The Complete Solution of some Kinds of Linear Third Order Partial Differential Equations with Three Independent Variables

Assis. Lecturer. Layla Abd Al-Jaleel Mohsin
Kufa University. College of Education for Girls. Department of Computer Sciences

ABSTRACT
Our aim of this research is to find the complete solution of some kinds of linear third order partial differential equations of constant coefficients which have the general form

\[A_1 Z_{xx} + A_2 Z_{yy} + A_3 Z_{tt} + A_4 Z_{xy} + A_5 Z_{xy} + A_6 Z_{yy} + A_7 Z_{yy} + A_8 Z_{tx} + A_9 Z_{ty} + A_{10} Z_{xy} + A_{11} Z_{xx} + A_{12} Z_{yy} + A_{13} Z_{tx} + A_{14} Z_{ty} + A_{15} Z_{xx} + A_{16} Z_{yy} + A_{17} Z_{tx} + A_{18} Z_{ty} + A_{19} Z + A_{20} Z = 0, \]

where \(A_i \), \(i = 1, 2, \ldots, 20 \) are constants.

By use the assumption

\[Z(x, y, t) = e^{\int u(x)dx + \int v(y)dy + \int w(t)dt} \]

will transform the above equation to the nonlinear second order ordinary differential equation with three independent functions \(u(x) \), \(v(y) \) and \(w(t) \).

1. INTRODUCTION
The differential equations are very importance in the plenty of the fields of the science as Physics, Chemistry and other sciences, therefore plenty of the scientists are studied this subject and they are tried to find modern methods for getting rid up the difficulties that facing them in the solving of some of these equations.

In [7] used the assumption

\[y(x) = e^{\int Z(x)dx} \]

to find the general solution of equation

\[A_1 Z_{xx} + A_2 Z_{yy} + A_3 Z_{tt} + A_4 Z_{xy} + A_5 Z_{xy} + A_6 Z_{yy} + A_7 Z_{yy} + A_8 Z_{tx} + A_9 Z_{ty} + A_{10} Z_{xy} + A_{11} Z_{xx} + A_{12} Z_{yy} + A_{13} Z_{tx} + A_{14} Z_{ty} + A_{15} Z_{xx} + A_{16} Z_{yy} + A_{17} Z_{tx} + A_{18} Z_{ty} + A_{19} Z + A_{20} Z = 0, \]

\[y'' + P(x) y' + Q(x) y = 0 \]

where \(P(x) \) and \(Q(x) \) are either constants or functions of \(x \).

In [1] used the assumption

\[Z(x, y) = e^{\int u(x)dx + \int v(y)dy} \]

to find the complete solution of equation

\[AZ_{xx} + BZ_{xy} + CZ_{yy} + DZ_x + EZ_y + FZ = 0 \]

where \(A, B, C, D, E \) and \(F \) are arbitrary constants.

In [4] used the assumption

\[Z(x, y, t) = e^{\int u(x)dx + \int v(y)dy + \int w(t)dt} \]

to find the complete solution of the equation
AZ_{xx} + BZ_{xy} + CZ_{xt} + DZ_{yy} + EZ_{yt} + FZ_{tt} + GZ_x + HZ_y + IZ_t + JZ = 0

Where A,B,C,...,I and J are arbitrary constants.

In [5] used the assumptions

\[Z(x,y) = e^{\int \frac{u(x)}{x} \ dx + \int \frac{v(y)}{y} \ dy} \]

\[Z(x,y) = e^{\int \frac{u(x)}{x} \ dx + \int \frac{v(y)}{y} \ dy} \]

\[Z(x,y) = e^{\int \frac{u(x)}{x} \ dx + \int \frac{v(y)}{y} \ dy} \]

and

\[Z(x,y) = e^{\int \frac{u(x)}{x} \ dx + \int \frac{v(y)}{y} \ dy} \]

to find the complete solutions of the equation

\[A(x,y)Z_{xx} + B(x,y)Z_{xy} + C(x,y)Z_{yy} + D(x,y)Z_x + E(x,y)Z_y + F(x,y)Z = 0 \]

Where some of A(x,y),B(x,y),C(y),D(x,y),E(x,y) and F(x,y) are functions of x or y or both x and y.

In [8] used the assumptions

\[Z(x,y) = e^{\int \frac{u(x)}{x} \ dx + \int \frac{v(y)}{y} \ dy} \]

\[Z(x,y) = e^{\int \frac{u(x)}{x} \ dx + \int \frac{v(y)}{y} \ dy} \]

and

\[Z(x,y) = e^{\int \frac{u(x)}{x} \ dx + \int \frac{v(y)}{y} \ dy} \]

to find the complete solutions of the equation

\[A(x,y)Z_{xx} + B(x,y)Z_{xy} + C(x,y)Z_{yy} + D(x,y)Z_x + E(x,y)Z_y + F(x,y)Z = 0 \]

Where A,B,C,D,E and F are functions of dependent variable Z and partial derivatives of dependent variable with respect to the independent variables x and y.

In [6] used the assumption

\[Z(x,y) = e^{\int u(x)dx + \int v(y)dy} \]

to find the complete solutions of the equation

\[AZ_{xxx} + BZ_{yyy} + CZ_{xxy} + DZ_{xyy} + EZ_{xty} + FZ_{yty} + GZ_{xx} + HZ_{yy} + HZ_x + IZ_y + JZ = 0 \]

Where A, ..., I and J are arbitrary constants.

In this paper, we will find the complete solution of the equation

\[A_1 Z_{xx} + A_2 Z_{yy} + A_3 Z_{tx} + A_4 Z_{xy} + A_5 Z_{xx} + A_6 Z_{yy} + A_7 Z_{tx} + A_8 Z_{xy} + A_9 Z_{yy} + A_{10} Z_{tx} + A_{11} Z_{xy} + A_{12} Z_{xy} + A_{13} Z_x + A_{14} Z_y + A_{15} Z_x + A_{16} Z_y + A_{17} Z_x + A_{18} Z_y + A_{19} Z_x + A_{20} Z = 0 \]

by using the assumption

\[Z(x,y,t) = e^{\int u(x)dx + \int v(y)dy + \int w(t)dt} \]

Where \(A_i \ i = 1,2,...,20 \) are constants.

2. DESCRIPTIONOFTHESUGGESTEDMETHOD

Let us consider the equation

\[A_1 Z_{xxx} + A_2 Z_{yyy} + A_3 Z_{tx} + A_4 Z_{xy} + A_5 Z_{xx} + A_6 Z_{yy} + A_7 Z_{tx} + A_8 Z_{xy} + A_9 Z_{yy} + A_{10} Z_{tx} + A_{11} Z_{xy} + A_{12} Z_{xy} + A_{13} Z_x + A_{14} Z_y + A_{15} Z_x + A_{16} Z_y + A_{17} Z_x + A_{18} Z_y + A_{19} Z_x + A_{20} Z = 0 \] \((1) \)

The equation (1) is linear third order partial differential equation (P.D.E.) with three independent variables and \(A_i ; \ i = 1,2,...,20 \) are arbitrary constants.
In order to find the complete solution of the equation (1), we search functions $u(x)$, $v(y)$ and $w(t)$ such that the assumption

$$Z(x, y, t) = e^{ \int \left[u(x)dx + v(y)dy + \int w(t)dt \right] }$$

... (2)

Represents the complete solution of it, this assumption will transform the equation (1) to non-linear second order ordinary differential equation. By finding $Z_x, Z_{xx}, Z_{xxy}, Z_{xy}, Z_{yy}, Z_{yyx}, Z_{yxy}, Z_{xt}, Z_{tt}, Z_{xt}$, and Z_{xyt} from the equation (2), we get

$$Z_x = u(x) e^{ \int \left[(x) dx + [v(y) dy + \int w(t)dt] \right] },$$

$$Z_{xx} = \left[u'(x) + u^2(x) \right] e^{ \int \left[(x) dx + [v(y) dy + \int w(t)dt] \right] },$$

$$Z_y = v(y) e^{ \int \left[(x) dx + [v(y) dy + \int w(t)dt] \right] },$$

$$Z_{yy} = \left[v'(y) + v^2(y) \right] e^{ \int \left[(x) dx + [v(y) dy + \int w(t)dt] \right] },$$

$$Z_{xy} = u(x) v(y) e^{ \int \left[(x) dx + [v(y) dy + \int w(t)dt] \right] },$$

$$Z_t = w(t) e^{ \int \left[(x) dx + [v(y) dy + \int w(t)dt] \right] },$$

$$Z_{tt} = \left[w'(t) + w^2(t) \right] e^{ \int \left[(x) dx + [v(y) dy + \int w(t)dt] \right] }$$

And by substituting $Z_x, Z_{xx}, Z_{xxy}, Z_{xy}, Z_{yy}, Z_{yyx}, Z_{yxy}, Z_{xt}, Z_{tt}, Z_{xt}$, and Z_{xyt} into the equation (1), we get

$$Z_{xt} = w(t) u(x) e^{ \int \left[(x) dx + [v(y) dy + \int w(t)dt] \right] }$$

$$Z_{yt} = w(t) v(y) e^{ \int \left[(x) dx + [v(y) dy + \int w(t)dt] \right] },$$

$$Z_{xxx} = [u''(x) + 3u(x)u'(x) + u^3(x)] e^{ \int \left[u(x)dx + [v(y)dy + \int w(t)dt] \right] },$$

$$Z_{xxy} = [v(y)u'(x) + u^2(x)] e^{ \int \left[u(x)dx + [v(y)dy + \int w(t)dt] \right] },$$

$$Z_{ytt} = [v''(y) + 3v(y)v'(y) + v^3(y)] e^{ \int \left[u(x)dx + [v(y)dy + \int w(t)dt] \right].}$$
\[[A_1 \left(u''(x) + 3u(x)u'(x) + u^3(x) \right) \]
\[+ A_2 \left(v''(y) + 3v(y)v'(y) + v^3(y) \right) \]
\[+ A_3 \left(w''(t) + 3w(t)w'(t) + w^3(t) \right) \]
\[+ A_4 \left(v(y)u'(x) + v(y)u^2(x) \right) \]
\[+ A_5 \left(w(t)u'(x) + w(t)u^2(x) \right) \]
\[+ A_6 \left(u(x)v'(y) + u(x)v^2(y) \right) \]
\[+ A_7 \left(w(t)v'(y) + w(t)v^2(y) \right) \]
\[+ A_8 \left(v(y)w'(t) + v(y)w^2(t) \right) \]
\[+ A_9 \left(v(y)w'(t) + v(y)w^2(t) \right) \]
\[+ A_{10} \left(u(x)w'(t) + u(x)w^2(t) \right) \]
\[+ A_{11} \left(u'(x) + u^2(x) \right) \]
\[+ A_{12} \left(v'(y) + v^2(y) \right) \]
\[+ A_{13} \left(w'(t) + w^2(t) \right) + A_{14} u(x)v(y) \]
\[+ A_{15} u(x)w(t) + A_{16} w(t)v(y) \]
\[+ A_{17} u(x) + A_{18} v(y) + A_{19} w(t) \]
\[+ A_{20} \int e^{f(x)} dx + \int f(y) dy + \int w(t) dt \]
\[= 0 \]
\[\text{... (3)} \]

Since
\[\int u(x) dx + \int v(y) dy + \int w(t) dt \neq 0 \]

So,

The equation (3) is non-linear second order ordinary differential equation and contains three independent functions \(u(x) \), \(v(y) \) and \(w(t) \).

As the number of the classes of the equation (1) are very large, so, we will choose some kinds of it to find the complete solution of it, while the other kinds are solved by the same methods.

Kind (1):
\[A_1 Z_{\text{xxx}} + A_2 Z_{\text{xyy}} + A_3 Z_{\text{yy}} = 0 \]

Kind (2):
\[A_1 Z_{\text{yyx}} + A_2 Z_{\text{yxx}} + A_3 Z = 0 \]

Kind (3):
\[A_1 Z_{tzy} + A_2 Z_{xx} + A_3 Z_{ty} + A_4 Z_{xy} = 0 \]

Where \(A_1, A_2, A_3 \) and \(A_4 \) are constants.

Now we will discuss the above kinds,

kind (1):

\[A_1 Z_{tt} + A_2 Z_{xyy} + A_3 Z_{xyy} = 0 \]

this equation becomes after using (2) as follows

\[A_1 (w''(t) + 3w(t)w'(t) + w^3(t)) + A_2 (v(y)u'(x) + v(y)u^2(x)) + A_3 (u(x)v'(y) + u(x)v^2(y)) = 0 \]

Here we can't separate the variables, so we suppose that \(w(t) = \lambda_1 \) and \(v(y) = \lambda_2 \)

Where \(\lambda_1 \) and \(\lambda_2 \) are arbitrary constants, then

\[A_1 \lambda_1^3 + A_2 \lambda_2^3 (u'(x) + u^2(x)) + A_3 \lambda_2^3 u(x) = 0 \]

\[\Rightarrow u'(x) + u^2(x) + \frac{A_1 \lambda_1^3}{A_2 \lambda_2^2} u(x) + \frac{A_1 \lambda_1^3}{A_2 \lambda_2^2} = 0 \]

\(\lambda_2 \neq 0 \)

\[u'(x) + u^2(x) + B_1 u(x) + B_2 = 0 \quad \ldots (5) \]

\[B_1 = \frac{A_2 \lambda_2^3}{A_1 \lambda_1^3} \quad \text{and} \quad B_2 = \frac{A_1 \lambda_1^3}{A_2 \lambda_2^2} \]

\[u'(x) + (u(x) + \frac{B_1}{2})^2 + B_2 - \frac{B_2^2}{4} = 0 \]

If \(B_2 \neq \frac{B_2^2}{4} \), we get

\[\int \frac{du}{\left(u(x) + \frac{B_1}{2}\right)^2} + \int dx = \int \frac{\frac{B_1}{2}}{f_1} = 0 \]

then the complete solution of equation (4) is

\[\frac{1}{f_1} \tan^{-1}\left(\frac{u(x) + \frac{B_1}{2}}{f_1}\right) = C - x \]

\(C = \text{constant} \)

\[\Rightarrow u(x) = f_1 \tan(f_1 c - f_1 x) - \frac{B_1}{2} \quad \ldots (24) \]

then the complete solution of equation (4) is

\[Z(x, y, t) = e^{ \int \left(\frac{f_1 c - f_1 x}{f_1} \right) dx + \int \lambda_2 dy + \int \lambda_3 dt } \]

\[= e^{ \ln(\cos(f_1 c - f_1 x)) \frac{B_1}{2} x + \lambda_2 y + \lambda_3 t + c_1 } \]

\(; \ 0 < \cos(f_1 c - f_1 x) < 1 \)

\[\Rightarrow \frac{f_1 c - 2\pi}{f_1} < x < \frac{f_1 c - \frac{\pi}{2}}{f_1} \]

\[= e^{ \lambda_2 y + \frac{B_1}{2} (A_1 \lambda_1^3 - (A_2 \lambda_2^2)^2) x + \frac{\lambda_3}{2} \sin(\sqrt{4A_1 A_2 \lambda_2^2 - (A_2 \lambda_2^2)^2}) x } \]

\[; d_1 = e^{\lambda_1 \cos(\sqrt{4A_1 A_2 \lambda_2^2 - (A_2 \lambda_2^2)^2}) c} \]

\[\text{and} \quad d_2 = e^{\lambda_1 \sin(\sqrt{4A_1 A_2 \lambda_2^2 - (A_2 \lambda_2^2)^2}) c} \]

\[2) \text{If} \quad B_2 = \frac{B_1^2}{4}, \quad \text{we get} \quad \int \frac{du}{(u + \frac{B_1}{2})^2} + \int dx = \int O \]

\[\Rightarrow u = \frac{1}{x - c} - \frac{B_1}{2} \]

then the complete solution of equation (4) is
\[Z(x, y, t) = e^{\int \frac{1}{x-c} \frac{B_2}{2} t} + \int \lambda_1 dy + \int \lambda_2 dt \]

\[\lambda_2 + \lambda_1 t - \frac{A_1 \lambda_1^2}{2(\lambda_2 - \lambda_1)} x = e^{b_1(x - b_2)} \]

; \(b_1 = e^{c_1} \) and \(b_2 = ce^{c_1} \)

kind (2):

\[A_1 Z_{yy} + A_2 Z_{yx} + A_3 Z = 0 \]

this equation becomes after using (2) as follows:

\[A_1 w(t)(v'(y) + v^2(y)) + A_2 u(x)(v'(y) + v^2(y)) + A_3 = 0 \]

...(7)

Here we can separable the variables [3],[9]. hence

\[A_1 w(t) + A_2 u(x) + \frac{A_3}{(v'(y) + v^2(y))} = 0 \]

let \(A_1 w(t) = \lambda_1^2 \), \(A_2 u(x) = \lambda_2^2 \)

and \(\frac{A_3}{(v'(y) + v^2(y))} = -\left(\lambda_1^2 + \lambda_2^2\right) \)

\[\Rightarrow w(t) = \frac{\lambda_1^2}{A_1}, \quad u(x) = \frac{\lambda_2^2}{A_2} \quad \text{and} \]

\[v'(y) + v^2(y) = -\frac{A_3}{(\lambda_1^2 + \lambda_2^2)} \]

\[\Rightarrow v'(y) + v^2(y) + B_1^2 = 0 \]

...(8)

\[; \quad B_1^2 = \frac{A_3}{(\lambda_1^2 + \lambda_2^2)} \quad ; \quad \lambda_1^2 \neq -\lambda_2^2 \]

Equation (8) becomes

\[\frac{1}{B_1 \tan^{-1}\left(\frac{v}{B_1}\right)} = c - y \]

\(v = B_1 \tan(B_1c - B_1y) \)

\[Z = e^{\int \frac{A_3}{B_1^2} \int B_1 \tan(B_1c - B_1y) dy + \int \frac{A_2}{B_1^4} dt} \]

\[Z = e^{\frac{A_3}{B_1^2} \int \frac{A_2}{B_1^4} \int \lambda_1^2 \cos\left(\frac{A_3}{B_1^2} \lambda_1^2 y + d_1 \sin\left(\frac{A_3}{B_1^2} \lambda_1^2 + \lambda_2^2\right) y + d_2 \sin\left(\frac{A_3}{B_1^2} \lambda_1^2 + \lambda_2^2\right) y\right)} \]

; \(d_1 = e^{c\cos\frac{A_3}{B_1^2} \lambda_1^2} + \lambda_2^2 \) and \(d_2 = e^{c\sin\frac{A_3}{B_1^2} \lambda_1^2} + \lambda_2^2 \);

\(; \lambda_1^2 \neq -\lambda_2^2 \)

kind (3):

\[A_1 Z_{yy} + A_2 Z_{xx} + A_3 Z_{tt} + A_4 Z_{xy} = 0 \]

this equation becomes after using (2) as follows:

\[A_1 v(y)(w'(t) + w^2(t)) + A_2 \left(u'(x) + u^2(x) + A_3 \left(w'(t) + w^2(t) \right) + A_4 \right) u(x) v(y) = 0 \]

\[\frac{dv}{B_1^2 ((\frac{v}{B_1})^2 + 1)} + \int dy = \int 0 \]
let \(v(y) = \lambda_1 \)

\[
A_1 \lambda_1 (w'(t) + w^2(t)) + A_3 (w'(t) + w^2(t)) + A_4 \lambda_1 u(x) = 0 \quad \cdots (10)
\]

equation (10) is variable-separable equation[2],
we can solve it as follows:

\[
A_1 \lambda_1 (w'(t) + w^2(t)) + A_3 (w'(t) + w^2(t)) + \lambda_2^2 = 0
\]

\[
(A_1 \lambda_1 + A_3) w'(t) + (A_1 \lambda_1 + A_3) w^2(t) + \lambda_2^2 = 0
\]

\[
w'(t) + w^2(t) + B_1^2 = 0 \quad \cdots (11)
\]

\[
B_1^2 = \frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)} \quad \text{and} \quad \lambda_i \neq -\frac{A_3}{A_1}
\]

The equation (11) is similar to the equation (8)
and by the same method

\[
w = B_1 \tan(B_1 c - B_1 t)
\]

Also

\[
A_1 \lambda_1 (w'(t) + w^2(t)) + A_3 (w'(t) + w^2(t)) = -A_2 (u'(x) + u^2(x)) - A_4 \lambda_1 u(x) = -\lambda_2^2
\]

let

\[
\frac{A_2 \lambda_1^2}{2A_2} = D_1
\]

and

\[
\frac{\lambda_2^2}{A_2} + \frac{A_2 \lambda_1^2}{4A_2} = D_2^2
\]
\[
\int \frac{du}{(u(x) + D_1)^2} + \int dx = 0
\]
\[
\Rightarrow -1 \frac{1}{u(x) + D_1} = c - x
\]
\[
\Rightarrow u(x) = \frac{1}{c - x} - D_1
\]
Now
\[
\text{if } \frac{\lambda_2^2}{A_2} \neq -\frac{A_2^2}{2A_1}
\]
Then the complete solution of the equation (9) is
\[
Z = e^{\ln(\cosh(D_2x-D_1c)) - D_2x + \lambda_1 y + \ln(\cos(B_1c-B_1t)) + c_1}
\]
\[
\Rightarrow \frac{1}{x - c} < t < c - \frac{\pi}{2B_1}
\]
\[
Z = e^{\lambda_1 - \frac{\lambda_1\lambda_1}{2A_1}} (d_1 \cosh \frac{\lambda_2^2 + \frac{A_2^2}{4A_1}}{A_2 - \frac{A_2^2}{4A_1}} - x)
\]
\[
d_1 \sinh \frac{\lambda_2^2 + \frac{A_2^2}{4A_1}}{A_2 - \frac{A_2^2}{4A_1}}
\]
\[
(d_3 \cos \frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}t + \frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}t
\]
\[
d_4 \sin \frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}t)
\]
\[
\Rightarrow u'(x) + u^2(x) + \frac{A_4^2}{A_2} u(x) - \frac{\lambda_2^2}{A_2} = 0
\]
\[
\Rightarrow d_1 = \cosh \sqrt{\frac{\lambda_2^2}{A_2} + \frac{A_2^2}{4A_1} - c}
\]
\[
d_2 = \sinh \sqrt{\frac{\lambda_2^2}{A_2} + \frac{A_2^2}{4A_1} - c}
\]
\[
d_3 = e^t \cos \sqrt{\frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}c}
\]
\[
\text{and } d_4 = e^t \sin \sqrt{\frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}c}
\]

Then the complete solution of the equation (9) is
\[
Z = e^{\ln(\cosh(D_2x-D_1c)) - D_2x + \lambda_1 y + \ln(\cos(B_1c-B_1t)) + c_1}
\]
\[
\Rightarrow \frac{1}{x - c} < t < c - \frac{\pi}{2B_1}
\]
\[
Z = e^{\lambda_1 - \frac{\lambda_1\lambda_1}{2A_1}} (d_1 \cosh \frac{\lambda_2^2 + \frac{A_2^2}{4A_1}}{A_2 - \frac{A_2^2}{4A_1}} - x)
\]
\[
d_1 \sinh \frac{\lambda_2^2 + \frac{A_2^2}{4A_1}}{A_2 - \frac{A_2^2}{4A_1}}
\]
\[
(d_3 \cos \frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}t + \frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}t
\]
\[
d_4 \sin \frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}t)
\]
\[
\Rightarrow d_3 = e^t \cos \sqrt{\frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}c}
\]
\[
\text{and } d_4 = e^t \sin \sqrt{\frac{\lambda_2^2}{(A_1 \lambda_1 + A_3)}c}
\]
3. REFERENCES

الملخص

هدفنا في هذا البحث هو ايجاد الحل التام لبعض انواع المعادلات التفاضلية الجزئية الخطية من الرتبة الثالثة ذات معاملات ثابتة وصيغتها العامة وبدعم التمعوض

\[Z(x, y, t) = e^{\int u(x)dx + \int v(y)dy + \int w(t)dt} \]

تحول المعادلة الاعلية الى معادلة تفاضلية اعتبادية لا خطوية من الرتبة الثانية مع ثلاث دوال مستقلة

\[u(x), v(y), w(t) \]

\[A_1 Z_{xxx} + A_2 Z_{xyy} + A_3 Z_{yy} + A_4 Z_{xx} + A_5 Z_{xxy} + A_6 Z_{yxy} + A_7 Z_{yx} + A_8 Z_{xx} + A_9 Z_{xy} + A_{10} Z_{x} + A_{11} Z_{y} + A_{12} Z_{t} + A_{13} Z_{x} + A_{14} Z_{y} + A_{15} Z_{x} + A_{16} Z_{y} + A_{17} Z_{x} + A_{18} Z_{y} + A_{19} Z_{t} + A_{20} Z = 0, \]