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Re-sampling in Linear Regression Model Using 
Jackknife and Bootstrap  
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Abstract 

Statistical inference is based generally on some estimates 
that are functions of the data. Resampling methods offer strategies 
to estimate or approximate the sampling distribution of a statistic. In 
this article, two resampling methods are studied, jackknife and 
bootstrap, where the main objective is to examine the accuracy of 
these methods in estimating the distribution of the regression 
parameters through different sample sizes and different bootstrap 
replications. 
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  Bootstrap و  Jackknife باستخدام نموذج الانحدار الخطيالمعاينة بإرجاع 

 الملخص

لال الإحصائي يعتمد بصورة عامة على مقدرات إحـصائية والتـي           إن الاستد 

 لتقدير  توان طرائق إعادة المعاينة توفر إستراتيجيا     . تكون دوال لبيانات تلك المقدرات    

 ـ     . أو لتقريب توزيع المعاينة لهذه المقدرات الإحصائية        دراسـة   تفي بحثنـا هـذا تم

 وقـد . Bootstrap و   Jackknifeق إعادة المعاينة وهما طريقـة       ائطريقتين من طر  

نتائج مقدرات أسـاليب    في  هذا البحث على دراسة تأثير أحجام العينات المختلفة         تركز  

، والتعرف على المـديات المثلـى لأسـلوب         ) Jackknife(و  ) Bootstrap(انحدار  

)Bootstrap  (        كما تضمن هـذا البحـث      . من خلال طرح العديد من قيم التكرارات

ب التي تقودنا إلى استخدام هذه الأساليب عوضا عن طريقة المربعات           عرض أهم الأسبا  

 .الصغرى الاعتيادية في تقدير معلمات نموذج الانحدار الخطي 

1- Introduction 

Two of the most important problems in applied statistics 
are the  determination of an estimator for a particular parameter of 
interest and the evaluation of the accuracy of that estimator through 
estimates of the standard error of the estimator and the 
determination of confidence intervals for the parameter (Chernick, 
2008). Jackknife and bootstrap resampling methods are designed to 
estimate standard errors, bias, confidence intervals, and prediction 
error. The jackknife preceded the bootstrap. The jackknife 
resampling is generated by sequentially deleting single datum from 
the original sample (Friedl and Stampfer, 2002). The bootstrap is a 
resampling method that draws a large collection of samples from the 
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original data. It is used to select the observation randomly with 
replacement from the original data sample (Efron and Tibshirani, 
1993).  

One of the most important and frequent types of statistical 
analysis is regression analysis, in which we study the effects of 
explanatory variables on a response variable. The use of the 
jackknife and bootstrap to estimate the sampling distribution of the 
parameter estimates in linear regression model was first proposed by 
Efron (1979) and further developed by Freedman(1981), Wu 
(1986).There has been considerable interest in recent years in the 
use of the jackknife and bootstrap in the regression context.  In this 
study, we focus on the accuracy of the jackknife and bootstrap 
resampling methods in estimating the distribution of the regression 
parameters through different sample sizes and different bootstrap 
replications. The contents of this article may be divided into seven 
sections. In sections 2 and 3 we briefly review the jackknifing and 
bootstrapping regression model respectively. In section 4 we 
introduce our simulation  design, whereas the simulation results, 
conclusion, and references are given in sections 5,6, and 7 
respectively. 

2- Jackknifing Linear Regression Model 

For the linear regression model 

  eXY +β=                                                          ……………(1) 

where Y  denotes the 1n×  vector of the response,  
)x,...,x,x(X k21= is the matrix of  regressors with kn×  , and e  is an 

1n×  vector of error which has normal distribution with zero mean 
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and variance 2
eσ  (Yan and Su, 2009). The least squares estimator is 

given by   

 YX)XX(ˆ 1ols ′′=β −                                                     …………(2) 

The variance – covariance matrix of olsβ̂  is  

 12 )XX(ˆ)ˆcov(var ols
−′σ=β−                            ……………(3) 

If β  is estimated by β̂ , then θ  is estimated by )ˆ(gˆ θ=θ , with 
respective jackknife values  )ˆ(gˆ

iβ=θ  .The jackknife estimation of 

the variance and bias of the )ˆ(gˆ
olsols β=θ , delete the pair 

)n,...,2,1i(),x,y( ii =′  and calculate  )J(ˆ
olsθ , the least squares estimate 

of θ  based on the rest of  the data set (Shao and Tu,1995). The 
estimation of the Jβ̂ , bias and variance  with pseudo-values are  

∑
=
β=β

n

1i
JiJ

~
n
1ˆ                                            …………………..(4) 

 )~ˆ()
n
1()J(bias

n

1i
Jiols∑

=
β−β=                       ……………….(5) 

  )ˆ~)(ˆ~(
)1n(n

1)ˆ(V JJi
n

1i
JJiJ ′β−ββ−β

−
=β ∑

=
              …………(6)  

respectively , where the Ji
~
β  is the pseudo-value and equals to 

  JiolsJi
ˆ)1n(ˆn~
β−−β=β                           ………………….(7) 

(Friedl and Stampfer, 2001). 
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The following are the steps of jackknifing linear regression model 
(Sahinler and Topuz, 2007): 

1- Draw n sized sample from population randomly and label the 
elements of the vector )x,y(w jiii ′= . 

2- Delete the first row of the vector )x,y(w jiii ′=  and label the 

remaining 1n −  sized observation sets and estimate the ols 

regression coefficients 1Jβ̂  from 1w . Then, omit second row of 
the vector  )x,y(w jiii ′=  after that bring back the deleted first 

row,  label remaining n-1 sized observation sets  and estimate the 
ols regression coefficients  2Jβ̂ from  2w . Similarly, omit each 
one of the n observation sets and estimate the regression 
coefficients as Jiβ̂ alternately, where Jiβ̂  is jackknife regression 
coefficient vector estimated after deleting of  ith   observation set 
from iw . 

3- Calculate the jackknife regression coefficient, bias, and standard 
error for each coefficient from equation  (4),(5), and (6). 

3- Bootstrapping Linear Regression Model 

Efron(1979) has developed a new re-sampling procedure 
named as “Bootstrap” . Bootstrap is a resample consists of n  
elements that are drawn randomly from the n original data 
observations with replacement (Friedl & Stampfer, 2002). The all 
bootstrap samples are nn , but we choose B bootstrap samples. 
Consider the linear regression  model in equation (1), bootstrapping 
can be done by either re-sampling the residuals,in which the 
regressors )x,...,x,x( k21  are assumed to be fixed, or resampling the 
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iy  values and their associated ix  values, in which the re-gressors 
are assumed to be random. In our study, we deal with the residuals 
resampling. So, the bootstrapping residuals steps are: 

1- On the original data set estimate the regression coefficients and 
compute the residuals ie  . 

2- For B,...,2,1r =  draw a n  sized bootstrap sample with 
replacement )e,...,e,e( bB2b1b  from the residuals ie ,and compute 
the bootstrap y  values 

     bolsb eˆXy +β=                                              ……………(8) 

3- Estimate the regression coefficients based  on (8), using 

    br
1

olsbr eX)XX(ˆˆ ′′+β=β −                              ……………(9) 

and repeat steps 2 and 3for r . Then the bootstrap estimate of the  
regression coefficient is: 

     ∑
=
β=β

B

1r
brb

ˆ
B
1ˆ                                           ……………..(10)  

The bootstrap bias and the variance are given below(Shao and 
Tu,1995) 

    )ˆˆ()b(bias olsb β−β=                           ……………….(11) 

    )ˆˆ)(ˆˆ(
1B

1)ˆ(V bbr
B

1r
bbrb ′β−ββ−β

−
=β ∑

=
     …………(12) 

4- Simulation Study 

In this section, we describe the design of our study. We 
consider our population size that is 1000 , and we have three 
explanatory variables  )3k( = , each one has a uniform distribution 
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with )1,0( . The error distribution is assumed  normal with mean 0  
and variance 4 .For multiple linear regression we consider 

)12.45,89.78,02.85,93.1797(=β . We draw  four samples with sizes 
100and,50,30,10  respectively. Finally, we took three values of 

bootstrap samples )10000and,1000,100)B( =  for each sample size. 
All computations are done by using  R  programs for windows. 

5- Simulation Results 

For each sample size  we fit the ordinary least squares linear 
regression model and jackknifing and for B we fit the bootstrapping 
regression model. The results are shown in tables (1) and (2), which 
shows that both ols and jackknife have small difference between the 
MSE values when the sample size are 30 and 50, also the 
jackknife’s MSE value when the sample size is 10 is greater than the 
ols since the jackknife samples have size  n-1. In general, the MSE 
values for the bootstrap resampling with varying  n and B are less 
than the ols and jackknife values. Comparing the estimated 
bootstrap and jackknife coefficients from equations (4) and (10) 
with the coefficients that are estimated by ols , show that there are a 
little bias in the jackknife and bootstrap coefficients, and the bias 
decreases when the sample size and B  increase. The jackknifed 
standard error  )ˆ(E.S Jβ  for the coefficients is greater than the 

)ˆ(E.S olsβ  and )ˆ(E.S bβ  when  30,10n =  , but when 100and,50n =   the  

)ˆ(E.S Jβ become converge as compared with  the )ˆ(E.S olsβ  and 

)ˆ(E.S bβ .The bootstrapped standard error )ˆ(E.S bβ  of the coefficients 

become smaller than the )ˆ(E.S olsβ  when B and n increase. The 
distributions of the bootstrapped and jackknifed regression 
coefficients for   310

ˆand,2ˆ,ˆ,ˆ ββββ are graphed in figures (1),(2),(3), 
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and (4). The histograms of the bootstrap estimates conform quite 
well to the normal distribution for all parameters when n equals to 

100and,50,30,10  and B are equal to 10000and,1000,100 . The 
jackknife’s histograms of the estimated parameters also conform the 
normal distribution especially when n is  100and,50 .  

 

 

 

 

 

 

 

 

 

 

Table(1): The least squares method and jackknifing results of the 
regression parameters 

Regression Jackknife 
olsβ̂  )ˆ(E.S olsβ  

Jβ̂  )J(bias  )ˆ(E.S Jβ  

1805.277 5.399 1806.391 -1.151 7.013 
78.104 4.937 76.974 1.152 8.061 
75.181 4.353 72.789 2.401 5.305 
43.437 4.747 44.749 -1.251 4.634 

n=
10

 

MSE=13.880 MSE=14.165 
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1799.365 2.689 1799.236 0.134 3.476 
84.679 3.993 85.543 -0.869 5.368 
80.065 3.141 79.538 0.528 4.217 
41.807 3.287 42.178 -0.393 4.149 

n=
30

 
MSE=22.809 MSE=22.783 

1798.134 2.123 1798.24 -0.098 2.323 
84.986 2.363 84.928 0.0549 2.464 
81.013 2.342 80.916 0.1036 2.18 
43.827 2.28 43.836 -0.034 2.086 

n=
50

 

MSE=20.532 MSE=20.501 
1797.095 1.391 1797.097 0.0173 1.363 
85.449 1.533 85.428 0.0062 1.585 
76.923 1.405 76.941 -0.026 1.448 
48.545 1.48 48.537 0.0003 1.419 n=

10
0 

MSE=17.802 MSE=17.765 
 

 

 

 

 

Table(2): The bootstrap  results of the regression parameters 

B=100 B=1000 B=10,000 
bβ̂  )b(bias  )ˆ(E.S bβ  bβ̂  )b(bias  )ˆ(E.S bβ  bβ̂  )b(bias  )ˆ(E.S bβ

 

1804.65 -0.621 4.139 1805.51 0.234 4.211 1805.27 -0.004 4.226 
78.004 -0.099 3.956 77.939 -0.164 3.877 78.136 0.031 3.894 
75.674 0.492 3.292 75.013 -0.168 3.411 75.136 -0.045 3.404 
44.425 0.987 3.754 43.262 -0.174 3.727 43.46 0.023 3.708 

n=
10

 

MSE=8.776 MSE=8.306 MSE=8.447 
1799.65 0.289 2.303 1799.53 0.167 2.464 1799.35 -0.009 2.488 
84.739 0.059 3.956 84.554 -0.125 3.671 84.729 0.049 3.71 n=

30
 

80.136 0.071 2.544 79.984 -0.081 2.86 80.047 -0.017 2.935 
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41.019 -0.788 3.011 41.669 -0.138 2.97 41.807 0 3.065 
MSE=19.1022 MSE=19.675 MSE=19.656 

1798.0 -0.035 2.112 1798.10 -0.29 2.045 1798.15 0.016 2.042 
85.064 0.077 2.008 85.013 0.027 2.292 84.946 -0.04 2.251 
81.054 0.04 2.109 81.056 0.042 2.154 81.022 -0.009 2.246 
43.777 -0.049 2.306 43.802 -0.024 2.158 43.822 -0.005 2.19 

n=
50

 

MSE=18.918 MSE= 19.037 MSE= 18.852 
1797.2 0.105 1.535 1797.0 -0.021 1.379 1797.1 0.012 1.358 
85.54 0.091 1.544 85.428 -0.021 1.5 85.427 -0.021 1.505 
76.649 -0.273 1.367 77 0.076 1.381 76.921 -0.001 1.372 
48.609 0.063 1.413 48.527 -0.018 1.477 48.551 0.005 1.456 n=

10
0 

MSE=16.981 MSE=  16.877 MSE= 17.026 
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Figure(1): The histogram of the bootstrap and jackknife for n=10. 
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Figure(2): The histogram of the bootstrap and jackknife for n=30. 
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Figure(3): The histogram of the bootstrap and jackknife for n=50. 
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re(4): The histogram of the bootstrap and jackknife for n=100. 

 

6-Conclusion  

Bootstrap and jackknife methods are sample reuse techniques 
designed to estimate standard errors and confidence intervals. As a 
conclusion, we can rely on the jackknife results when the sample 
size is large enough )50n( ≥ . When B is increased we can get best 
results and less bias in bootstrap resampling . The histograms 
conform well to the normal distribution when the number of  
bootstrap replications B is enough large 10000B.e.i =  and the 
sample size being large too. The jackknife resampling results close 

B=1000

B=10000

Jackknife
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to the results of the bootstrap resampling when n is enough 
sufficient and B is large too. 
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