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Abstract

The main goal in Quantum Cryptography is high security and this can be achieved by using
single photon sources. The present work is a theoretical analysis devoted to investigate the
interference pattern of biphoton amplitude generated by spontaneous parametric down conversion
(SPDC) in a nonlinear crystal (BBO) pumped by femtosecond optical pulses. We have studied the
visibility as a function of optical path delay for different parameters, such as the crystal length,
dispersion in non-linear crystal, pump pulse duration and chirp parameter. The best visibility can be
obtained at crystal length of (1.5 mm) .The amplitude of two photons in nonzero dispersion is
affected greatly by different crystal length. And the interference pattern is varying with pump pulse
duration, the shorter pump pulse duration, the lower visibility (V), and at specific pulse duration the
visibility increase with decrease crystal length (L).
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Introduction

Dispersion plays an important role in the
propagation of short classical optical pulses
and of quantum wave packets. In particular,
transform-limited classical pulses as well as
single-photon  wave packets Experience
temporal  broadening upon  propagating
through a dispersive medium. In classical
applications such as communication over
optical fibers this pulse broadening ultimately

limits the data transfer rates, unless
appropriate  compensation  methods are
implemented.

In the case of quantum communications
over fibers, the data rates are sufficiently low
that such considerations are not necessary.
Nonetheless, the presence of dispersive
systems in the path between source and
detector can compromise certain important
qguantum phenomena that are central to some
of the communications protocols, such as
teleportation and dense coding, which rely on
entangled photon multiples. [1]

Theoretical Analysis
1. Second Order Dispersion for Entangled
Photons:
In this section we are devoted to a
theoretical investigation of dispersion effects
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in fem to second- pulsed SPDC. Particular
attention is given to the effects of pump pulse
chirp and second orders dispersion (in both the
pump and down-converted beams) invisibility
and shape of the photo- coincidence pattern.
Dispersion cancellation which has been
extensively studied in the case cw pumping is
also predicted to occur under certain
conditions for femtosecond down converted
down converted pairs. [2].

We consider a non linear crystal pumped
by a strong coherent- state field. Non-linear
interaction then leads to the spontaneous
parametric down conversion. The two photon
amplitude A;, depends only on the differences
t;-t and to-t. When the down converted beams
propagate through a dispersive material of the
length 1, the entangled two photon state 1y®>,

The proposal set up for coincidence- count
measurement is shown in Fig. (2) we consider
type- 1l parametric down conversion for this
work, using abeam splitter 50/50 and the
polarized photons are detected at the detectors
Da and Dg.

In this case two mutually perpendicularly
polarized photons are provided at the output
plane of the crystal. They propagate through a
birefringent material of a variable length | and
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then impinge on a 50/50 beamsplitter. Finally
they are detected at the detectors Da and Deg.
The coincidence-count rate R is measured by
a coincidence device C. The beams might be
filtered by the frequency filters Fa and Fg
which can be placed in front of the detectors.
Analyzers rotated by 45° with respect to the
ordinary and extraordinary axes of the
nonlinear crystal enable quantum interference
between two paths to be observed; either a
photon from beam 1 is detected by the detector
Da and a photon from beam 2 by the detector
Dg, or vice versa. Including the effects of the
beamsplitter and analyzers, the coincidence-
count rate R. can be determined as follows:
[3.4]

Ro(D) =27 dty [7 dts| A (ta,ts) = Aspy(ts,ta)]

The normalized coincidence-count rate R,
is then expressed in the form [2,3]:

Ro(D)=1—= L) oo @)
Where
p() = ﬁf_mm dt, f_mm dtg Re[ﬂlz,x(tmts)ﬂzz,x(tmtA)]
............................... 3)
and
1 poo oo 2
Ry, = E.ur_m dty Jr_,x, dtg |ﬂq12,£(fmfﬁ)|
..................................... 4)

Let us assume that the nonlinear crystal and
the optical material in the path of the down-
converted photons are both dispersive.

The wave vectors kp(mkp), ki(@g,), and

ka(@pg,) of the beams in the nonlinear crystal

can be expressed in the following form, when
the effects of material dispersion up to the
second order are included [5]:

k; (w’fj) = kip * vij (wk} - wip) + % (w"’f B wip)z’ j=p12

1
The inverse of group velocity o and the
j

second-order dispersion coefficient D; are
given by [5]
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dzkj .
D]-:277d - s j=p,12
(L)kA
i, =6
N (7)
The symbol w? denotes the central

]

frequency of beam j. The wave vector kj':' is
defined by the relationk? = k;(w}).
Similarly, the wave vectors f?l[m;fi] and

.‘?2 (mkzj of the down-converted beams in a

dispersive material outside the crystal can be
expressed as

i 70 1 0 df 042
k(o )=k ?((’Jk! w))t (e~ j=1.2
g . ;
............................... ©)
where
1 dk,
gj dwkf W, =@
s (9)
d.=2 il 1,2
=TT > J: n&ln
d dw;
J wk_=(oo
EE (10)

70§ .0
and ch = kj(mj ).

Assuming frequency- and wave-vector
phase matching for the central frequencies

(w = wl + w?) and central wave vectors

o

(k2 = k2 + k2), respectively. Considering
T

an ultrashort pump pulse with a Gaussian

profile: the envelope E;Jr]('[],t] of the pump

pulse at the output plane of the crystal then
assumes the form [6]
1+ia
2
Lo, )

[ — (11)
where &, is the amplitude, 1o is the pulse

duration, and the parameter a describes the
chirp of the pulse [7].

ELP(0.0)=Epo exp

The complex spectrum E;Jr] (z,11y,) of the

envelope E;Jr] (2, 1) is defined by

1 0
(2,0, = ﬁf_wdt5§+)(z,t)exp(i()pt)
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For a pulse of the form given in eq. (11) we
obtain

" T
O~ e
b
Xp[ 40 +a2)( —1a)
............................ (13)

_ é-pg EXp [.—1' arctan (a) )

We arrive at the following expression for
the two-photon amplitude

where &,

Ay (7.7) j W

2 2
B 1Byt ey Bt 2yec,

4B 82— 72)

The functionsf;(z), ci(z), and y(z) are
defined as follows [3]:
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(1 '—dfz DD, =12
B/(2)= J+ (1-ia)—igki-i—2—Ls,  j=12,
- 1(]‘1) L L +i =1.2
O O P Catl S A
=3 : .Dp
v(z)= (lfza)fzﬂz.
............................ (15)

The parameter b is a characteristic

parameter of the pump pulse:
2

p
4(1+a%)
( (16)
The quantities p(l) and Ry are then
determined in accordance with their

definitions in egs. (2) and (3), respectively.
The quantity p(l) as a function of the length |
of the birefringent material then takes the form

(@) = w? is assumed).
The evaluation of bi-photon amplitude.

S P b
pll)=——7—— dz dz
2v1+a’R, f lf 2\/[?1[?2 ¥
2@@@2%5‘
Xexp| — — .
4(3132_'}’2)
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The functions Ej(zl,zzj, C;(24,25), and
Vi (z,,Z5) are expressed as follows:

— 1 1 d;—ds_ D,—-D
Nl W o B Zp J
Bi(z1,23) of+o§ " 1+2b—i yrp—
D,—Dy_
Fii p4ﬂ_3 jzz J=12
— 1 1 1 1
¢;(21.22) o, 015 \v, 0y B
Ll e
g1 &2 £
(21 2,)=2b— 1—(21 Z3).
............................. (18)

Similarly, the normalization constant RO is
given by the expression [8].

2| C 4? IEPPTZJ f P S
0= 2
241 +a? \f
a@+aa+ﬁaal
Xexp| — — i
4(31132_'}’2)
............................. (19)
Where
. 2 D,~D;
B](zl,22)=0—}+26—1 ypm (23 —2z3) j=12
e 3 1 1 19
cj(zlszz)_ E_a (ZJ_Z3—';)= J=1.4
= _Dp
y(zlazz):Zb*ZE(zl 73).
............................. (20)

It is convenient to consider the pump-pulse
characteristics at the output plane of the
crystal, i.e., to use the parameters tp and a.
They can be expressed in terms of the
parameters tp; and a; appropriate for the input

D,L

plane of the crystal:
TZDI o
47 [\ d(1+a®)]

_( 7')231»61‘-
1+a?
Tp= Tp; :
‘ 1+ai2

4(1+a;)

a




In this case, the parameter b;
T;ZDI

" 4(1+a?) (22)

has the same value as the parameter b
defined in eq. (16).

has the same value as the parameter b
defined in eq. (28).

Ignoring second-order dispersion in all

modes (Dp=D1=D,=0), eq. (17) reduces to the

following analytical expression for the
quantity p:
_\/; 1 Thi
p(AT)= 2TAL izt
Xer{@WE—AH)
D T kD 1k
............................ (23)
in which[9]
1 1
o v,
1 1( 11 )
Op 2\U1 2] (24)
and
AT, =1, —DL/2 . (25)

The symbol erf denotes the error function.
When deriving eg. (23), the condition D>0
was assumed. In eq. (25), t denotes the
relative time delay of the down-converted
beams in a birefringent material of length | and
is defined as follows:

T = (i—i)!

In the absence of the second order

dispersion and frequency filter a useful
analytical expression for two photon
amplitude;
p a1 +a? T
1z,l:o(f,7')—wr60t DL
1+iaq, A \?
Xexp| — ) t+57
Di
.............................. (27)

Where t=tA+tA/2,7=tA-Th.
The quantity p given in eq. (3) then has the
form (again it is assumed thatw; = w?)
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|C J*\2mmo

p(A7)= 4R,

i3 L2
XRe f dzlj dzy¥e(21.2,,A(2, = 2,))
-1 -1

o B

g
where At; is defined in eq. (25). The
correlation function y.(z; ,z2 ,X) of two pulsed
fields at positions z; and z, is written as

X exp

D
An+ 3(zl+zl)

YolZ1.,25,%) = f Ao ey, ~LIOHYES Pay—=L 105w

The constant Ry occurring in eq. (28) is
expressed as follows:

_|CA|2\/27T7TO'J’1/2

0 4 A

=L 2

197)
X j—L/2dZZ 70(21 ,Z2,A(21—23))

ab?
32

X exp (Ze—

.............................. (30)

For a Gaussian pulse with the complex

spectrum as given in eq. (13), the correlation
function vy, becomes

VT, 10

T > aA - = l -
Yo(21.22,A(21—23)) 2\/l+a;7‘ \/1//(21,22)
A2(2'1_22)2
X~ 44(z,,2;)

2 D,

‘//(21322):2bs’+;_1ﬂ(21 Z,),

............................. (31)

Which, together with egs. (28) and (30),
leads to expressions which agree with those
derived from egs. (17) and (19). The parameter
bi is defined in eq. (22).

We have used adaptive Simpson quadrator
method to numerically evaluate the double
integral in eg.(17) and (28).

Results and Dissociation

In this work, numerical results of the effect
of the pump pulse profile (pulse duration and
chirp) and the second-order dispersion in both



Journal of Al-Nahrain University

the non-linear crystal and the interferometer’s
optical elements on the interference pattern are
presented.

Most of results developed in this work
were extracted from a very sophisticated
equation, which has no simple analytical
solution. So was been illustrated in previous
section, different numerical techniques have
used to overcome this problem.

The assumed parameters used in this work
are;-single-mode cw argon-ion laser with a
wavelength of 351.1 nm, -BaB204 (BBO)
crystal with a different thickness. The distance
between the crystal and the detection planes
was 1m.

1- Pump pulse duration and chirp

Studying of quantum interference was with
a pump pulse profile (pulse duration and chirp)
and second order dispersion in both the
nonlinear crystal and interferometer optical
elements was presented: We will discuss here
a theoretical investigation of dispersion effects
in  femtosecond-  pulsed  spontaneous
parametric down conversion effects. Particular
attention is given to the effects of pump-pulse
chirp and second order dispersion (in both the
pump and down-converted beams) on the
visibility and shape of the photon coincident
pattern.

For Fig.(3) Crystal length L=(0.5~10) mm,
and ai = 0; values of the other parameters
are zero. Values of the inverse group
velocities appropriate for the BBO crystal

with  type-1l interaction at the pump
wavelength  Ap=351.1nm and at down-
conversion  wavelengths ~ 1/v,=57.05x10™
simm,  1/V=56.23x10"*  s/mm,  and

1/v,=54.2631x10™ s/mm. We assume that the
optical materials for the interferometer are
quartz, for which 1/g; =51.813 x 1 s/mm
and 1/g, =52.08 x 10" s/mm.

Fig. (3) shows the relation of an ultrashort
pump pulse duration Tp; with fringe visibility,
it has been shown that ultrashort pumping lead
to losses in visibility of the coincidence count
interference pattern, and depended on crystal
length, while visibility increases with
decreased the crystal length and this agreement
with the results of references [4, 10]. For
example, the highest visibility (0.95) at pulse
duration (8x10™3sec) and crystal length
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(1.5 mm) but visibility is lower at same pump
pulse duration but for longer crystal thickness
(10mm), as shown in Fig.(3).

2- Second Order Dispersion in the nonlinear
crystal

Second-order dispersion in the pump beam
causes changes in the pulse phase (chirp) as
the pulse propagates and this leads to
broadening of the pulse. This pump pulse
broadening is transferred to down converted
photon. The shape of two photon amplitude
shown in Fig.(4). The tilt of the amplitude in
the (t, t) planes leads to a loss in visibility
since the overlap of the two amplitudes cannot
be completed for non zero tilt. Fig. (4,a,b)
shows a peak in the (t- t) plan for shorter
crystal, while this peak disappears at longer
crystal.

As illustrated in Fig. (5), the profile of the
interference dip is modified as follows: An
increase in the second-order dispersion
parameter D, leads to an increase of visibility,
but no change in the width of the dip. In
Fig.(5) decreasing of pulse duration
will reduce the visibility ,for example at

19 =1x10™3sec, visibility which measure
from coincidence count is smaller than in case
of 14 =2x10™3sec. and at same value of pulse
duration the visibility was higher when second
order dispersion Dy is larger than zero as
shown in Fig.(5a,b&c) as like R, =0.55 for
Dy=30.

For appropriately chosen values of D, a
small local peak emerges at the bottom of the
dip as shown in Fig. (6-a), nonzero initial chirp
(a) of the pump beam can provide a higher
central peak, but on the other hand, it reduces
the visibility [as shown in Fig. (6-a & b)]. The
peak remains but is suppressed, in the presence
of narrow frequency filter. We see from
Fig. (6) the dip of interference will be
narrower with decreases of crystal length. The
dip is very sharp and smoother when
L=1.5 mm.

In anther words, the visibility is higher at
chirp parameter a; =0,and reduces with
increasing of chirp parameter, while visibility
is larger when using small crystal thickness
(L=1.5 mm) at the same value of a;.



In Fig. (6-c), long crystal (L=5 mm) a
bearing noise curves of coincident count at
chirp parameter ai=1-2, because of high
dispersion occure at longer crystal, and this
dispersion will reflect on the coincident count
behavior.

Conclusion

The dispersion of pump beam before the
non-linear crystal does not influence the
interference pattern. The interference pattern
symmetry increases with decrease pump pulse
duration. Second order dispersion of the pump
beam in the non-linear crystal can result in
occurrence of the local peak at the bottom of
the interference dip.

BBO ;i (X;,q; @) X;
E - Sy U
(@)
BBO H(x,q;@) X;
- Ssa oy
i, (b)

Fig. (1): (a) Hlustration of the idealized setup
for observation of quantum interference
using SPDC [1].

delay line

a [
-2 NLC L_, __..__\___
(02 :
|

Fig. (2): Sketch of the system under
consideration: a pump pulse at the frequency
vp generates down-converted photons at
frequencies v1 and v2 in the nonlinear
Crystal [4].
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Fig.(3) :Visibility as a function of the pump
pulse duration and crystal thickness by using
eq.(3.93).

o phaton amplitede

Fig.(4): Absolute value of the
two-photon amplitude for nonzero second-
order dispersion of the pump beam and for

different crystal thickness.
L=(a-1.5, b-3mm, c- 5, d-10)mm by
using eq.(3.84).
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Fig.(5) :Coincidence-count rate Rn(A47))(a) for various values of the second-order
dispersion parameter by using eq .(3.72 & 3.98) D, :D,=(0, 5x10%° , 1x10 *°,
3x10 #)s¥/mm . and at pulse duration tq =(a- 3, b-2, c-1)x10*sec, ai=0.
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Fig.(6) Coincident count rate as a function of An for different chirp value a;,

by using eq .(3.72 & 3.98) at L = 1.5 mm,
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b- L=3 mm c¢- L=5mm.
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