, then by (2.9) \exists a net $(x_d)_{d \in D}$ in A such that $x_d \xrightarrow{s^*} x$. By hypothesis ,we get every net in A s*-converges to a point in A

$$\Rightarrow x \in A \Rightarrow s^* - cl(A) \subseteq A$$
. Since $A \subseteq s^* - cl(A) \Rightarrow A = s^* - cl(A)$
 \Rightarrow A is s*-closed.

- 3) By (2) A is s*-open in X iff X A is s*-closed in X iff no net in X A s*-converges to a point in A.
- **2.14.Remarks:** Let $(x_d)_{d \in D}$ be a net in a topological space X and $x \in X$. Then:-
 - 1) If $x_d \xrightarrow{s^*} x$, then every subnet of $(x_d)_{d \in D}$ s*-converges to x.
 - 2) If every subnet of $(x_d)_{d \in D}$ has a subnet s*-convergent to x, then $x_d \xrightarrow{s^*} x$.
 - 3) If $x_d = x, \forall d \in D$, then $x_d \xrightarrow{s^*} x$.

2.15.Theorem:

Let X and Y be topological spaces . A function $f: X \to Y$ is an s*-irresolute iff whenever $(x_d)_{d \in D}$ is a net in X such that $x_d \xrightarrow{s^*} x$, then $f(x_d) \xrightarrow{s^*} f(x)$.

Proof: \Rightarrow

Suppose that $f: X \to Y$ is an s*-irresolute and $(x_d)_{d \in D}$ be a net in X s.t $x_d \xrightarrow{s^*} x$. To prove that $f(x_d) \xrightarrow{s^*} f(x)$.

Let $V \in N_{s^*}(f(x))$, since f is s*-irresolute, then by (2.3)

$$\exists U \in N_{s^*}(x) \text{ s.t. } f(U) \subseteq V \text{ . Since } U \in N_{s^*}(x) \text{ and } x_d \xrightarrow{s^*} x.$$

$$\Rightarrow \exists d_0 \in D \ \textit{s.t.} x_d \in U, \forall d \geq d_0.$$

$$\Rightarrow \exists d_0 \in D \text{ s.t. } f(x_d) \in f(U) \subseteq V , \forall d \ge d_0.$$

$$\therefore \ \forall \ V \in N_{s^*}(f(x))\,, \exists \mathbf{d}_0 \in \mathbf{D} \ \text{s.t} \ \mathbf{f}(\mathbf{x}_\mathsf{d}) \!\in\! \mathbf{V} \ , \forall \ \mathbf{d} \!\geq\! \mathbf{d}_0.$$

Thus
$$f(x_d) \xrightarrow{s^*} f(x)$$
.

Conversely,

To prove that $f: X \to Y$ is s*-irresolute. Suppose not, then by (2.3) $\exists V \in N_{s^*}(f(x))$ s.t $\forall U \in N_{s^*}(x), f(U) \not\subset V$.

$$\therefore \forall U \in N_{s*}(x), \exists x_U \in U \text{ s.t. } f(x_U) \notin V.$$

 $(N_{s^*}(x),\subseteq)$ is a directed set by inclusion.

Define $x: N_{s^*}(x) \to X$ by: $x(U) = x_U \quad \forall U \in N_{s^*}(x)$.

 $\therefore (x_U)_{U \in N_{*}(x)}$ is a net in X . To prove that $x_U \xrightarrow{s^*} x$.

Let $U \in N_{s^*}(x)$ to find $d_0 \in D$ such that $x_d \in U \ \forall \ d \ge d_0$.

Let $d_0 = U \Rightarrow \forall d \ge d_0 \Rightarrow d = N \in N_{s^*}(x)$.

i.e. $N \ge U \Leftrightarrow N \subseteq U$.

$$\therefore \ x(N) = x_N \in N \subseteq U \Rightarrow x_N \in U \ \forall d \ge d_0 \ \Rightarrow \ x_U \xrightarrow{s^*} x.$$

But $(f(x_U))$ does not s*-converges to f(x), since $f(x_U) \notin V \ \forall \ U \in N_{s^*}(x)$. This is a contradiction . Thus $f: X \to Y$ is an s*-irresolute .

2.16.Theorem:

Let $(x_d)_{d \in D}$ be a net in a topological space X and for each d in D let A_d be the set of all points x_{d_0} for $d_0 \ge d$. Then x is an s*-cluster point of $(x_d)_{d \in D}$ if and only if x belongs to the s*-closure of A_d for each d in D.

Proof: \Rightarrow

If x is an s*-cluster point of $(x_d)_{d \in D}$, then for each d, A_d intersects each s*-neighborhood of x because $(x_d)_{d \in D}$ is frequently in each s*-neighborhood of x. Therefore x is in the s*-closure of each A_d .

Conversely,

If x is not an s*-cluster point of $(x_d)_{d \in D}$, then there is an s*-neighborhood U of x such that $(x_d)_{d \in D}$ is not frequently in U. Hence for some d in D, if $d_0 \ge d$, then $x_{d_0} \notin U$, so that U and A_d

are disjoint . Consequently $\,x\,$ is not in the $\,s^*$ -closure of $\,A_d\,$.

3. S*-Convergence Of Filters

3.1. Definition:

A filter ξ on a topological space X is said to s*-converge to $x \in X$ (written $\xi \xrightarrow{s^*} x$) iff $N_{s^*}(x) \subseteq \xi$.

3.2. Definition:

A filter ξ on a topological space X has $x \in X$ as an s*-cluster point (written $\xi \propto x$) iff each $F \in \xi$ meets each $N \in N_{\varepsilon^*}(x)$.

3.3.Remark:

A filter ξ on a topological space X has $x \in X$ as an s^* -cluster point iff $x \in \bigcap \{s^* - cl(F) : F \in \xi \}$.

Proof: To prove that $\xi \propto x \Leftrightarrow x \in \bigcap \{s * -cl(F) : F \in \xi \}.$

$$\begin{array}{l} \overset{s^*}{\smile} \overset{s^*}{\smile} x \Leftrightarrow \forall \, N \in N_{s^*}(x) \,\,\&\,\, \forall \, F \in \mathcal{E} \,, N \cap F \neq \emptyset \\ \Leftrightarrow \forall \, N \in N_{s^*}(x) \,, F \cap N \neq \emptyset, \forall F \in \mathcal{E} \\ \Leftrightarrow x \in s^* - cl(F), \forall \, F \in \mathcal{E} \\ \Leftrightarrow x \in \cap \{ \, s^* - cl(F) : F \in \mathcal{E} \}. \end{array}$$

3.4.Theorem:

Let X be a topological space and ξ be a filter on X and $x \in X$. Then:-

1) If
$$\xi \xrightarrow{s^*} x$$
, then $\xi \propto x$.

2) If
$$\xi \xrightarrow{s^*} x$$
, then $\xi \to x$.

3) If
$$\xi \propto x$$
, then $\xi \propto x$.

4) If
$$\xi \xrightarrow{s^*} x$$
, then every filter finer than ξ also s*-converges to x.

Proof: It is a obvious.

3.5.Remark:

The converse of (3.4) may not be true in general. To show that we give the following examples:

Examples:

- 1) Let (\mathfrak{R}, μ) be the usual topological space where \mathfrak{R} be the set of all real numbers and $\xi = \{A \subseteq \mathfrak{R} : [-1,1] \subseteq A\}$ be a filter on \mathfrak{R} , then $\xi \propto 0$, but ξ does not s*-converge to 0, since $(-1,1) \in N_{s*}(0)$, but $(-1,1) \notin \xi$.
- 2) Let $X = \{1,2,3\}$ & $\tau = \{\phi, X, \{1,2\}\}$ $\Rightarrow S * O(X) = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$. Let $\xi = \{X, \{1,2\}\}$ be a filter on X. $\therefore N(1) = \{X, \{1,2\}\} \Rightarrow N(1) \subseteq \xi \Rightarrow \xi \to 1$. $\therefore N_{s*}(1) = \{X, \{1\}, \{1,2\}, \{1,3\}\} \Rightarrow N_{s*}(1) \not\subset \xi$ $\Rightarrow \xi$ is not s*-converge to 1.

3) Let
$$X = \{1,2,3\}$$
 & $\tau = \{\phi, X\}$
 $\Rightarrow S * O(X) = \{\phi, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$.

Let $\xi = \{X, \{1,2\}\}\$ be a filter on X.

$$:: N(3) = \{X\} \Rightarrow \xi \propto 3$$
.

:
$$N_{s^*}(3) = \{X, \{3\}, \{2,3\}, \{1,3\}\} \Rightarrow \xi$$
 is not s*-cluster to 3 , since $\{3\} \cap \{1,2\} = \phi$.

4) Let
$$X = \{1,2\}$$
 & $\tau = \{\phi, X, \{1\}\} \Rightarrow S * O(X) = \{\phi, X, \{1\}\} \}$.
 Let $\xi' = \{X, \{1\}\}$ & $\xi = \{X\}$.
 $\therefore N_{s^*}(1) = \{X, \{1\}\} \Rightarrow N_{s^*}(1) \subseteq \xi' \Rightarrow \xi' \xrightarrow{s^*} 1$.

But $\xi \subseteq \xi'$ and ξ is not s*-converge to 1, since $N_{s*}(1) \not\subset \xi$.

3.6.Definition:

A filter base ξ_0 on a topological space X is said to s*-converge to $x \in X$ (written $\xi_0 \xrightarrow{s^*} x$) iff the filter generated by ξ_0 s*-converges to x.

3.7. Definition:

A filter base ξ_0 on a topological space X has $x \in X$ as an s^* -cluster point (written $\xi_0 \propto x$) iff each $F_0 \in \xi_0$ meets each $N \in N_{s^*}(x)$ (iff the filter generated by ξ_0 s^* -clusters at x).

3.8.Theorem:

A filter base ξ_0 on a topological space X s*-converges to $x \in X$ iff for each $N \in N_{s^*}(x)$, there is $F_0 \in \xi_0$ such that $F_0 \subseteq N$.

Proof: \Rightarrow

Given $\xi_0 \xrightarrow{s^*} x$, then the filter ξ generated by ξ_0 s*-converges to x. i.e. $\xi \xrightarrow{s^*} x \Rightarrow N_{s^*}(x) \subseteq \xi \Rightarrow \forall N \in N_{s^*}(x), N \in \xi \Rightarrow \exists F_0 \in \xi_0 \text{ s.t. } F_0 \subseteq N$.

Conversely,

To prove that $\xi_0 \xrightarrow{s^*} x$.i.e. ξ generated by ξ_0 s*-converges to x. Let $N \in N_{s^*}(x)$, then by hypothesis, $\exists F_0 \in \xi_0 \text{ s.t. } F_0 \subseteq N$, since ξ is a filter, then $N \in \xi \Rightarrow N_{s^*}(x) \subseteq \xi \Rightarrow \xi \xrightarrow{s^*} x$.

3.9. Theorem:

A filter ξ on a topological space X has $x \in X$ as an s*-cluster point iff there is a filter ξ' finer than ξ which s*-converges to x.

Proof:⇒

If $\xi \propto x$, then by (3.2) each $F \in \xi$ meets each $N \in N_{s^*}(x)$. $\Rightarrow \xi'_0 = \{ N \cap F : N \in N_{s^*}(x), F \in \xi \}$ is a filter base for some filter ξ' which is finer than ξ and s*-converges to x.

Conversely,

Given $\xi \subset \xi'$ and $\xi' \xrightarrow{s^*} x \Rightarrow \xi \subset \xi'$ and $N_{c^*}(x) \subset \xi'$. \Rightarrow each $F \in \xi$ and each $N \in N_{s^*}(x)$ belong to ξ' .

Since ξ' is a filter $\Rightarrow N \cap F \neq \phi \Rightarrow \xi \propto x$.

3.10.Theorem:

Let X be a topological space and $A \subset X$. Then $x \in s^* - cl(A)$ iff there is a filter ξ such that $A \in \xi$ and $\xi \xrightarrow{s^*} x$.

Proof: \Rightarrow

If $x \in s^* - cl(A) \Rightarrow U \cap A \neq \emptyset \ \forall U \in N_{s^*}(x)$. $\Rightarrow \xi_0 = \{\, U \bigcap A : U \in N_{s^*}(x) \,\}$ is a filter base for some filter ξ .

The resulting filter contains A and $\xi \xrightarrow{s^*} x$.

Conversely,

If $A \in \mathcal{E}$ and $\mathcal{E} \xrightarrow{s^*} x \Rightarrow A \in \mathcal{E}$ and $N_{s^*}(x) \subset \mathcal{E}$. Since ξ is a filter $\Rightarrow U \cap A \neq \phi \ \forall U \in N_{s^*}(x) \Rightarrow x \in s^* - cl(A)$.

3.11.Definition[8]:

Let X and Y be topological spaces, $f: X \to Y$ be a function and ξ be a filter on X, then $f(\xi)$ is the filter on Y having for a base the sets $\{ f(F) : F \in \mathcal{E} \}$.

3.12.Theorem:

Let X and Y be two topological spaces. A function

 $f: X \to Y$ is an s*-irresolute iff whenever $\xi \xrightarrow{s^*} x$ in X, then $f(\xi) \xrightarrow{s^*} f(x) \text{ in } Y$.

Proof: \Rightarrow

Suppose that $f: X \to Y$ is s*-irresolute and $\xi \xrightarrow{s^*} x$.

To prove that $f(\xi) \xrightarrow{s^*} f(x)$ in Y . Let $V \in N_{s^*}(f(x))$, since f is s^* -irresolute, then by (2.3),there is an s^* -neighborhood U of x such that $f(U) \subseteq V$. Since $\xi \xrightarrow{s^*} x$, then $U \in \xi \Rightarrow f(U) \in f(\xi)$. But $f(U) \subseteq V$, then $V \in f(\xi)$. Thus $f(\xi) \xrightarrow{s^*} f(x)$.

Conversely,

Suppose that whenever $\xi \xrightarrow{s^*} x$ in X, then $f(\xi) \xrightarrow{s^*} f(x) \text{ in } Y$.

To prove that $f: X \to Y$ is s*-irresolute.

Let $\xi = \{U : U \in N_{s^*}(x)\} \Rightarrow \xi$ is a filter on X and $\xi \xrightarrow{s^*} x$.

By hypothesis $f(\xi) \xrightarrow{s^*} f(x) \Rightarrow \text{ each } V \in N_{s^*}(f(x)) \text{ belongs}$ to $f(\xi)$

 $\Rightarrow \exists U \in N_{s^*}(x) \text{ s.t. } f(U) \subseteq V \Rightarrow f: X \to Y \text{ is an } s^*\text{-irresolute function}$.

3.13.Theorem:

Let X be a topological space and $A \subseteq X$. Then a point $x \in X$ is an s*-limit point of A iff $A - \{x\}$ belongs to some filter which s*-converges to x.

Proof: \Rightarrow

If x is an s*-limit point of $A\Rightarrow U\cap A-\{x\}\neq \phi \ \forall U\in N_{s^*}(x)$. $\Rightarrow \xi_0=\{U\cap A-\{x\}: U\in N_{s^*}(x)\}$ is a filter base for some filter ξ . The resulting filter contains $A-\{x\}$ and $\xi \xrightarrow{s^*} x$.

Conversely,

If $A - \{x\} \in \xi$ and $\xi \xrightarrow{s^*} x \Rightarrow A - \{x\} \in \xi$ and $N_{s^*}(x) \subseteq \xi$. Since ξ is a filter $\Rightarrow U \cap A - \{x\} \neq \phi \ \forall U \in N_{s^*}(x)$. Thus x is an s^* -limit point of a set A.

3.14.Definition[8]:

If $(x_d)_{d \in D}$ is a net in a topological space X, the filter generated by the filter base ξ_0 consisting of the sets $B_{d_0} = \{x_d : d \geq d_0\}, d_0 \in D$ is called the filter generated by $(x_d)_{d \in D}$.

3.15.Theorem:

A net $(x_d)_{d \in D}$ in a topological space X s*-converges to $x \in X$ iff the filter generated by $(x_d)_{d \in D}$ s*-converges to x.

Proof: The $\operatorname{net}(x_d)_{d\in D}$ s*-converges to x iff each s*-neighborhood of x contains a tail of $(x_d)_{d\in D}$, since the tails of $(x_d)_{d\in D}$ are a base for the filter generated by $(x_d)_{d\in D}$, the result follows.

3.16.Definition[8]:

If ξ is a filter on a topological space X, let $D_{\xi} = \{(x,F): x \in F \in \xi\}$. Then D_{ξ} is directed by the relation $(x_1,F_1) \leq (x_2,F_2)$ iff $F_2 \subseteq F_1$, so the function $p:D_{\xi} \to X$ defined by p(x,F)=x is a net in X. It is called the net based on ξ .

3.17.Theorem:

A filter ξ on a topological space X s*-converges to $x \in X$ iff the net based on ξ s*-converges to X.

Proof: \Rightarrow

Suppose that $\xi \xrightarrow{s^*} x$. If $N \in N_{s^*}(x)$, then $N \in \xi$. Since $N \neq \phi$, then $\exists p \in N$. Let $d_0 = (p, N) \in D_{\xi}$.

$$\therefore \forall d = (q, F) \ge d_0 = (p, N) \implies x_d = x_{(a, F)} = q \in F \subseteq N.$$

Thus the net based on ξ s*-converges to x.

Conversely,

suppose that the net based on ξ s*-converges to x. Let $N \in N_{s^*}(x)$, then $\exists d_0 = (p_0, F_0) \in D_{\xi}$ such that $x_{(p,F)} = p \in N, \forall (p,F) \geq (p_0,F_0)$. Then $F_0 \subseteq N$; otherwise, there is some $q \in F_0 - N$, and then $(q,F_0) \geq (p_0,F_0)$, but $x_{(q,F_0)} = q \notin N$. Hence $N \in \xi$, so $\xi \xrightarrow{s^*} x$.

3.18.Theorem:

A topological space X is an s^*-T_2 -space iff every s^* -convergent filter in X has a unique s^* -limit point .

Proof: \Rightarrow

Let X be an s^* - T_2 -space and ξ be a filter in X such that $\xi \xrightarrow{s^*} x \& \xi \xrightarrow{s^*} y \& x \neq y$. Since X is an s^* - T_2 -space $\Rightarrow \exists U \in N_{s^*}(x)$ and $V \in N_{s^*}(y)$ such that $U \cap V = \phi$.

$$:: \xi \xrightarrow{s^*} x \Rightarrow N_{s^*}(x) \subseteq \xi .$$

$$:: \xi \xrightarrow{s^*} y \Rightarrow N_{s^*}(y) \subseteq \xi.$$

$$\because U \in N_{s^*}(x) \subseteq \xi \quad \& \quad V \in N_{s^*}(y) \subseteq \xi \implies U, V \in \xi.$$

Since ξ is a filter, then $U \cap V \neq \phi$. This is a contradiction. Hence ξ s*-converges to a unique s*-limit point.

Conversely,

To prove that X is an s^*-T_2 -space . Suppose not, then $\exists x, y \in X, x \neq y$ s.t $\forall U \in N_{s^*}(x) \& \forall V \in N_{s^*}(y), U \cap V \neq \phi$.

⇒ $\xi_0 = \{U \cap V : U \in N_{s^*}(x), V \in N_{s^*}(y)\}$ is a filter base for some filter ξ . The resulting filter s*-converges to x and y. This is a contradiction. Thus X is an s*-T₂-space.

References

- [1]. Al-Meklafi S., "On new types of separation axioms", M.SC. Thesis, college of Education, AL-Mustansiriya University, 34-58, 2002.
- [2]. Levine N., "Semi-open sets and semi-continuity in topological spaces", Amer.Math.Monthly, 70, 36-41, 1963.
- [3]. Khan M., Noiri T. and Hussain M.," On s*g-closed sets and s*-normal spaces", 48, 31-41,2008.
- [4]. Sabiha I. and Afrah M .," S*-separation axioms", Iraqi Journal of Science, University of Baghdad, 51, 1,145-153, 2010.
- [5] .Veerakumar M.K.R.S.," \hat{g} -closed sets and G \hat{L} C-functions ",Indian J.Math.,43, 2, 231-247, 2001.
- [6]. Veerakumar M.K.R.S.," \hat{g} -closed sets in topological spaces ",Bull. Allahabad Math. Soc.18, 99-112 ,2003 .
- [7] .Murugalingam M., "A study of semi generalized topology", Ph.D. Thesis, Manonmaniam Sundaranar Univ., Tirunelveli Tamil Nadu, India, 2005.
- [8] . Willard S. ,"General Topology ", Addison-wesley Inc.,Mass, 1970 .

حول تقارب الشبكات والمرشحات - * ح

صبيحة إبراهيم محمود

الجامعة المستنصرية / كلية العلوم / قسم الرياضيات

المستخلص

كرس هذا البحث لتقديم و دراسة العديد من الخواص التبولوجية لتقارب المرشحات من الشبكات من النمط- s^* (s^* - convergence of nets) s^* وتقارب المرشحات من النمط - s^* (s^* - convergence of filters) s^* المفتوحة من النمط - s^* (s^* - open sets) s^*). كذلك درسنا بعض خواص النقاط العنقودية من النمط - s^* (s^* -cluster points) s^* الشبكات والمرشحات.