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Abstract Autonomous vehicle navigation iavitnesed a huge revolutionary revision regarding
development irMicro-Electro Mechanical System (MEMS) technologyost recently, Strapdown
Inertial Navigation System [BNS) hassuccessfullypeenintegrated with Global Positioning System
(GPS). However, different grades of MEMS inertial sensors are availablerarusing the convenient
grade is quite important. Noises in inertial sensor are mostly treated througbisieg the dditive
errors to improve therecisionof SDINS output. Unfortunatelyntegration inSDINS mechanization
causesa growing in ®INS error output which considered the main challenge in integrating MEMS
inertial sensors with GPSThis paperaimsto promote the longerm performance of the MEMS
SDINS/GPS integrated system. A new integrated structure is proposed to model the nonlirlkeatities
exist in HINS dynamics in addition to the error uncertainty in the inertial sefisoeasurements. A
robust NonlineaAutoRegressive models with eXogenous inputs (NARX) bggithmare designed

for data fusion in the proposed GPS/INS integrated systatidation for the proposed integrated
system habeen carried out using differefield tests data in order to assess the accuracy of the system
during GPS denied environment. The results obtained demonttedtine proposed NARX model is
applicative and satisfactory which showdesiredpredictionperformance.

Index Terms INS, GPSNARX, MEMS, IMU

I. INTRODUCTION

Development of the first Micr&lectraoMechanical $stems (MEMS)was presented by Draper
laboratory in 1986. Since that, MEMS technology has been widely used in manufadbwrentp ts
small size, low pwer consumption, and cheapnéss/asused in developing the inertial measurement
sensors and especially accelerometers and gyroscopes. Nowadays, most of the applications like mobile
robots, cameras, smart phones, platform stabilizers, most of theesgoti p ment 6 s, and
systemsare equipped withthese inertial measuremenigit sensors (IMU).Actually, the Inertial
Navigation SystenfINS) is considered as one of thestcommonmechanical navigation devicésat
can afford an accuratesolution for navigation based on inertial MEMS sensors. However, the
minimization in size for MEMS sensors make these sensors more liable to variation in surrounding work
environment like temperature, pressure, magnetic and electric fields and vilitation

Therefore, the accuracy of navigation solutigmguding position and velocity is reduced for leng
term operation which depends on the grade of the MEMS sensors utiiaedver Global Positioning
System (GPS) has been dominated in many equipmenteduickes. Onthe other handhe researchers
confront different problems in different environmevherethe signalof GPS islost due to various
conditions such as tall buildings and trees or inside tunnels and also degradation of signal quality during
bad weather. It is clear that both navigation systems have advantages and disadvantages. Therefore,
improvinganinclusivenavigation solutiorcan be donéhroughthe integrationbetween both GPS and
INS systemduy increasingheir advantages ardecreasingheir disadvantages.

Kalman Filter (KF)is widely utilized to integrate botthe GPSandINS systemdo estimateand
predictthe INS error. Unfortunately, fequires a mathematical model aatbwledgefor the process
noise covariance and sensor noise covariance maf@esd Rmatrix), and additionalimportant
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problemfor KF is the obsert#on of alteredstates. Commonlythe ExtendedKalman Filter (EKF) is
considered as one of the most wHyat usedo integratdboththe GPS and INS systemg,[3.The non
linearsystem of EKF isinearized utilizing the first order Taylor series. However, EKFsfailproduce

a consisteh solution duringlosing the GPS signallue to the neglecting the higher order terms.
Moreover, different researchef$,5] usedlterated Extended Kalman Filter (IEKF) to linearize the
system modehatdoes not overcome the estimation problem completely.

In order to provide a lonterm high precise navigation solution for the moving vehicles during
GPS outages, too many techniques have been proposed. Artifteitience(Al) is one of the most
stagnantutilized to integrate both GP&nd INS systems. Alis a sel-adaptive technique and very
successfulool to deal with nonlinear systems. A variety of Al techniques have umssito fusion data
from both GPS and INSo thatincrease the accuracy of the prediction whrensignal ofGPS is lost.
Malleswara et al. p] utilize Radial Basis Function (RBF) to integrate GPS Wit§; however, RBF is
not appropriateto implemern thereal time. Moreover, Hang et al7][use another type of Al called
Hopfield Neural Network (HNN) whichalso success to improve the accuracy but unlikely require a
huge memory capacity to save the learning parameters.

Intelligent algorithm systems such ag#idaptive Neuro Fuzzy Inference System (ANFIS) and
Artificial Neural Network (ANN) havebeen widely utized in different applicationsespecially in
developing aPersonal Navigation System (PNS) ANN is considered one of thmost popular
information processingnodelsinspired by the nervousystem of the humarSalanand Ahmed[8]
utilized ANN to improvethe incorporationbetween botiNS and GPS systemshrough reducing the
requiredelapsedime for learning, butinfortunately the number of neurons in the hiddenlayer and the
number of hidden layers itself was chosen by trial and error. Theréfiese dawbacksreduce the
opportunityfor real time implementations. Some researchers use optimization metlgedsriainghe
suitable number of hidden layers ahé optimunnumber of nodes in eadtiddenlayer, but, unlikely
it leads toincreasethe complexity and time required for learning phase. On the other haiad,
unreliable environmenANFIS is considered as one of the best solutions for system modeling, where it
has thecapacityto reason and learn. Many researchi8rsl( utilized ANFIS in order to fusion GPS
and INS data. However, the fuzzy systeamnotlearn or adapt by itself to the new environment unlike
ANN. In addition to the restriction in the number of output in ANFIS structure which is limited to only
one output which lead® increase the number oktworksto be used in estimating more than one
component foboth theposition and velocity.

An intelligentnavigator systerhas been proposed provide estimationfor thevehicle dynamics.
These techniques relattee raw INS data to its corresponding INS error. WHilg, [L3 utilized input
delayed neural network in order to beat time dependency problems, since thegnisdesed on the
instantaneousind past raw INS data through using a dynamic sliding winddéviortunately,this
dynamic relation increasdise networkcomplexity which increasdhe training time.

Based onthe beforehand literaturethe integrated navigation systems can be classified into
conventional 1| i ne@d&rnomd y nteeams sysitregnsKkids n[g EKFb6s a
[13]. Currently, an intelligent technique is proposed for integrating GPS and low cost INS
measurements. The proposed technique is basedrdimearautoregressivenodels with &ogenous
inputs (NARX) model. Theobjective of the proposed technique is to attain an optimal integration
utilizing the available information from the inertial sensors with GPS receiver and its time of availability.
The layout of this gper isorganizedas follows: In sectioriwo, the NARXnetwork architecture is
described. The methodology of the fusing GPS/INS measurements utilizing NARX teclsique
illustrated in section thre@he smulation results and discussion of the proposed techicprovided
in section dur. Finally,the concluding remarks are given in sectfore.
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II. NARX NETWORK ARCHITECTURE

The basic definition to the Neural Network (NN), is most properly attributed to as Asttifici
Neural Network (ANN), ANN is mainlprocessing elements (algorithms or lveade components) that
are mostly trained to acquire the required knowledge in order to predict the required information during
testing phase. ANNs basically consisted of different layers with a connection weights between their
nodes which contain an aeition function, these parameters are classified into static and dynamic as
explained later.

Ill. STATIC NEURAL NETWORK

A neural network witithe simplest and easiesttuctureis calleda static neural network. It is an
open loop network without delay or feedback connection. It allows approximating arstatimmary
or nonlinear functiorn regular form.This neural network architecturiglshown in Figl, it has several
layers without ay feedback connectiong twisted weightw has associated with each connection of
layers and it represents the abilifythis neural structure acquire knowledggl4].

Vij Wi

Input 1
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( ) S Output

Input n

Input layer Hidden layers Output layer
FIG.1. THEARCHITECTUREOFSTATIC NEURAL NETWORK[14]

IV. NARX NAVIGATOR ARCHITECTURE

NARX is a nonlinearautoregressive model withxegenous inputs based algoritiaesignedo
predictthe SINS error which caused from GPS/IM&grated systenit is afully recurrent dynamic
neuralnetwork(RDNN). NARX hasadditional feeeback connectionghich surroundseveral layers of
theintendednetwork NARX model has two delaysne for input and one for outpand it is based on
Multi-layer perceptronMLP).For nonlinear time series predictioto get the full performances of
NARX neural network using thiaistoricalvalues of predictedalues[15].

Nowadays, NARX model is commonly used as well as compared to thetgpesrof neural
networks because this modean beused to obtain betterprediction and estimation. Also NARX model
has a good feature toe usal instead of the other neural networks such as a better learning, good
popularization and fast convergente.Fig. 2 NARX neural network structure can be defined
depending orthe discetetime input andalsooutput equatio as represented in equation) (1
[15, 16}

Yo () = FIXA), (- D, o, X(E- 1), YT (- Dy YT (E- 1))+ (D) 1)

Where y' (t) represergthe desired output variablehile y*(t) represergthe actual output
variable x(t) is theNARX neuralnetworkinput variables;n, and n, are the input and output
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time delay variables; while(t) represerd the error of the modebetween the desired and
predicted actual output.
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FiG. 2. NARX NETWORKSTRUCTURH?15].

Through considering the input variabbe(t), then thevalue of thehidden output at specified timg {s
calculatedusing equation (23s:

pY

e-nl-'I -nzl 2
H@t)=f wx(t-r)+9 wyt-1)+al 2
I() léa ir ( ) a |Iy( ) a1l;l

e r=0 1=1 u

Where W, is the weight of the link whichonnectghe input mdex(t - r) and thei " hidden rode,
w, is the specifiedweight for the link which connect thi" hidden mdeand output feedbackode

y'(t- 1); while & is the specifiedbias of thei" hidden rode while f,( ) is the utilized activation
function of the hidden layer.
Through considering thealculatedbutput from théhidden layer, then the actual output can be predicted
as given by16]:
e.n 2 (3)
u

y () =f.eq wH®+b,
QO

Where W;; is the weight value for connection between tffenidden neuron andth actualoutput

n,; b;is the bias of] Mactual outputn, is representinghe total number of hidderodes; and f,( )is

the activation of thealculatedoutput layer.
In any way,the number of hidden layers and their neurons should be determined to offer the best
performare of network in training anesting[ 15, 17]. NARX'stransfer functions exactlycomparable
to theessentiaback propagation neural netwoklikhenGPSsignalis not availableye are trying to get
an approximate location for objects using INS dakerefore]NS data are preserttseinputs of NARX
neural networkWe try to model thexactnonlinear assignment relationship with thmequeinformation
in which structurescan beindirectly definedwith the neural networkzinally, NARX neuralnetwork
hasbeen usedb obtain the begirediction results abolncation We can implement the NARX model
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that usedfor approximation of function in many ways, so thetter and easier way is feémtward
neural network.

V. COMPARISON BETWEEN OPEN AND CLOSED ARCHITECTURES

Generally, there are two NARX architectures which are cal{@jiseriesparallel architecturgype
(openrtloop),(2) parallel architecturéype (closeloop). However, he training in opethoop architecture
is faster and obtambetter performance than the cldsep architecture, so the NARX network trained
in seriesparallel architecture and then it is convertethiparallel architecture to use fpredicted the
INS error. There are two equations for these architectures (2) and (3); respd@]vely

At +1)=fy) v(t- .2 ,yle- n, ) x(t +2),x(t), x(t - 2,2 ,x{t- n,)) (4)

Ft+1)= £(|) ot - )2 - n )X+ D) () xt- )2 (- n) (5)

The y(t +1) is the NARX networkoutputat thespecifiedtime t for thetimet +1, f( )represerﬁ
the mapping function fothe network. y(t), y(t- 1),2 , y(t- n,) representshe actual outputs of time

series. {t), - 1).2 , #t - n, )Jare the estimated outputs of NARX netwost), x(t - 1),2 ,x(t- n,)
are theNARX inputs. N, representghetotal number of input delays whifg represergthe number of

output delays. Fig3 shows two architectures (open anaised loop) of the NARX network.

aft], VIRR
L Feed X L Feed .
Forward [—>)(7) Forward (=Y ()
vy T Network T Network
" =D [ D [
L L
Series-Parallel Parallel architecture
architecture

FIG.3. THE ARCHITECTURES (OPEN AND CLCED LOOP) OF THE NARX NETWORK [1b

During the training stage, the network must be enabled in the -pariakel (operloop)
architecture to train by using the actual outgtitof the time series instead of the estimatet). There
are two advantages of serarallel architecture (open loop); the first advantage is the use of inputs for
feedforward network is more accurate and truth&gcondly, the architecture of theuki;mg network
is purely feeeforward and the baekropagation can besed for the learning algorithfa5].

VI. NARX NAVIGATOR DESIGN STEPS
The proposed NARX navigation system shall be designed according to the following three main steps:
A. Calculating the INS error signal step
To generate the INS error by subtracting the INS data from GPSvdaith will be used as

desirable output in the proposed NARZAvigator There are two characteristics of any neural netywork
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trainingandtesting In generalthe neural network works on learning so we do not program it, but we
train it and then test it. That's wkiye training stage isonsideredisthe most important characigtics
of the neural networks

B. Trainin g modefor NARX neural network step

At the taining mode, we estimate the parameters of the neural network in order to observe its
performance of the work assigned to it. The training stage can only be effective afteutinelaton
of a set of input®utputs.According to thefi | e ar ni n g, tha hetyork weightsn@gannot be
modified in a random wayBut when create a networwe considered thahe inputs and outputsf
neural networlkare stationaryfor the application to be accomplished, the weiglita neural network
areadjustedhroughthetraining staggL7].

The fundamental furiiobn of the neural networlproposedin this paperis feedforward, back
propagation The numberof layer in theneural network wasdeterminedwhen the computational
complexity and avoid local minima are redd@dter we apply many trainingess. The computation
wasperformed using rasPS/INSdata.

Fig. 4 showsthetraining mode for th&lARX neuralnetworksby utilizing both GPS and INS data
to createan experimentatample of INS error focurrentand fastvalue ofINS datacomponentgor
both velocity and position components respectively When GPSsignal is available, theNARX
Navigator system has been trainecestimate angbredict INS errotby computing the desired output
(i.e.INS error) fom subtracting th&iNS datacomponents from theorrespondings PSdatacompaents
for both thevelocity and positiorand provide grecisenavigation solution for the moving vehicleo
reduce the value dflean Square ErroMSE), the learning parametensust be modified by comparing
the actual output and the desired outpbile the result is a feedback to tN&ARX network
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FIG. 4. NARX NEURAL NETWORK SCHEME DURING TRAINING MODE
Firstly, in this current workwe predictthe INS error witfconventionaheural network and secondly
with NARX network.For this neural network we choage INS datas an inpuand the INS errowill
be the outputTo predict the value of INS errdhe NARX modelis based on the historical datzat
related tdNS dataand involves some exogenous data
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C. Testing mode for NARX neural network step

The testing stage, also known as a population stageme of theproperties that determine the
performance of the neural netwoAdter the learning mode is completed, the NARX neural network is
ready to use in the testing mode impdeling both GPS/INS error and prediog the instantINS
errorFig.5 shows the operation of NARX in tésgy mode when the satellite signal is blocking.
providesa predictionof INS errorbased orthe specific time available in the input INS ddteom the
corresponding INS data, we should remove the expected INS erget tanaccurateposition and
velocity of the vehicleMoreover, the performance comparison in this phase is conducted based on the
Mean Square Error (MSEs indicated in equation)(6

N N
LI} 1 LI} (6)
MSE:N a (e) :N a_ (t-y)
i=1 i=1
Accelerometers and gyroscopes
measurements
l Raw INS data + N\ Corrected INS data
INS > >
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\ 4
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u(t-i)
g
»
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E Mt-n) k
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D
' F Y
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Latest updated learning
parameters

Navigation
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FIG.5. NARX NEURAL NETWORK SCHEME DURING TESTING MODE

VIl. RESULTS AND DISCUSSION

Theinfluenceof NARX network orthepredictionof INS error is estimated based on bathinstant
and past value of INS dataAccording to the monitoring of the operation modes we perform a dynamic
test of NARX Firstly, during training mode we exanmgd the NARX network to learn the INS error
whenthesignal ofGPSis availableIn the second modehen the signal of GPS is lose must check
the integrated system to verify the ability of the NARX modgirtavide a reliable and corrgmtediction
for both, thepositionandvelocity of an INS error

Fig. 6 shows thdNS error forx, y andz-axes that presented the positidor (500 second)While
Fig.7 shows théNS error fornorth, east and down directitimat presented the velocityr (500 second)
respectivelyln these two figures, we noticed that thesired output is identical with NARX network as
compared withconventionalneural network.The results indicate clearly the superiority of NARX
navigator compared to the conventional neural network.
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FIG. 6. INS ERROR FOR POSITION RESULTS THROUGH DIFFERENT GPS OUTAGES (A) X, (B) Y, AND (C) Z
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FIG. 7. INS ERROR FOR VELOCITY RESULTS THROUGH DIFFERENT GPS OUTAGES (A) NORBHEAST,
AND (C) DOWN DIRECTION

Theresults of the proposed NARX and the conventional neural netwerkevaluated in terms
of Mean Squar€&rror, Minimum and Maximum errdior the positiorand velocityeas illustrated in table
1. The error that produced from thdifference between thactualand desiredoutput of theNARX
networkandclassicaheural networlasshown in Fig8 indicates thesuperiorityof theproposedNARX
for both, the position and velocity componentshenGPSsignalis lost.
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TABLE 1. PERFORMANCE COMPARISON BETWEEN THE PROPOSEBRX NAVIGATOR AND

CONVENTIONAL NEURAL NETWORK.

Components Method MSE Min Error Max Error

s CNN 037 0.23 0.45

_ NARX 0.08 011 024
S . CNN 0.05 05 25
g y-axis NARX 0.013 0.031 08
e CNN 02 0.63 125

NARX 0.025 0.13 081

CNN 14 0.02 0.09

North NARX 0.048 0.01 0.02

g oot CNN 01 0.006 0.017

@ NARX 0.011 0.002 0.005
> CNN 08 0.022 0.06
Down NARX 0.036 0.01 0.02

(A)

(B)

(©)
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