Basrah Journal of Scienec (4) Vol.24(2),57-72, 2006

An iterative learning controller for robot manipulators with flexible joints
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ABSTRACT

In this paper a higher order iterative learning control scheme is proposed for flexible-joint
manipulators to improve their tracking accuracy. Tracking control can be carried out by using the
proposed learning law as a repeatation of the manipulation task without perfect knowledge of the
robot dynamics flexible joint. The proposed learning control scheme utilize more than one past
error history in the trajectories that are generated at prior iterations, the convergence proof is
given and examples are provided to show the effectiveness of the algorithm . simulation results
indicate that the proposed learning control method has better convergence speed and robustness
of the algorithm against error in initial setting and disturbances is studied through computer

simulations .
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1.Introduction

A control system with the ability to learn is called learning control system . Although a
mechanical device (controller) is not as intelligent as a human operator ,one can still incorporate
a certain degree of learning capability in control algorithms, particularly in situations where the
system is performing repetitive operations.

Many applications of industrial robots are of this nature ,and hence we can introduce a learning
control law to improve the tracking performance of the robot. In learning control, the controller
adjusts the system input as the trials repeated such that the output tracks a desired trajectory ,as
the number of trials increases . The system input will approach the ideal one. Hence ,the system
learns from previous trial to adjust the system input of the next trial. Recently much effort has
been directed to the learning control design for robot repetitive operations [1-4].

Many papers apply the learning control method for the flexible joints robot for example in [5] ,a
two —stage control scheme has been proposed first the motor reference trajectory is learned
iteratively and then the required torque input is learned iteratively . In [6,7] a linearized robot
dynamics have been used , further, Wang [8] has proposed a simple iterative learning control
law
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for improving the tracking performance for robot manipulator with flexible joint. It was shown
that the learning control algorithm may use position, velocity and acceleration error in updating
the command input . In [9] a simple iterative learning control scheme using internal model is
used for the control of robot manipulator with flexible joints. In this paper, an iterative learning
control scheme is used for the control of robot manipulator with flexible joints , the control
signal is synthesized from three past-history data. A convergence proof is given and shows that
the proposed third order learning control method does not need exact mathematical description
of the system being controlled. Many examples are considered and simulation results for a two-
link flexible joint robot manipulator are given and show the effectiveness of the proposed
algorithm in reducing the error in motion of the flexible joint robot .Robustness of the algorithm
against error in initial settings and disturbances is studied through computer simulations.

2. Learning control design
Consider a robot manipulator with flexible joints .The flexibility is assumed only on the rotary
direction of the rotor and link angles ,which are referenced to the same axis .The control input is
applied to the motor ,and the motor torque is passed through the flexible transmission to turn the
link on the other side. The dynamics of robot with flexible joints can be modeled by the
following equations [7]

Mlg) Rlg)] [4

R7(q) J ||6]"

{(ﬂ(q,q)+ Ni(q,0)i + N2 (9,4)0 + g(q)+ k(g - 0)+ flc})} _ {0} _______ M
N3(q.4)q k(g -0)+ f,,0

In eq.1, ¢ is nx! vector comprising the n link angles, ¢ is the link angular velocity vector ,0 is

nx1 vector comprising the rotor angles . € is the rotor angular velocity vector and u is nx1
comprises the control inputs applied at the n joint motors. M(q) and J are the inertia matrices of
the manipulator and the joint motors respectively, while

d o1 .,
)=l —M(q)|lg—-=|=¢"M(q)q
Blg.4) [ 0 (CI)}] % [ 54 (Q)CI}
combines the centrifugal and coriolis terms ,and g(g) is the gravity term . The stiffness of the

elastic joints are characterized by the nxn matrix £ ,whose diagonal elements are the stiffness of
the flexible joint transmissions.

The gyroscopic coupling matrix R(g) is strictly upper triangular and the matrices N, , i=1,2,3

1
. have linear dependent on velocity and are zero when R(g) is a constant matrix . The matrices

fl and fm are diagonal positive - semi definite, representing friction at the link and at the

motor side of the transmissions. To use a learning controller to improve the tracking performance
of such robots with joint flexibility , a feed back controller is assumed available to guarantee the
closed —loop stability. A simple PD (proportional plus derivative) feedback type with gravity
compensation is used to guarantee global stability of flexibility of flexible joint robots[7].
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The objective of this paper is to design a learning controller for flexible joint robots. In
particular, ¢, (l‘), q, (l‘), and ¢, (t) are given as link angle trajectories to be followed

repeatedly in the time interval [0,7] .We assume that the rotor angles are available for on-line
feedback control purposes . We also assume that the link angles are available for off-line
computation after an operation task is completed.

The controller is made of two parts in the kth operation. These are
u=u,+m, L 2

Where #, and M, are designed to guarantee stability and to improve tracking performance

respectively . The first part is a stabilization feedback controller that is the same at every
operation cycle, as PD controller

ulzC(qd —-0,4, —9) ...... 3)

The controller uses g, and q'd as reference trajectory for & and € because computation of
(9d and ¢9d requires exact knowledge of robot dynamics and parameters , which are not

available. But we know that ¢, and 6’d are close if the joint transmissions are stiff [9] .Design

of such stabilization controllers has been successfully carried out in many papers, for example
in [5-9]. Since such feedback control can guarantee closed-loop stability [8].
It can be assumed the velocity tracking error is uniformly bounded ,i.e.

Hq'd (t)— q(t)ﬂ < & where & isa constant .

3.Learning control of motion for robot manipulators :
The closed-loop robot dynamics can be written as

w0 1

(B(4:d)+ Nola,0) + No(g,4)0 + g(q)+ k(g - 6)+ fid) | _ {0}

U Ngadi—kg—0)+ £,6-C(6.6.94.4,)
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The system eq. 4 can be rewritten in state space form

where  x=D'(q)F(x)+DYq)E-m .. )
I 0 0 0
o[y 0 o o
0 R'(qg) 0 J

] ) )

Flx)=- Blg.q)+ Nl(q,g)q+N2(q(,9q')9+g(q)+k(q—9)+ fiq

- Ni(a.@)i—klg-0)-C(0.0,9,.4,)+ 1,6 |

Without loss of generality of robot systems ,we assume that eq.5 has the following properties :
1. Every operation ends in a finite time interval 7; i.e. t € [0,T].
2. The functions D(q(t)) and F (x(z)) are bounded on the interval [0, T]

3. The functions D(q(t)) and F(x(t)) are Lipschitzain functions of their arguments in the interval
[0.T].
4. Repeatability of the initial setting is satisfied , i.e , the initial state X, (0) of the system is set

to the same value at the beginning of each operation, as X, (0) =X, fork=12, ... wherek
denotes the trial number of operation.
5. Each output trajectory ), (t) can be measured without noise and hence the error signal

e, =Y, (t)— Vi (t) can be used in the construction of the next input.

6. The desired operations trajectory is given as X ; (t) prior over the time duration ¢ € [0,T]. The

closed loop equation for the kth operation is given by
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Xy :D_l(qk)F(xk)—er_l(qk)E-mk ........ (6)

The second part of eq. 2 is a biased function. It is updated between two consecutive cycles
according to the following learning law :

my g () = Ay -my (0)+ Ay -my_y () + Ag - my_ (6)+ By (3, (£) — %, (¢)) +

By (% (t)— x4 (1)) + By (3, (1) — %4 (1))
()

Where 4,,A4,,A4;,B,;,B,, B; are the bounded learning gains which are nxn symmetric and
positive-definite and satisfies the conditions

HAI -B,D™’ (Qk )EHOO +HA2 -B,D”’ (Qk—z )EHOO +HA3 -B,D”’ (Qk—z )EHOO<1

and A +A,+4A;,=1 L (9) Assume
that at every operation the initial state is set the same that is , X, (0) =X, (O)for
k=0,1,2,3,...Then a sequence of input 71, (t) will be generated such that m, (l‘) —>my (t)
uniformly for ¢+ € [0,7] and the state variables X, (t) , generated by this control are such that

xk(t) — xd(t) uniformly for ¢+ € [0,7T]1as kK —> .
In proving the convergence of the proposed learning control algorithm, we use the following

n
norm definitions : the norm of an » — vector fis Hf” = /z xl-2
i=1

.and the induced norm of a matrix 4 is HAH = max- A7 - 4 - the & norm for a function

eignvalue
his || =sup-e™|A|_ r< 011

M(q) R(CI)]

Define w; >0forallgsothat Wyl <
R'(q)

4.Convergence proof :

Consider the feedback control robot system with joint flexibility as given by eq.1- 7. It was
shown in [5] that when the desired link angle trajectories ¢ ; are

given, the desired motor angle variables 6’d (t) 9d (t) éd (t) and the desired biased term
m, (t ) exit. The dynamics at the desired state trajectory is given by
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x,=D"(q,) F(x,)+D " (q,)E-m, ... (10)

taking the difference of eq. 6 and eq.10.

Xg =X :D_](qk)'[F(xd)_F(xk)+E(md _mk)]+|_D_](qd)_D_](qk)J
[F(x,)+E-m,]

............. 11
with the assurance of tracking stability ,Local Lipschitz conditions [8] are z(issamed as follows
HD_J(%)_D_I(QIC)HSal”% _Qk” ! ”F(xd)_F(xk)HSaZde _xk”

Where a; and a, are the corresponding local Lipschitz constants .  From eq. 7 and 11 we

have

mg —my ;= Al(md _mk)+A2(md _mk—1)+A3(md —my 2)_31(5%1 _xk)

=B, (% — % 1)~ Byt — %4 5)
(0= m, (- m, 0 widF()= i)~ Fl)
Oy g = A10my + Ay0my 4 + A36;_,m
- By _D_l(Qk JOF (x; )+ E - 6my, |+ [D_l(Qd)_D_l(Qk )J [F(x,)+E-m, ]J
- B, _D_l(‘]k—l)[éF(xk—l)Jf E-6m ]+ [D_l(qcz )- D_l(Qk—l)J° [Fx, )+ E-m, ]J

— B; _D_l(Qk—z NOF (x4 o)+ E - 6my_, |+ lD_l(Qd )- D_l(Qk—z )J [Fxg)+E-my ]J

Taking norm and using the bounds and Lipschitz conditions, and applying Gronwall-Bellman
Lemma [11],we obtain

|y < |4y = BLD™ (i JE| - [y | + By - [D g )| - | (i )
+ ”B]” ' HD_I (C]d )_ D™ (‘Ik )H ' ”F(xd )"‘ E-m, ” T HAz - BzD_I (qk—l )EH ' ||é}”k—1||

+[B,| HD_l(CIk—l)H [l6F (g )|+ B2 HD_l(Qd )-D g4 )H (g )+ E-my|
+ HAs ~BsD (g4 )EH [omy o + | B HD_l (-2 )” o ()|
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+[Bs]-[Dgu )~ DHauoo ) -|F )+ E-my|

<8, |om, |+ S,|0m,_; |+ S5|0m,_, |+ by || +by, |k, |
+by 'C'||5xk—2|| ................ (13)

Where

S, =4, - B,D™ (¢, )E| , S, =|4,-B,D"(q, ,)E|

S; = HAs ~B;D™ (Qk—z )EH

c=d-a,+a, a; : d:HW1_1H-

by by, and by arethe normbound for B, , B, and Bj, espectively[11]

t€[0,7]

Because X, (0) =X, (0) for all k£ ,we have from eq. 11

1D g P (xg) - Fx, )+ E(my —m, )]

b = x| <
0
+|DMgy)-D Mg ) [F(x))+ E-mgYde| . 14)
t
bea =0 < T D)~ P g =
0
+ HD_l(qd )-D (g, )H : ||F(xd )+ E-m, ||}dr|| ........ (15)
t
<[c|x, —x;|+d|my —mj|az L. (16)
0
t
ey = x] < dfec(t_r)”é‘mk”dz' .......... (17)
0
Similarly
t
oy = x4 < djec(’_r)||5mk_l||dr ........... (18)
0
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t
Iy — x| < d[e|om, _,|dr
0

Substituting egs. 17,18 and 19 into 13 gives :
L t
(ol < Sy -J6in, |+ by, -+ [ om e+, -|Giny o |+ by, e[ )
0 0

t
|6my sdT+ Sy -|Gmy_y |+ b -c-d[e)|dmy_y|dz
0

Multiplying both sides by e™™ we have the following:

t
e_m||5mk+1|| <e ™ [Sl||5mk|| +bg - dj ec(t_f)”émk”dr +S, - ||5mk_1||
0

t t
+by c-df e om, |+ Sm, |+ by -c-d| )5, _,|d7]
0 0
with R, :[bB, -c-dJ , R, :leZ -c-dJ R; =|_bB3 -c-dJ we have
t
e Smy | < Sy |omy |+ Ry [ e ¥ N i, |d 7 + Spe oy
0

t t
+ R, [e N Sn Ndr + Sae |6m, |+ Ry [e el N\ Sm, |dr
3| k-1 3 k-2 3 k-2
0

0
.............. (22)
Hence ,we have
lomy i, (S lomy, +Sslom_i], +Sslom_.], e (23)
Where
§,= 8+ (oelear) 5, =5, o (1o elor)
a-—c a-—c
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53 =S, + al%c (1—e("’“)T)

If we choose S, +.5, +8,( 1 ,anda >c and large enough so that S; + S, + S5(1 ,

then eq. 23 converges such that m, — m, uniformly for ¢ e [O,T] as k — oo .Applying the

same argument to eq. 17 , we have

(] — e(c_“)T)Hmd -m| (24)

x4 _'kaa<a _

Hence the state variables x,(¢) also converge such that x, — x, as k —> 00.We can notice
the following :
1.In the case of perfect repeatability of initialization i.e. 5.xk (0) = (for all k, an exact

knowledge of robot dynamics, which makes §m0 =0 the tracking error bonds will be zero,

and this implies the convergence of the algorithm to the desired trajectories .

2. Although present industrial robots are quite good at repeatability precision, they do not satisfy
the repeatability condition thoroughly [9,11]. Therefore it is reasonable to relax some of the
conditions mentioned in section (3) ,the following properties are used :

a. The system is reinitialized at the beginning of each operation , namely the initial state X, at
t=0 .can be set as possible to the specified state X _ .Thereby there exists a sufficiently small
constant &, > () ;such that ka (0)— xOH < & for every k, where k denotes the trial number

of operation . when the knowledge of the robot parameters is limited, “51710“/1 could be
dominant in the tracking error bound in eq.(22) and (23) .To reduce the effect due to this factor ,
we can reduce “57%0“/1 from cycle to cycle of operation .The first way is to reduced the

weighting of the inaccuracy of the initial guess m2, in the bounds . The second way can be

implement by refreshing the memory content of 7712, by 11} after the k th operation, where

H@Ck (0)” is observed to be less than H5xo H sthe bias term 777} is considered a better guess
o

than the initial guess 771, .

b. Each time ,the output Y, (l‘) is measured within a small specified noise, i.e.
e (t)= Ya (t)— [yk (t)—|— ny (l‘)] the noise 7, (t) must satisfy an (t)ﬂoo <&, for
some small constant £, > 0 .

3.The tracking error bounds remain the same if additional disturbances exist ,as long as they are

Lipschitz .In the presence of the disturbances that are discontinuous ,additional terms will appear
in the tracking bonds.

Numeical Example :

In this section we consider an example of a two-link manipulator with flexible joints. It is used
to illustrate the effectiveness of the algorithm. Computer simulations are carried out to indicate
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the transient and steady state performance. The simulation is conducted by means of the fourth
order Rung kutta method. Here we consider a two-link manipulator as shown in fig.(1).

Both joints are assumed flexible as illustrated in fig.(2) and to be linear. The dynamics of this
manipulator takes the following form [10].

M(q)i+ B(q.q)+ g(q)+klg—-0)=0
RO-k(g-0)=u L (25)

In the above equations, g = (ql,qz )T contains the link angles, & = ((9 0, )T the rotor

angles, and u = (ul,uz) the two inputs to the joint motors. The manipulator inertia matrix is

L%m2 +2L,L,m, cos(q2)+ Lf (ml + mz) L%mz + L Lom, COS(qZ)

M =
(Q) Lgm2 +LL,m, COS(qZ) Lémz

And the coriolis , centrifugal and gravity terms are combined as
maLyLyGy(2dy + G, )sin g, + gmyLy c0s(gy + g5 ) +
Bla.q)+e(q)=| gL, (m, + My )COS ¢,
myLiLydy Sing, + gmy L, €0s(gy + q,)
where 7717, ) denote the masses of the up arm and low arm L] ) L2 denote the length of

the upper link and lower link respectively ,g is the gravity constant . In this simulation , the
parameter values are chosen as :

mjp; = 05kg , My = 05kg ,L] =/ m L2 =0.8 m , g =938 m/SeC2

r, 0 5 0 5
R = = 5 kg.m~ the inertia matrix of the joints .

and

0 r 0
k, 0 1000 0 5
k = = kg.mISEC” the joint stiffness
0 k, 0 1000

The robotisidleat ¢, = —1.57 radand ¢, = 2.967 rad.

The control objective is to force the manipulator to track the desired trajectory as given by [9]

q1, (t)=-1.57 +0.916(1— cos1.26¢) rad for <25 sec

=0.261 rad for ¢>25 sec
q, (t) =2.967- 1.047(1-cos1.26t) rad for +< 25 sec
=0.8726 rad for ¢>25 sec

then assume that, a PD feedback control law is designed to ensure the stability of the system in
the following form
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u=ki(g—q,)-kyg+ks0—-g)+v . (26)

100 O 110 0 200 O
. k= kg =
0 100 0 10 0 200

Where Vv is the learning control input added to improve the motion tracking. the learning law can

With

'
1

be derived as follow

Vignn = A AoVt Aigvig o+ Bll(qld —d1k )+ By, (%d - %,k—l)
+B13(G1g —G12)

Vo ka1 = Ag1Vo p + AppVp g+ AxzVo o le(éizd - éiz,k)"‘ Bs, (‘725[ - 5i2,k—1)

+ B3 (G20 —Gop-2)
where Ah. , Azi , Bli , B2i , 1=1,2,3 are the gain that are chosen to satisfy the condition of eq.8

and eq.9 so that
A,=12, A,=-0.15 ~ A,=-0.05, A,y=12, A, =-0.15,

Ayz =—0.05,

B,,=1.065m,  B,=-0lm,  B;=0035m, B, =1.065m,,
By, =—0.1m,,

By =0.035m,

Example:

In this section, three cases are given to illustrate the effectiveness of the proposed learning
control algorithm , in each case the performance of the third. Order learning control is compared
with that of the first order learning control algorithm proposed in [9] which used PD feedback
with learning control part uses one past error history data.

6.1 Case when the dynamics of the plant is known :

In this case we take the exact values of the masses of the up and low arms and assume that they
are to be known. Simulation results of the motion leaning control for flexible joint robot are
obtained in fig.(3) and fig.(4) which

show the error tracking performance for different trials for ¢; and ¢ ».Comparison of the
performance of our proposed method with that in [9] indicates that a smaller tracking error is
obtained by applying our proposed method.

6.2 Effect of error in initial settings:

In this case the robustness of the proposed learning control algorithm against error in initial
settings is studied. For this case we take the same settings of the control gains being in case one.
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Suppose we have an error in the initial settings, say ¢4 (O) =0.002 and ¢, (O) =0.002 ,as

shown in fig.(5) and fig.(6). We can observe, from the computer simulation that the tracking
performance recover in ten iterations when the third order learning control method was
used while a similar performance was achieved after 14 iterations in first order method in [9].

6.3 Effect of disturbances :
Consider the robustness with respect to disturbances. Suppose that there is an external

disturbance which increases the mass 71, by 20% ,fig.(7) and fig.(8) contain the results for the

case when there is a disturbance, error in initial settings and measurement noise. We can
observed from the result obtained that the third order method is faster than the first order method
in [9]. It was shown that the trajectories approach neighborhoods of the desired one in a certain
sense, even if error of initialization, error in measurements and disturbances during operation
exist to some extent at every attempt of operation. Investigating these figures highlights the main
conclusion “the proposed algorithm has a smaller tracking error and it is robust against error in
initial settings and disturbances”.

Conclusions :

It has been shown that an iterative learning control method can be used to improve the tracking
performance of robot manipulators with flexible joints . It was shown that the link angles of a
robot will track the specified trajectory with bounded errors and theses bounds can be reduced by
properly choosing the learning control parameters . In contrast to other known methods the
proposed learning control scheme can utilize more than one past error history contained in the
trajectories generated at prior iterations. A convergence proof is given and a numerical example
is presented to show the validity of the algorithm in control the robot manipulator with flexible
joints. It was shown that the proposed method is robust against variations in initial setting and
disturbances. Tracking error is reduced due to the use of the proposed learning control algorithm
which makes the output to be close to the desired trajectory. It gives a good tracking
performance.
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Fig 2: Flexible joint transmission
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